Rbeginner: R and RStudio — a first tour

TMA4268 Statistical Learning V2018. Module 1: INTRODUCTION TO STATISTICAL
LEARNING

Mette Langaas and Martina Hall, Department of Mathematical Sciences, NTNU
week 2, 2018 (Version 07.01.2018)

R is a free software environment for statistical computing and graphics. It runs on a wide variety of UNIX
platforms, Windows and MacOS. R can be downloaded from http://www.r-project.org/.

We recommend that you run R using the RStudio IDE (integrated development environment). RStudio can
be downloaded from http://rstudio.org/.
Notice: you need to download both R and RStudio.

If you need help on installing R and RStudio on you laptop computer, contact orakel@ntnu.no. If you want
to work at Nullrommet or Banachrommet at Matteland, R and RStudio is already installed for you.

Part A: Using RStudio - what are the different windows?

Start RStudio. Then you (probably) have the following four windows.

o Source (aka script window) - upper left window: where you write your code and keep track of your
work.

o Console - lower left window: where the R commands are executed (so here is where you R installation
lives). Sometimes also referred to as command window.

o Environment/History/Connections/Presentation - upper right window: the objects that you
have in your workspace, and the commands you have executed, and more.

 Files/Plots/Packages/Help/Viewer- lower right: overview of your files, the plots you produce, the
packages you have installed and loaded, and more.

Source window: (Make the source window active.) To start writing a script press File- New File- R Script.
To open an existing file, press File- Open File- and select the file you want to open. The file will open in the
source window. To save this file, press File- Save as- and go to the working directory there you want to put
your TMA4268 R files and save the file as “name”.R (example: myRintro.R). Files with R code usually have
extension .R.

Console window: (Make the console window active.) To see your working directory, you can write getwd (),
and you will get your location as output. You can also set your working directory to a certain folder of choise
by writing setwd("location") (Example: setwd("M:/Documents/TMA4268/")). Now you are certain that
all your files will be put in this folder.

Quitting: It is always important to be able to quit a program: when you are finished you may choose
RStudio-Quit Rstudio (top menu outside of the windows). Alternatively, you may write q()in the console
window to quit R (the parenthesis is because q is a function that can have arguments to be given within the
parentheses and you call the function without any arguments). You will be asked if you want to save your
script and workspave. If you want to reuse your script later (and of cause you want to do that - we aim at
reproduciable research), you should save it! If you answer yes to “Save workspace image” all the objects you
have created are found in a .RData file (more about objects soon). This could be useful if you don’t want to
run all the commands in the script again, because if you start R in the same working directory all the objects
you have created will be automatically availble to you. More on objects next.

http://www.r-project.org/
http://rstudio.org/
mailto:orakel@ntnu.no

You can download the RStudio IDE cheat sheet: https://github.com/rstudio/cheatsheets/raw/master/
rstudio-ide.pdf

Part B: Trying out R-commands

To exceute your commands, you can either type directly in the console or run the commands from the source
window. In the source window, you can run the current line by pressing Ctrl and Enter (Windows) or
CMD and Enter (MacOS), or you can run select lines by marking them and pressing Ctrl + Enter. You can
also use the Run-button in the top right corner of the window to run selected lines or commands, and the
Source-button in the top right corner to run everything in your Source window.

Q: Write and execute the following commands. What have you done mathematically here?

2+3

2%6

3%1074-3%572

1072-1

107 (2-1)

sqrt(9)

log(3,base=10)

7log

log

logl10(3)

log(3)

exp(34)

gamma (3)

factorial(5)

choose(10,4)

1:4

c(1,2,3,4)

seq(from = 1, to = 4, by = 1)
sum(1:5)

prod(1:5)

heights = c(192,185,174,195,173)
shoes = c(46,43,40,45,40)
ratio <- heights/shoes
ratio

Here we have created three objects: heights, shoes and ratio. Observe: we can both use = and <- for
assigning content to an object. Notice now that the objects you assigned values to (heights, shows, ratio)
appear in the Enviroment window (sorted as Data, Values or Functions, but you should only have Values so
far).

The function ¢ combines values into a vector (concatenate). Also, all the commands you have run are reported
in the History window.

