TMA4267 Linear statistical models

25. march 2025

Last Thursday and today

Three scientific publications (2004, 2005, 2012) illustrating the use of 2-level factorial experiments, and motivating the theory that we cover in TMA4267

Process Biochemistry 40 (2005) 779–788

PROCESS BIOCHEMISTRY

www.elsevier.com/locate/procbi

www.elsevier.com/locate/procbio

Biosorption of chromium using factorial experimental design

Margarita Enid R. Carmona a,b,1, Mônica Antunes Pereira da Silva b,*, Selma G. Ferreira Leite b

^a Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1ra No. 70-01, AA.56006 Medellin, Colombia
^b Escola de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Bl. E, Ilha do Fundão, Rio de Janeiro 21949-990, RJ, Brazil
Received 10 October 2003; accepted 5 February 2004

Journal of Hazardous Materials B135 (2006) 165-170

Journal of Hazardous Materials

www.elsevier.com/locate/jhazmat

Phosphate removal from water by fly ash: Factorial experimental design

Mevra Yalvac Can a,*, Ergun Yildiz b,1

^a Yildiz Technical University, Faculty of Civil Engineering, Environmental Engineering Department, 34349 Istanbul, Tukey b Department of Environmental Engineering, Engineering Faculty, Ataturk University, 25240 Erzurum, Turkey Received 5 July 2005; received in revised form 9 November 2005, accepted 14 November 2005 Available online 15 December 2005

 2^3 duplicated (n = 16)

 $2^3 (n = 8)$

Repetition

Example: 23 full factorial design

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3 + \varepsilon$$

The length of β is 8, if we do one run we have 8 observations. To test for significance of effects we discussed 'sacrificing' some interactions, for example:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{123} x_1 x_2 x_3 + \varepsilon$$

If the experiment has to be **blocked**, we also took advantage of interactions, for example using AB and AC as blocking factors. Then, no main effect is confounded by the block effect, but all of the two-factor interactions are (AB*AC = BC)

Today: fractional factorial designs

Process Biochemistry 40 (2005) 779-788

Biosorption of chromium using factorial experimental design

Margarita Enid R. Carmona a,b,1, Mônica Antunes Pereira da Silva b,*, Selma G. Ferreira Leite b

^a Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1ra No. 70-01, AA.56006 Medellin, Colombia
^b Escola de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Bl. E, Ilha do Fundão, Rio de Janeiro 21949-990, RJ, Brazil
Received 10 October 2003; accepted 5 February 2004

Assume now that we can only afford to do 4 experiments, which?

Tmp Conc pH Tmp:Conc Tmp:pH Conc:pH Tmp:Conc:pH

1	1 1	1	1	1	1
1	1 -1	1	-1	-1	-1
1	-1 1	-1	1	-1	-1
1	-1 -1	-1	-1	1	1
-1	1 1	-1	-1	1	-1
-1	1 -1	-1	1	-1	1
-1	-1 1	1	-1	-1	1
-1	-1 -1	1	1	1	-1

Example 3

Research Article

Statistics in Medicine

Received 19 April 2012,

Accepted 11 June 2012

Published online 1 August 2012 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.5526

Application of fractional factorial designs to study drug combinations

Jessica Jaynes,^a Xianting Ding,^b Hongquan Xu,^{a*†} Weng Kee Wong^c and Chih-Ming Ho^b

https://doi.org/10.1002/sim.5526

26-1 fractional factorial design

- Response ('readout'): the percentage of GFP-positive* cells after combinatorial drug treatments
- Factors: 6 drugs for HSV-1 (low and high dosage)
- 26-1 fractional factorial design
- Defining relation: ABCDE = F

Table II. Factors and levels for the initial two-level antiviral drug experiment.					
	Levels	(ng/mL)			
Factor	Low (-1)	High (+1)			
A = interferon alpha	3.12	50			
B = interferon beta	3.12	50			
C = interferon gamma	3.12	50			
D = ribavirin	1560	2.5e4			
E = acyclovir	312	5e3			
F = tumor necrosis factor alpha	0.31	5			

^{*}GPF-positive means cells carry green fluorescent protein (GFP) gene, which occurs when infected with HSV-1 virus (Herpes simplex virus type 1)

2.4. Analysis and results

As explained in Section 2.2, our design can estimate all six main effects, all 15 two-factor interactions, and 10 pairs of aliased three-factor interactions, assuming that four-factor and higher interactions are negligible.

Effect aliasing is a consequence of using a fractional factorial design. A related concept is resolution, which captures the amount of aliasing. This half-fraction design has resolution VI, which allows the estimation of all main effects and two-factor interactions under the assumption that fourth-order and higher interactions are negligible. In general, the higher the resolution of a fractional factorial design, the less restrictive is the assumption regarding which interactions are negligible to obtain a unique interpretation of the data.

Resolution in fractions of 2^p **experiments.**

Definition. A design is said to be of resolution R if no p-factor effect is aliased with an effect containing less than R-p factors.

