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# packages to install before knitting this R Markdown file
install.packages("knitr")
install.packages("kableExtra")
install.packages("rmarkdown")
install.packages("devtools")
library(devtools) # before installing from github
install_github("yixuan/prettydoc") #nice html-page
install_github("yixuan/xaringan") # nice slides with remark.js
#install.packages("prettydoc") # alternative to github
install.packages("ggplot2")
install.packages("ggpubr")
install.packages("ElemStatLearn")
install.packages("GGally")
install.packages("mvtnorm")
install.packages("MASS")
install.packages("car")
install.packages("faraway")
install.packages("reshape")
install.packages("corrplot")
install.packages("corrgram")



Aim of the module
I Statistical learning and examples thereof
I Introduce relevant notation and terminology.
I Estimating f (regression, classification): prediction accuracy

vs. model interpretability
I Bias-variance trade-off
I Classification:

I The Bayes classifier
I K nearest neighbour (KNN) classifier

I The basics of random vectors, covariance matrix and the
multivariate normal distribution.

Learning material for this module:

I James et al (2013): An Introduction to Statistical Learning.
Chapter 2.

I Additional material (in this module page) on random variables,
covariance matrix and the multivariate normal distribution
(known for students who have taken TMA4267 Linear
statistical models).



Added after the lecture:

I Classnotes 15.01.2018.

Move to:

I Part A: Statistical learning - core concepts
I Part B: Random vectors, covariance matrix and the

multivariate normal distribution
I Recommended exercises

https://www.math.ntnu.no/emner/TMA4268/2018v/notes/TMA4268ClassnotesM2L1.pdf


Part A: Core concepts in statistical learning

What is Statistical Learning?

Statistical learning is the process of learning from data.

By applying statistical methods (or algorithms) on a data set (called
the training set), the aim is to draw conclusions about the relations
between the variables or to find a predictive function for new
observations.

Statistical learning plays a key role in many areas of science, finance
and industry.



Variable types

Variables can be characterized as either quantitative or qualitative.

Quantitative variables are variables from a continuous set, they
have a numerical value.

Examples: a person’s weight, a company’s income, the age of a
building, the temperature outside, the amount of rainfall etc.

Qualitative variables are variables from a discrete set, from a set of
K different classes/labels/categories.

Examples of qualitative variables are: type of fruit {apples, oranges,
bananas, . . . }, the age groups in a marathon: {(below 18), (18-22),
(23 - 34), (35 - 39), (40 - 44), . . . }. Qualitative variables which
have only two classes are called binary variables and are usually
coded by 0 (no) and 1 (yes).



Examples of learning problems
Economy:

To predict the price of a stock 3 months from now, based on
company performance measures and economic data. Here the
response variable is quantitative (price).

Medicine 1:
To identify the risk factors for developing diabetes based on diet,
physical activity, family history and body measurements. Here the
aim is to make inference of the data, i.e. to find underlying relations
between the variables.

Medicine 2:
To predict whether someone will suffer a heart attack on the basis
of demographic, diet and clinical measurements. Here the outcome
is binary (yes,no ) with both qualitative and quantitative input
variables.



South African heart disease data: 462 observations and 10 variables.
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Handwritten digit recognition:

To identify the numbers in a handwritten ZIP code, from a digitized
image. This is a classification problem, where the response variable
is categorical with classes {0, 1, 2, . . . , 9} and the task is to
correctly predict the class membership.

Examples of handwritten digits from U.S. postal envelopes. Image
taken from https://web.stanford.edu/~hastie/ElemStatLearnII/

https://web.stanford.edu/~hastie/ElemStatLearnII/


Email classification (spam detection):

The goal is to build a spam filter. This filter can based on the
frequencies of words and characters in emails. The table below show
the average percentage of words or characters in an email message,
based on 4601 emails of which 1813 were classified as a spam.

you free george ! $ edu

not spam 1.27 0.07 1.27 0.11 0.01 0.29
spam 2.26 0.52 0.00 0.51 0.17 0.01



What makes a Nobel Prize winner?
Perseverance, luck, skilled mentors or simply chocolate
consumption? An article published in the New England Journal of
Medicine have concluded with the following:

Chocolate consumption enhances cognitive function,
which is a sine qua non for winning the Nobel Prize, and
it closely correlates with the number of Nobel laureates in
each country. It remains to be determined whether the
consumption of chocolate is the underlying mechanism for
the observed association with improved cognitive function.

The figure shows the correlations between a countries’ annual per
capita chocolate consumption and the number of Nobel Laureates
per 10 million population.

You can read the article here and a informal review of the article
here.