If you want to add comments, you do that by starting with a hashtag symbol:

now we qutt

a0

Save your work as myRintro.R - and we will try to open that in Part C.

https://github.com/rstudio/cheatsheets/raw/master/rstudio-ide.pdf
https://github.com/rstudio/cheatsheets/raw/master/rstudio-ide.pdf

Part C: Importing and exporting

Executing the commands in an R-file with source

You ended Part B by quitting RStudio, now open RStudio again, and open the file myRintro.R in your source
window. Then either write:

source ("myRintro.R") #given that your working directory is wher myRintro.R is saved

or source with the source button in the upper right corner of the source window.

It is also possible to source a file from the internet, for example a version of Part B can be sources from the
TMA4268 catalog:

source ("https://www.math.ntnu.no/emner/TMA4268/2018v/RintroPartB.R",echo=TRUE)

Here echo=TRUE echoes the commands being run- in addition to the results of the commands.

Reading and writing data into R may be a bit tricky if the format of the data is not defined exactly, so here
we just show how to read three nice formats.

You may also choose Enviroment (window upper right) -Import Data set - and get help.

Printing to and reading from a csv-file

Q: Study the R script below and find out what is done in each line of the script.

n=1000

ds=matrix(rnorm(n) ,ncol=10)

colnames(ds)=paste("Variable",1:10,sep="")
write.csv(ds,file="stnorm.csv",row.names = FALSE) #do not want 1:100 as rownames
getwd ()

list.files() #files in the folder of getwd()
dss=read.csv(file="stnorm.csv",header=TRUE)

dim(dss)

typeof (dss)

head(dss)

Printing to and reading from other file formats

There exists may packages to read different type of input data, and reading x1s files can be done using the
package readxl.

Exporting plots

We will talk more about generating random data from different distribution in Rintermediate.R and more
about plotting in Part F. However, the following commands draws 100 realizations from the standard normal
distribution and makes a boxplot. Write these commands and run them.

ds = rnorm(100)
boxplot (ds)

_—
|
1
N |
|
|
1
H_ 1
1
o_
T
- _] !
| !
1
:
1
Cl\l_ '
—_—

You how should have a boxplot in your Plots window - looking similar to the one shown here. Q: What are
the different parts of this boxplot? Hint: median, 1 and 3rd quantiles. To read what the function boxplot
does you may write help(boxplot) or just ?boxplot. How are the whiskers defined?

Now, we want to export this plot - maybe to be put on a webpage or just for fun (we will use R Markdown
for our compulsory exercises and will then not need to export plots).

You may save the plot (for example as pdf or svg) Export in the Plots window, or alternatively you may write

dev.copy2pdf (file="box.pdf")

The will produce a pdf-file thtat is saved to your working directory.

A third solution pdf ("box.pdf"); boxplot(ds); dev.off()to make a file named box.pdf with the boxplot,
then it is possible to save many plots together in one pdf-file - just add more plots before closing the pdf-file
with dev.off ().

Part D: Packages - and functions

R is a free and open source program. Everyone can contribute with making functions (like boxplot and
rnorm) and packages (collection of functions and data sets), and there exists a lot of available packages. Some
are already included in the default R session, like the package stats that includes many basic functions for
doing statistics.

Every statistical researcher who would like to to get their new statistitical methods used will make an R package
and distribute it with their article (on the new method). Most books also comes with R packages with data
sets and functions. Our ISL book has the package ISLR, hosted on the most widely used service for R packages:
CRAN. See the official page for the package here: https://cran.r-project.org/web/packages/ISLR /index.html.

To install an R package from CRAN you go to the Packages tab and see if the packages is already available
on your computer. If you see ISLR in this list just press the square next to ISLR to load the package into R.

If you don’t see ISLR you will have to download it from CRAN. Do this by either pressing Install on the top
left corner of the Packages window, CRAN is already filled as “Install from” and then write “ISLR” as the
name of the package to install, and nice to have chosen “install dependencies” (then packages that ISLR
depend on will also be installed). Then press “Install”. You might have to select from different mirrors for
CRAN - choose Norway, and you are good to go. Then “ISLR” should pop up in the list of packages installed,
and you tick (in the square) to load the package into R.

Alternatively, in the console (or source) window you may write:

https://cran.r-project.org/web/packages/ISLR/index.html

install.packages("ISLR")
library(ISLR) # to make the package available in the current session

Now the packages is installed and loaded to the current session. Remember that whenever starting a new
session, you need to reload the packages you want to use, using the 1library () function, or ticking the square
next to ISLR in the Packages window.

library(help="ISLR")

Q: Look at the contents of the ISLR to see that only data sets are available - you may also see that by
selecting the name ISLR in the Packages window. To know more about the data set named NCI60 either just
select the data set in the Packages window, or write help(NCI60) after ISLR is loaded. What can you say
about NCI607

Another package that we will use is car. Q: Install the car package from CRAN, check the content of the
package (data sets and functions) and investigate

We will be using a lot of packages in this course, and the ones we use will be listed on the start of each
module page. We would assume that you have loaded these packages if you want to reproduce that statistical
analyses on the module pages.