Table I. Design and data for the initial two-level experiment: a 2^{6-1} design. Factor							
Run	\overline{A}	В	С	D	E	\overline{F}	readout
1	-1	-1	-1	-1	-1	-1	31.6
2	-1	-1	-1	-1	1	1	32.6
3	-1	-1	-1	1	-1	1	13.4
4	-1	-1	-1	1	1	-1	13.2
5	-1	-1	1	-1	-1	1	27.5
6	-1	-1	1	-1	1	-1	32.5
7	-1	-1	1	1	-1	-1	11.6
8	-1	-1	1	1	1	1	20.8
9	-1	1	-1	-1	-1	1	37.2
10	-1	1	-1	-1	1	-1	51.6
11	-1	1	-1	1	-1	-1	14.1
12	-1	1	-1	1	1	1	19.9
13	-1	1	1	-1	-1	-1	27.3
14	-1	1	1	-1	1	1	40.2
15	-1	1	1	1	-1	1	19.3
16	-1	1	1	1	1	-1	23.3
17	1	-1	-1	-1	-1	1	31.2
18	1	-1	-1	-1	1	-1	32.6
19	1	-1	-1	1	-1	-1	14.2
20	1	-1	-1	1	1	1	22.4
21	1	-1	1	-1	-1	-1	32.7
22	1	-1	1	-1	1	1	41.0
23	1	-1	1	1	-1	1	20.1
24	1	-1	1	1	1	-1	18.7
25	1	1	-1	-1	-1	-1	29.6
26	1	1	-1	-1	1	1	42.3
27	1	1	-1	1	-1	1	18.5
28	1	1	-1	1	1	-1	20.0
29	1	1	1	-1	-1	1	30.9
30	1	1	1	-1	1	-1	34.3
31	1	1	1	1	-1	-1	19.4
32	1	1	1	1	1	1	23.4
33	0	0	0	0	0	0	16.8

34

35

17.5

16.2

NB: 3 'center runs', not in our curriculum, but useful for estimating variance

2.4. Analysis and results

As explained in Section 2.2, our design can estimate all six main effects, all 15 two-factor interactions, and 10 pairs of aliased three-factor interactions, assuming that four-factor and higher interactions are negligible.

Table III. Estimates for the initial two-level experiment.					
Effect	Estimates	Sum sq.	% Sum sq.		
A	0.017	0.009	1		
В	0.03	0.029	3.1		
C	0.008	0.002	0.2		
D	-0.141	0.636	68		
E	0.046	0.068	7.3		
F	0.024	0.018	1.9		
AB	-0.022	0.015	1.6		
AC	0.005	0.001	0.1		
AD	0.019	0.011	1.2		
AE	-0.009	0.002	0.3		
AF	0.005	0.001	0.1		
BC	-0.009	0.003	0.3		
BD	0.008	0.002	0.2		
BE	0.008	0.002	0.2		
BF	-0.008	0.002	0.2		
CD	0.024	0.018	1.9		
CE	0.002	0	0		
CF	0.003	0	0		
DE	0.001	0	0		
DF	0.014	0.006	0.7		
EF	-0.001	0	0		
ABC + DEF	-0.002	0	0		
ABD + CEF	0.002	0	0		
ABE + CDF	-0.006	0.001	0.1		
ABF + CDE	-0.001	0	0		
ACD + BEF	-0.017	0.009	0.9		
ACE + BDF	-0.015	0.007	0.8		
ACF + BDE	-0.012	0.004	0.5		
ADE + BCF	-0.004	0	0		
ADF + BCE	-0.009	0.002	0.2		
AEF + BCD	0.014	0.007	0.7		
Residuals	_	0.077	8.3		
Total	_	0.935	100		

Table III. Estimates for the initial two-level experiment.					
Effect	Estimates	Sum sq.	% Sum sq.		
A	0.017	0.009	1		
\boldsymbol{B}	0.03	0.029	3.1		
C	0.008	0.002	0.2		
D	-0.141	0.636	68		
E	0.046	0.068	7.3		
F	0.024	0.018	1.9		
AB	-0.022	0.015	1.6		
AC	0.005	0.001	0.1		
AD	0.019	0.011	1.2		
AE	-0.009	0.002	0.3		
AF	0.005	0.001	0.1		
BC	. 0.000	0.002	0.2		

0.014

-0.001

BD

BE

BF

CD

CE

CF

DE

DF

EF

Table III suggests that the effects of drugs D and E are the largest. The linear effect of drug D is the most significant with an estimate of three times the estimate of the next most significant drug, E, showing that drug D is very significant and important relative to the other drugs. Together, drugs D and E account for 75.3% of the total sum of squares in the data. Overall, the six main effects contribute 81.5% of the sum of squares, the 15 two-factor interactions contribute 6.8%, the 10 pairs of three-factor interactions contribute 3.2%, and the residuals account for 8.3%. In this antiviral experiment, the main effects dominate the system, and drug D alone accounts for 68.0% of the total sum of squares within the system.

0.7

0

0.006

0

 "A follow-up experiment using a blocked three-level fractional factorial design indicates that tumor necrosis factor alpha has little effect and that HSV-1 infection can be suppressed effectively by using the right combination of the other five antiviral drugs"

Presentation of results

Some R code for plotting

Main effects:

Interaction effects:

- Clow level
(io mg/L)

- Chigh level
(1200 mg/L)

Presentation of results

Some R code for plotting

Fig. 1. Pareto chart of effects on the removal efficiency of Cr³⁺.

NB: Thursday 27th

Use the lecture time (and room) to work on your project and ask questions.

Also use the exercise class.