Hopefully we will not run out of chocolate already in 2020

http://www.nejm.org/doi/full/10.1056/NEJMon1211064
https://blogs.scientificamerican.com/the-curious-wavefunction/chocolate-consumption-and-nobel-prizes-a-bizarre-juxtaposition-if-there-ever-was-one/
http://www.mirror.co.uk/news/world-news/chocolate-could-run-out-2020-2913505




Q: Were there common underlying aims and elements of these
examples of statistical learning?

I To predict the price of a stock 3 months from now, based on
company performance measures and economic data.

I To identify the risk factors for developing diabetes based on
diet, physical activity, family history and body measurements.

I The goal is to build a spam filter.
I To predict whether someone will suffer a heart attack on the

basis of demographic, diet and clinical measurements.
I To identify the numbers in a handwritten ZIP code, from a

digitized image.
I What makes a Nobel Prize winner? Perseverance, luck, skilled

mentors or simply chocolate consumption?

A: yes, the aim was either understanding or prediction, some output
variables were continuous others were discrete.



What is the aim?

Assume:

I we observe one quantitative response Y and
I p different predictors x1, x2, ..., xp.

We assume that there is a function f that relates the response and
the predictor variables:

Y = f (x) + ε,

where ε is a random error term with mean 0 and independent of x .

There are two main reasons for estimating f : prediction and
inference



Prediction
Based on observed data the aim is to build a model that as
accurately as possible can predict a response given new observations
of the covariates:

Ŷ = f̂ (x).

Here f̂ represents the estimated f and Ŷ represents the prediction
for Y . In this setting our estimate of the function f is treated as a
black box and is not of interest. Our focus is on the prediction
for Y , hence prediction accuracy is important.

There are two quantities which influence the accuracy of Ŷ as a
prediction of Y : the reducible and the irreducible error.

I The reducible error has to do with our estimate f̂ of f . This
error can be reduced by using the most appropriate statistical
learning technique.

I The irreducible error comes from the error term ε and cannot
be reduced by improving f . This is related to the unobserved
quantities influencing the response and possibly the
randomness of the situation.



Inference
Based on observed data the aim is to understand how the response
variable is affected by the various predictors (covariates).

In this setting we will not use our estimated function f̂ to make
predictions but to understand how Y changes as a function of
x1, x2, ..., xp.

The exact form of f̂ is of main interest.

I Which predictors are associated with the response?
I What is the relationship between the response and each

predictor?
I Can the relationship be linear, or is a more complex model

needed?



The difference between Statistical Learning and Machine
Learning

There is much overlap between statistical learning and machine
learning: the common objective is learning from data. Specifically,
to find a target function f that best maps input variables x to an
output variable Y : Y = f (x).

This function f will allow us to make a prediction for a future Y ,
given new observations of the input variables x ’s.

I Machine learning arose as a subfield of artificial intelligence and
has generally a greater emphasis on large scale applications and
prediction accuracy, the shape and the form of the function f
is in itself (generelly) not interesting.

I Statistical learning arose as a subfield of statistics with the
main focus on model interpretability.



Naming convention

Statistical Learning Machine Learning

model network, graph, mapping
fit, estimate learn
covariates, inputs, independent
variables, predictors

features, predictors

response, output, dependent
variable

output, target

data set training data

Remark: not an exhaustive list, and common usage of many terms.



Regression and classification

Regression predicts a value from a continuous set.

Classification predicts the class membership.

Q:

Give an example of one regression and one classification problem
(practical problem with data set available) that you would like to
study in this course.

A: See classnotes for suggestions in class.



Supervised and unsupervised learning
Supervised learning

Our data set (training set) consists of n measurement of the
response variable Y and of p covariates x :

(y1, x11, x12, . . . , x1p), (y2, x21, . . . , x2p), . . . , (yn, xn1, xn2, . . . , xnp).

Aim:

I make accurate predictions for new observations,
I understand which inputs affect the outputs, and how, and
I to assess the quality of the predictions and inference. It is

called supervised learning because the response variable
supervises our analysis.

Examples (we will study):

I Linear regression (M3), Logistic regression (M4), Generalized
additive models (M7)

I Classification trees, bagging, boosting (M8), K-nearest
neighbor classifier (M2,M4)

I Support vector machines (M9)



Unsupervised learning

Our data set now consists of input measurements, xi ’s, but without
labelled responses yi ’s.

The aim is to find (hidden) patterns or groupings in the data - in
order to gain insight and understanding. There is no correct answer.