Before start using the functions of the package, it is often a good idea to visit the help pages of the package to
see which functions and data sets are available, how they are used, what they calculate, and the output they
give, etx.. These pages are found in the Help window to the left or typing ?namein the console, (ex. ?mean).

In the stats package, you find functions for making and evaluating distributions. We use the function rnorm
to sample independent data from the univariate normal distribution.

rnorm #lists the function code

?rnorm #help pages for the function

rnorm() #gives error

rnorm(n=100,mean=0,sd=1) #draw random samples from this distribution
?lm # more to see, will be what we use to perform linear regression

Part E: More on vectors and matrices

R can handle both numeric and non numeric data. The concatenate c-function can handle both numeric and
non-numeric data, but be careful when mixing them.

Q: Go through theses commands and see what is produced.

x = ¢c(1,2,3)
typeof (x)

[1] "double"

y = c("a", "b", "c")
typeof (y)

[1] "character"
0 o (T, TE7, 0Eh)
typeof (u)

[1] "character"

v = as.numeric(u)
typeof (v)

[1] "double"
z = c("red", 1, "yellow", 2)
typeof (z)

[1] "character"

#w = z - 1 this gives error

Logical operators are also available, == for equality, != for not equal to, >= for greater than or equal to, etc.
gender = factor(c("male", "female", "female", "male"))
gender

[1] male female female male
Levels: female male

sum(gender == "male")
[1] 2
table(gender)

gender

female male

#it 2 2

Useful for vectors:

x = 1:5

x = seq(1,5,length=5)
x = ¢(1,2,3,4,5)

2 %in% x

6 %in’% x

x[2] = 10

x[3:4] =0

x[-2] =1

x[c(1,4)] = 4

x[x>4] = 10

y = log(x)

= exp(y)

y / x

t (x) Wxhy # t(): transpose
min(x)

max (x)

sum(x)

mean (x)

var (x)

length(x)

sort (x)

order (x)

sort(x) == x[order(x)]

M N< N N

Notice the length of your vectors when doing calculations with two vectors.

x = 1:5
y =2
X~y

[1] -1 0 1 2 3

5%x

[1] 5 10 156 20 25

z = 10:15
w=1:2
Z - W

[1] 9 9 11 11 13 13
What happens here?

For matrices:

A = matrix(1:6, nrow = 3, ncol = 2)
A
[,11 [,2]

[1,] 1 4
[2,] 2 5
[3,] 3 6

B = matrix(1:6, nrow = 2, ncol = 3, byrow = TRUE)
B

[,11 [,21 [,3]
[1,] 1 2 3
[2,] 4 5 6

A%*7%B # matriz multiplication

#i#t [,11 [,2]1 [,3]
[1,] 17 22 27
[2,] 22 29 36
[3,] 27 36 45

Axt (B)

[,1]1 [,2]
[1,] 1 16
[2,] 4 25
[3,] 9 36

A%t (R)

[,1]1 [,2] [,3]
[1,] 17 22 27
[2,] 22 29 36
[3,1] 27 36 45

A~2
it [,11 [,2]
[1,] 1 16

[2,] 4 25
[3,] 9 36

The functions cbind (column bind) and rbind (row bind) can also be used to create matrices:

x1 =1:3

x2 = c¢(7,6,6)

x3 = ¢(12,19,21)

A = cbind(x1,x2,x3) # Bind wvectors z1, z2, and z3 into a matriz.
Treats each as a column.

A = rbind(x1,x2,x3) # Bind wvectors =1, z2, and z3 into a matriz.

Treats each as a row.

Other matrix commands are

dim(A) # get the dimensions of a matric

nrow (A) # number of rows

ncol(A) # number of columns

apply(A,1,sum) # apply the sum function to the rows of A
apply(A,2,sum) # apply the sum function to the columns of A
sum(diag(A)) # trace of A

A = diag(1:3)

solve(A) # inverse of A, in general solve(4,b) solves Az=b wrt z
det (4) # determinant of A

Part F: Plotting

Create a plot

x <- seq(-4,4,length=500)

y <-x2-1

plot(x,y,type="1", main="My plot", xlab = "x", ylab = "y")
abline(v=3)

abline(h=5)

My plot

15

10

To draw the plot in the way you want, check the help pages of the plot function to see which input values
you can change to make your plot look the way you want to.