Examples:

I Clustering (M10), Principal component analysis (M10)
I Expectation-maximization algorithm (TMA4300)

Semi-Supervised Learning

Our data set consists of a input data, and some of the data has
labelled responses. This situation can for example occur if the
measurement of input data is cheap, while the output data is
expensive to collect. Classical solutions (likelihood-based) to this
problem exists in statistics (missing at random observations).



Q:

Explain to your neighbour the difference between supervised and
unsupervised learning by the use of examples.



Models and methods
Parametric Methods
Parametric methods build on an assumption about the form or
shape of the function f .

The multiple linear model (Module 3) is an example of a parametric
method. We here assume that the response variable is a linear
combination of the covariates

f (x) = β0 + β1x1 + ...+ βpxp.

By making this assumption, the task simplifies to finding estimates
of the p + 1 coefficients β0, β1, .., βp. To do this we use the training
data to fit the model, such that

Y ≈ β0 + β1x1 + ...+ βpxp.

Fitting a parametric models is thus done in two steps:

1. Select a form for the function f .
2. Estimate the unknown parameters in f using the training set.



Non-parametric methods

Non-parametric methods seek an estimate of f that gets close to
the data points, but without making explicit assumptions about the
form of the function f .

The K -nearest neighbour algorithm is an example of a
non-parametric model. This algorithm predicts a class membership
for a new observation by making a majority vote based on its K
nearest neighbours. We will discuss the K -nearest neighbour
algorithm later in this module.



Q:

What are the advantages and disadvantages of parametric and
non-parametric methods?

Hints: interpretability, amount of data needed, complexity,
assumptions made, prediction accuracy, computational complexity,
over/under-fit.



Parametric methods

Advantages Disadvantages

Simple to use and easy to
understand

The function f is constrained to
the specified form.

Requires little training data The assumed function form of f
will in general not match the
true function, potentially giving
a poor estimate.

Computationally cheap Limited complexity



Non-parametric methods

Advantages Disadvantages

Flexible: a large number of
functional forms can be fitted

Can overfit the data

No strong assumptions about
the underlying function are
made

Computationally more
expensive as more parameters
need to be estimated

Can often give good predictions Much data is required to
estimate (the complex) f .



Prediction accuracy vs. interpretability

Inflexible, or rigid, methods are methods which have high
restrictions on the shape of f .

Examples:

I Linear regression (M3)
I Linear discriminant analysis (M4)
I Subset selection and lasso (M6)

Flexible methods allow for the shape of f from a wider range.

Examples:

I KNN classification (M2,M4)
I Smoothing splines (M7)
I Bagging and boosting (M8), support vector machines (M9)



The choice of a flexible or inflexible method depends on the goal in
mind.

If the aim is inference an inflexible model, which is easy to
understand, will be preferred. On the other side, if we want to make
as accurate predictions as possible, we are not concerned about the
shape of f . A flexible method can be chosen, at the cost of model
interpretability, and we treat f like a black box.

Overfitting occurs when the estimated function f is too closely fit
to the observed data points.

Underfitting occurs when the estimated function f is too rigid to
capture the underlying structure of the data.



We illustrate this by a toy example with four figures. The black line
in the first figure shows the function from which we have simulated
theoretical observations: y = x2. The black dots show the
“observed” values. These have been simulated by adding standard
normal noise to the original equation. x -values are chosen in the
real line from -2 to 4, equally spaced at 0.1, giving n = 61.
Now, assume that the black dots are observations to which you
want to fit a function without knowing the true relationship.

I The red line shows a simple linear model of the form β0 + β1x
fitted to the observations. This line clearly underfits the data.
We see that this function is unable to capture that convex
nature of the data.

I The orange line shows a quadratic polynomial fit to the data,
of the form β0 + β1x + β2x2. We see that this function fits
well and looks almost identically as the true function.

I The purple line shows a polynomial of degree 20 fit to the data,
of the form β0 + β1x + β2x2 + · · ·+ β20x20. We here observe
overfitting. The function captures the noise instead of the
underlying structure of the data.

We will discuss polynomial regression in Module 7.
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Q: The coloured curves are our estimates for the functional
relationship between x and Y .

I Which of the coloured curves does the best job? Rank the
curves.

I Now only consider the red (order 1) and purple (order 20)
models: We collect new data (of the same size with normally
distributed errors) - and estimate new curves. Which of the
coloured curves would on average give the best performance?

I What did you here choose to define as “best performance”?

A: See classnotes for suggestions in class.

Why comparing regressions with different degrees of
polynomials? We will study several methods that includes a
parameter controlling the flexibility of the model fit - so
generalizations of our example with degrees for the polynomials.
The K in K-nearest neighour is such a parameter. We need to know
how to choose this flexibility parameter.
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Kept x fixed and drew new errors 100 times. The 100 fitted curves
shown. Added poly10 - to see trend from poly2 to poly20.



Loss function
Q: How can we measure the loss between a predicted response ŷi
and the observed response yi?

A: Possible loss functions are:

I absolute loss (L1 norm): | yi − ŷi |
I quadratic loss (L2 norm): (yi − ŷi )2

I 0/1 loss (categorical y): loss=0 if ŷi = yi and 1 else

Issues: robustness, stability, mathematical aspect.

We will use quadratic loss now.



Assessing model accuracy - and quality of fit

Q: For regression (or classification) in general: will there be one
method that dominates all others?

A: No method dominates all others over all possible data sets.

I That is why we need to learn about many different methods.
I For a given data set we need to know how to decide which

method produces the best results.
I How close is the predicted response to the true response value?



Training MSE
In regression, where we assume Y = f (x) + ε, and f̂ (xi ) gives the
predicted response at xi , a popular measure is the training MSE
(mean squared error): mean of squared differences between
prediction and truth for the training data (the same values that
were used to estimate f ):

MSE = 1
n

n∑
i=1

(yi − f̂ (xi ))2

But, really - we are not interested in how the method works on the
training data (and often we have designed the method to work good
on the training data already), we want to know how good the
method is when we use it on previously unseen test data.
Example:

I we don’t want to predict last weeks stock price, we want to
predict the stock price next week.

I we don’t want to predict if a patient in the training data has
diabetes, we want to predict if a new patient has diabetes.
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Polynomial example: fitted order 1-20 when the truth is order 2.
Left: one repetition, right: 100 repetitions.



Test MSE
Simple solution: we fit different models using the training data
(maybe my minimizing the training MSE) but we choose the best
model using a separate test set - be calculating the test MSE for a
set of test observations (x0, y0):

Ave(y0 − f̂ (x0))2

(taking the average over all available test observations).

Q: What if we do not have access to test data?

A: In Module 5 we will look into using cross validation to mimic the
use of a test set.

Q: But, can we instead just use the training data MSE to choose a
model? A low training error should also give a low test error?

A: Sadly no, if we use a flexible model we will look at several cases
where a low training error is a sign of overfitting, and will give a
high test error. So, the training error is not a good estimator for the
test error because it does not properly account for model complexity.



4

8

12

16

5 10 15 20

poly

te
st

M
S

E

4

8

12

16

5 10 15 20

poly

te
st

M
S

E

25

50

75

100
rep

Polynomial example: fitted order 1-20 when the truth is order 2.
Left: one repetition, right: 100 repetitions for the testMSE.
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The Bias-Variance trade-off

Assume that we have fitted a regression curve Y = f (x) + ε to our
training data, which consist of independent observation pairs
{xi , yi} for i = 1, .., n. (Yes, only one x .)

We assume that ε is an unobserved random variable that adds noise
to the relationship between the response variable and the covariates
and is called the random error, and that the random errors have
mean zero and constant variance σ2 for all values of x .

This noise is used as a substitute for all the unobserved variables
that is not in our equation, but that influences Y .

The fitted curve is denoted by f̂ .



We want to use f̂ to make a prediction for a new observation at x0,
and are interested in the error associated with this prediction. The
predicted response value is then f̂ (x0).

The expected test mean squared error (MSE) at x0 is defined as:

E[Y − f̂ (x0)]2

This expected test MSE can be decomposed into three terms (detail
in classnotes)

E[(Y − f̂ (x0))2] = · · · = Var(ε) + Var[f̂ (x0)] + [Bias(f̂ (x0))]2

* First term: irreducible error, σ2
ε and is always present unless we

have measurements without error. This term cannot be reduced
regardless how well our statistical model fits the data. * Second
term: variance of the prediction at x0 or the expected deviation
around the mean at x0. If the variance is high, there is large
uncertainty associated with the prediction. * Third term: squared
bias. The bias gives an estimate of how much the prediction differs
from the true mean. If the bias is low the model gives a prediction
which is close to the true value.



E[(Y − f̂ (x0))2] = · · · = Var(ε) + Var[f̂ (x0)] + [Bias(f̂ (x0))]2

This is the expected test MSE: the average test MSE we would
obtain if we repeatedly estimated f using many training sets (as we
did in our example), and then tested this estimate at x0.

The overall expected test MSE can we then compute by averaging
the expected test MSE at x0 over all possible values of x0
(averaging with respect to frequency in test set).
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When fitting a statistical model the aim is often to obtain the most
predictive model. There are often many candidate models, and the
task is to decide which model to choose.