The package ggplot2is a powerful tool for making nice plots. In this package, the function gplot()can
be used to compute the basic graphics from the plot function - however it is better to use the grammar of
graphics that is the core of the ggplot2 package - if you want to learn more about the grammar of graphics
you should start by reading Chapter 3 of the book R for Data Science.

Before diving in to this, the list below shows some basic tools for plotting using both plot()and gplot ()
(the last from the ggplot2 package).

Description Base Graphics ggplot2

Plot y versus x using points plot(x, y) gplot(x, y)

Plot y versus x using lines plot(x, y, type = “1”) qplot(x, y, geom = “line”)

Plot y versus x using both points and lines plot(x, y, type = “b”) gplot(x, y, geom =
c(“point”, “line”))

Boxplot of x boxplot(x) gplot(x, geom =
“boxplot”)

Side-by-side boxplot of x and y boxplot(x, y) gplot(x, y, geom =
“boxplot”)

Histogram of x hist(x) gplot(x, geom =

“histogram”)

Plotting will be an important part of any statistical analysis course.

Part G: Writing a simple function

When starting a function, you should start with the name of the function and state if the function takes
input values. Then you write the function code inside the branches . Remember to return the output of the
function using return().

myfunction <- function(x,y) #myfunction is the name, = and y are the names of the inputs

{
n <- c(length(x), length(y))
m <- c(sum(x), sum(y))
p <- m/n
return(p)

}

Q: If x and y are two vectors of different lengths - what does then the function return?

To start using the function, you must first run it through the console so that it is in your enviroment (mark
and run). Then you call the function name and give your inputs like this.

a=1:10

seq(from = 0.1, to = 1, length = 10)

myfunction(x = a, y = b) #assign output to a wvariable p

b
p
p

[1] 5.50 0.55

You can also use if/else sentences, for/while-loops and print().
letters = C(”a”, ll‘bll’ "C”, lldll’ llell’ I|fll’ I|gll’ I|hll)
for(i in 1:length(letters)){

http://r4ds.had.co.nz/data-visualisation.html

if (letters[i]=="b"){
print (letters[i])

}

if else{letter[i]=="d"){
print (letters[i])

}

elseq{
print("not b or d")

}

}

While loopes can be written in a similar mannar, using while instad of for.

Part G: Lists and data frames

Lists and data frames are good tools for storing and accessing your data.

Lists

Using a list, there is no restrictions to the type of data you want to store.

a = c("male", "female", "male", "male")
b = matrix(c(1:6), ncol = 2)
¢ = rnorm(100, mean = 0, sd = 1)

my_list = list(a = a, b =b, ¢ = c)

The list my_list now consists of three objects, a, b and c. To access the data in you list, you write

my_list[[1]] #a
my_list[[2]] #b
my_list[[3]] #c

or

my_list$a #a
my_list$b #b
my_list$c #c

To access the second element in the object a, you write my_list[[1]1] [2] or my_list$a[2].

Data frames

When using a data frame, you need all your elements in the data frame to be of equal length.

Sick = ¢(0,1,1,0,0,0,1,0)

Age = c¢(50,15,39,35,26,20,10,69)

Sex = factor(c("male", "female", "female", "male", "male", "male", "female", "male"))
df = data.frame(Sick = Sick, Age = Age, Sex = Sex)

To access the vectors in the data frame,

df$Sick
df$Age
df$Sex

10

Similar to a list, we access elements in the data frame using df$Sex[2]. If your data frame is very large, it is
easier to view typing View(df).

What is next?

You may now move to Rintermediate to see how R can be used on topics that should already be familiar to
you from TMA4240/TMA4245 Statistics - or similar courses.

11

	Part A: Using RStudio - what are the different windows?
	Part B: Trying out R-commands
	Part C: Importing and exporting
	Executing the commands in an R-file with source
	Printing to and reading from a csv-file
	Printing to and reading from other file formats
	Exporting plots

	Part D: Packages - and functions
	Part E: More on vectors and matrices
	Part F: Plotting
	Part G: Writing a simple function
	Part G: Lists and data frames
	Lists
	Data frames

	What is next?