I The observations used to fit the statistical model make up the
training set. The training error is the average loss over the
training sample.

I As the complexity (and thus flexibility) of a model increases
the model becomes more adaptive to underlying structures and
the training error falls.

I However, the variance of will increase (remember variability of
order 20 curve).

I This means that new observations will be predicted with a
higher uncertainty.

I The test error is the prediction error over a test sample.
I The test sample will have new observations which were not

used when fitting the model. One wants the model to capture
important relationships between the response variable and the
covariates, else we will underfit. Recall the red line in the figure
corresponding to the toy example above.

This trade-off in selecting a model with the right amount of
complexity/flexibility is the variance-bias trade-off.
We will in Module 8 see how methods as bagging, boosting and
random forests can lower the variance while prevailing a low bias.



Classification
(so far, regression setting - but how about model accuracy in
classification?)

Set-up: Training observations (independent pairs)
{(x1, y1), ..., (xn, yn)} where the response variable Y is qualitative.
E.g Y ∈ C = {0, 1, ..., 9} or Y ∈ C = {dog , cat, ..., horse}.

**Aim:** To build a classifier f (x) that assigns a class label from C
to a future unlabelled observation x and to asses the uncertainty in
this classification. Sometimes the role of the different predictors
may be of main interest.

Performance measure: Most popular is the misclassification error
rate (training and test version).

0/1-loss: The misclassifications are given the loss 1 and the correct
classifications loss 0. (Quadratic loss is not used for classification.)

Q: Give an example of a classification problem.

Aim:**


Synthetic example

I The figure below shows a plot of 100 observations from two
classes A (red dots) and B (turquoise dots),

I simulated from a bivariate normal distribution with mean
vectors µA = (1, 1)T and µB = (3, 3)T and a covariance matrix

ΣA = ΣB =
(
2 0
0 2

)
.

I We want to find a rule to classify a new observation to class A
or B.
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Training error rate

the proportion of mistakes that are made if we apply our estimator
f̂ to the training observations, i.e. ŷi = f̂ (xi ).

1
n

n∑
i=1

I(yi 6= ŷi ).

Here I is the indicator function (to give our 0/1 loss) which is
defined as:

I(a = â) =
{
1 if a = â
0 else

The indicator function counts the number of times our model has
made a wrong classification. The training error rate is the fraction
of misclassifications made on our training set. A very low training
error rate may imply overfitting.



Test error rate
Here the fraction of misclassifications is calculated when our model
is applied on a test set. From what we have learned about
regression we can deduct that this gives a better indication of the
true performance of the classifier (than the traning error).

Ave(I(y0 − ŷ0))

where the average is over all the test observations (x0, y0).

We assume that a good classifier is a classifier that has a low test
error.



Bayes classifier

Suppose we have a quantitative response value that can be a
member in one of K classes C = {c1, c2, ..., ck , ..., cK}. Further,
suppose these elements are numbered 1, 2, ...,K . The probability of
that a new observation x0 belongs to class k is

pk(x0) = Pr(Y = k|X = x0), k = 1, 2, ...K .

This is the conditional class probability: the probability that Y = k
given the observation x0. The Bayes classifier assigns an observation
to the most likely class, given its predictor values.

This is best illustrated by a two-class example. Assume our response
value is to classified as belonging to one of the two groups {A,B}.
A new observation x0 will be classified to A if
Pr(Y = A|X = x0) > 0.5 and to class B otherwise.



The Bayes classifier

I has the smallest test error rate.
I However, we do never know the conditional distribution of Y

given X for real data. Computing the Bayes classifier is thus
impossible.

I The class boundaries using the Bayes classifier is called the
Bayes decision boundary.

I The overall Bayes error rate is given as

1− E(maxPr(Y = j | X ))

where the expectation is over X .
I The Bayes error rate is comparable to the irreducible error in

the regression setting.

Next: K -nearest neighbor classifier estimates this conditional
distribution and then classifies a new observation based on this
estimated probability.



K-nearest neighbour classifier

The K -nearest neighbour classifier (KNN) works in the following
way:

I Given a new observation x0 it searches for the K points in our
training data that are closest to it.

I These points make up the neighborhood of x0, N0.
I The point x0 is classified by taking a majority vote of the

neighbors.
I That means that x0 is classified to the most occurring class

among its neighbors

Pr(Y = j |X = x0) = 1
K
∑

i∈N0

I(yi = j).



We return to our synthetic data with X1 and X2 and two classes A
and V :

I Assume we have a new observation X0 = (x01, x02)T which we
want to classify as belonging to the class A or B.

I To illustrate this problem we fit the K -nearest neighbor
classifier to our simulated data set with K = 1, 3, 10 and 150
and observe what happens.

In our plots, the small colored dots show the predicted classes for an
evenly-spaced grid. The lines show the decision boundaries. If our
new observation falls into the region within the red decision
boundary, it will be classified as A. If it falls into the region within
the green decision boundary, it will be classified as B.
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We see that the choice of K has a big influence on the result of our
classification. By choosing K = 1 the classification is made to the
same class as the one nearest neighbor. When K = 3 a majority
vote is taken among the three nearest neighbors, and so on. We see
that as K gets very large, the decision boundary tends towards a
straight line (which is the Bayes boundary in this set-up).

To find the optimal value of K the typical procedure is to try
different values of K and then test the predictive power of the
different classifiers, for example by cross-validation, which will be
discussed in Module 4.

We see that after trying all choices for K between 1 and 50, we see
that a few choices of K gave the smallest misclassification error
rate, estimating by leave-one out cross-validation (Leave-one-out
cross-validation will be discussed in Module 4). The smallest error
rate is equal to 0.165. This means that the classifier makes a
misclassification 16.5% of the time and a correct classification
83.5% of the time.
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This above example showed the bias-variance trade-off in a
classification setting. Choosing a value of K amounts to choosing
the correct level of flexibility of the classifier. This again is critical
to the success of the classifier. A too low value of K will give a very
flexible classifier (with high variance and low bias) which will fit the
training set too well (it will overfit) and make poor predictions for
new observations. Choosing a high value for K makes the classifier
loose its flexibility and the classifier will have low variance but high
bias.



The curse of dimensionality

The nearest neighbor classifier can be quite good if the number of
predictor p is small and the number of observations n is large. We
need enough close neighbors to make a good classification.

The effectiveness of the KNN classifier falls quickly when the
dimension of the preditor space is high. This is because the nearest
neighbors tend to be far away in high dimensions and the method
no longer is local. This is referred to as the curse of dimensionality.



What was important in Part A?

I prediction vs. interpretation (inference)
I supervised vs. unsupervised methods
I classification vs. regression
I parametric vs. non-parametric methods
I flexibility vs. interpretation
I under- and overfitting
I quadratic and 0/1 loss functions
I training and test MSE and misclassification error
I bias-variance trade off
I Bayes classifier and KNN-classifier



Part B

I Random vectors,
I the covariance matrix and
I the multivariate normal distribution



Random vector

I A random vector X(p×1) is a p-dimensional vector of random
variables.

I Weight of cork deposits in p = 4 directions (N, E, S, W).
I Rent index in Munich: rent, area, year of construction, location,

bath condition, kitchen condition, central heating, district.

I Joint distribution function: f (x).
I From joint distribution function to marginal (and conditional

distributions).

f1(x1) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

f (x1, x2, . . . , xp)dx2 · · · dxp

I Cumulative distribution (definite integrals!) used to calculate
probabilites.

I Independence: f (x1, x2) = f1(x1) · f (x2) and
f (x1 | x2) = f1(x1).



Moments

The moments are important properties about the distribution of X.
We will look at:

I E: Mean of random vector and random matrices.
I Cov: Covariance matrix.
I Corr: Correlation matrix.
I E and Cov of multiple linear combinations.



The Cork deposit data
I Classical data set from Rao (1948).
I Weigth of bark deposits of n = 28 cork trees in p = 4

directions (N, E, S, W).

corkds=as.matrix(read.table("https://www.math.ntnu.no/emner/TMA4268/2018v/data/corkMKB.txt"))
dimnames(corkds)[[2]]=c("N","E","S","W")
head(corkds)

## N E S W
## [1,] 72 66 76 77
## [2,] 60 53 66 63
## [3,] 56 57 64 58
## [4,] 41 29 36 38
## [5,] 32 32 35 36
## [6,] 30 35 34 26

Q: How may we define a random vectors and random matrices for
cork trees?



A: Draw a random sample of size n = 28 from the population of
cork trees and observe a p = 4 dimensional random vector for each
tree.

X(28×4) =


X11 X12 X13 X14
X21 X22 X23 X24
X31 X32 X33 X34
...

... . . . ...
X28,1 X28,2 X28,3 X28,4





Rules for means
I Random vector X(p×1) with mean vector µ(p×1):

X(p×1) =


X1
X2
...
Xp

 , and µ(p×1) = E(X) =


E(X1)
E(X2)

...
E(Xp)


Remark: observe that E(Xj) is calculated from the marginal
distribution of Xj and contains no information about dependencies
between Xj and Xk , k 6= j .

I Random matrix X(n×p) and random matrix Y(n×p):

E(X + Y) = E(X) + E(Y)

Proof: Look at element Zij = Xij + Yij and see that
E(Zij) = E(Xij + Yij) = E(Xij) + E(Yij).



I Random matrix X(n×p) and conformable constant matrices A
and B:

E(AXB) = AE(X)B

Proof: Look at element (i , j) of AXB

eij =
n∑

k=1
aik

p∑
l=1

Xklblj

(where aik and blj are elements of A and B respectively), and
see that E(eij) is the element (i , j) if AE(X)B.

Q: what are the univariate analog to this formula - that you studied
in your first introductory course in statistics? What do you think
happens if we look at E(AXB) + d?



Variance-covariance matrix

Q: In the introductory statistics course we define the the covariance
Cov(Xi ,Xj) = E[(Xi − µi )(Xj − µj)] = E(Xi · Xj)− µiµj .

I What is the covariance called when i = j?
I What does it mean when the covariance is

I negative
I zero
I positive?



I Consider random vector X(p×1) with mean vector µ(p×1):

X(p×1) =


X1
X2
...
Xp

 , and µ(p×1) = E(X) =


E(X1)
E(X2)

...
E(Xp)


I Variance-covariance matrix Σ (real and symmetric)

Σ = Cov(X) = E[(X−µ)(X−µ)T ] =


σ11 σ12 · · · σ1p
σ12 σ22 · · · σ2p
...

... . . . ...
σ1p σ2p · · · σpp

 = E(XXT )−µµT

I Elements: σij = E[(Xi − µi )(Xj − µj)] = σji .

Remark: the matrix Σ is called variance, covariance and
variance-covariance matrix and denoted both Var(X) and Cov(X).



Exercise: the variance-covariance matrix

Let X4×1 have variance-covariance matrix

Σ =


2 1 0 0
1 2 0 1
0 0 2 1
0 1 1 2

 .

Explain what this means.



Correlation matrix

Correlation matrix ρ (real and symmetric)

ρ =


σ11√
σ11σ11

σ12√
σ11σ22

· · · σ1p√
σ11σpp

σ12√
σ11σ22

σ22√
σ22σ22

· · · σ2p√
σ22σpp

...
... . . . ...

σ1p√
σ11σpp

σ2p√
σ22σpp

· · · σpp√
σppσpp

 =


1 ρ12 · · · ρ1p
ρ12 1 · · · ρ2p
...

... . . . ...
ρ1p ρ2p · · · 1



ρ = (V
1
2 )−1Σ(V

1
2 )−1, where V

1
2 =


√
σ11 0 · · · 0
0 √

σ22 · · · 0
...

... . . . ...
0 0 · · · √σpp





Exercise: the correlation matrix

Let X4×1 have variance-covariance matrix

Σ =


2 1 0 0
1 2 0 1
0 0 2 1
0 1 1 2

 .
Find the correlation matrix.



Linear combinations
Consider a random vector X(p×1) with mean vector µ = E(X) and
variance-covariance matrix Σ = Cov(X).

The linear combinations

Z = CX =


∑p

j=1 c1jXj∑p
j=1 c2jXj

...∑p
j=1 ckjXj


have

E(Z) = E(CX) = Cµ

Cov(Z) = Cov(CX) = CΣCT

Proof

Exercise: Study the proof - what are the most important
transitions?

https://www.math.ntnu.no/emner/TMA4268/2018v/notes/CXproof.pdf


Exercise: Linear combinations

X =


XN
XE
XS
XW

 , and µ =


µN
µE
µS
µW

 , and Σ =


σNN σNE σNS σNW
σNE σEE σES σEW
σNS σEE σSS σSW
σNW σEW σSW σWW


Scientists would like to compare the following three contrasts: N-S,
E-W and (E+W)-(N+S), and define a new random vector
Y(3×1) = C(3×4)X(4×1) giving the three contrasts.

I Write down C.
I Explain how to find E(Y1) and Cov(Y1,Y3).
I Use R to find the mean vector, covariance matrix and

correlations matrix of Y, when the mean vector and covariance
matrix for X is given below.



corkds <- as.matrix(read.table("https://www.math.ntnu.no/emner/TMA4268/2018v/data/corkMKB.txt"))
dimnames(corkds)[[2]] <- c("N","E","S","W")
mu=apply(corkds,2,mean)
mu
Sigma=var(corkds)
Sigma

## N E S W
## 50.53571 46.17857 49.67857 45.17857
## N E S W
## N 290.4061 223.7526 288.4378 226.2712
## E 223.7526 219.9299 229.0595 171.3743
## S 288.4378 229.0595 350.0040 259.5410
## W 226.2712 171.3743 259.5410 226.0040



The covariance matrix - more requirements?

Random vector X(p×1) with mean vector µ(p×1) and covariance
matrix

Σ = Cov(X) = E[(X− µ)(X− µ)T ] =


σ11 σ12 · · · σ1p
σ12 σ22 · · · σ2p
...

... . . . ...
σ1p σ2p · · · σpp


The covariance matrix is by construction symmetric, and it is
common to require that the covariance matrix is positive definite.
Why do you think that is?

Hint: What is the definition of a positive definite matrix? Is it
possible that the variance of the linear combination Y = cTX is
negative?



Multiple choice - previously a Kahoot! quiz

Choose the correct answer - time limit was 30 seconds for each
question! Let’s go!

Mean of sum
X and Y are two bivariate random vectors with E(X) = (1, 2)T and
E(Y) = (2, 0)T . What is E(X + Y)?

I A: (1.5, 1)T

I B: (3, 2)T

I C: (−1, 2)T

I D: (1,−2)T



Mean of linear combination
X is a 2-dimensional random vector with E(X) = (2, 5)T , and
b = (0.5, 0.5)T is a constant vector. What is E(bTX)?

I A: 3.5
I B: 7
I C: 2
I D: 5



Covariance
X is a p-dimensional random vector with mean µ. Which of the
following defines the covariance matrix?

I A: E [(X− µ)T (X− µ)]
I B: E [(X− µ)(X− µ)T ]
I C: E [(X− µ)(X− µ)]
I D: E [(X− µ)T (X− µ)T ]



Mean of linear combinations
X is a p-dimensional random vector with mean µ and covariance
matrix Σ. C is a constant matrix. What is then the mean of the
k-dimensional random vector Y = CX?

I A: Cµ
I B: CΣ
I C: CµCT

I D: CΣCT



Covariance of linear combinations
X is a p-dimensional random vector with mean µ and covariance
matrix Σ. C is a constant matrix. What is then the covariance of
the k-dimensional random vector Y = CX?

I A: Cµ
I B: CΣ
I C: CµCT

I D: CΣCT



Correlation
X is a 2-dimensional random vector with covariance matrix

Σ =
[

4 0.8
0.8 1

]

Then the correlation between the two elements of X are:

I A: 0.10
I B: 0.25
I C: 0.40
I D: 0.80



Answers?
BABADC



The multivariate normal distribution

Why is the mvN so popular?

I Many natural phenomena may be modelled using this
distribution (just as in the univariate case).

I Multivariate version of the central limit theorem- the sample
mean will be approximately multivariate normal for large
samples.

I Good interpretability of the covariance.
I Mathematically tractable.
I Building block in many models and methods.

Suggested reading (if you want to know more than you learn here):
Härdle and Simes (2015): Chapter 4.4 and 5.1 (ebook free for
NTNU students) (on the reading list for TMA4267 Linear statistical
models).

https://link.springer.com/book/10.1007/978-3-540-72244-1
https://link.springer.com/book/10.1007/978-3-540-72244-1


See the 3D-printed mvNs in class!



The multivariate normal (mvN) pdf

The random vector Xp×1 is multivariate normal Np with mean µ
and (positive definite) covariate matrix Σ. The pdf is:

f (x) = 1
(2π)

p
2 |Σ| 12

exp{−1
2(x− µ)T Σ−1(x− µ)}

Q:

I How does this compare to the univariate version?

f (x) = 1
2
√
πσ

exp{ 1
2σ2 (x − µ)2}

I Why do we need the constant in front of the exp?
I What is the dimension of the part in exp? (This is a quadratic

form, a central topic in TMA4267.)



Six useful properties of the mvN
Let X(p×1) be a random vector from Np(µ,Σ).

1. The grapical contours of the mvN are ellipsoids (can be shown
using spectral decomposition).

2. Linear combinations of components of X are (multivariate)
normal (can be easily proven using moment generating
functions MGF).

3. All subsets of the components of X are (multivariate) normal
(special case of the above).

4. Zero covariance implies that the corresponding components are
independently distributed (can be proven using MGF).

5. AΣBT = 0⇔ AX and BX are independent.
6. The conditional distributions of the components are

(multivariate) normal.

X2 | (X1 = x1) ∼ Np2(µ2+Σ21Σ−1
11 (x1−µ1),Σ22−Σ21Σ−1

11 Σ12).



All of these are proven in TMA4267 Linear Statistical Models
(mainly using moment generating functions).

The result 4 is rather useful! If you have a bivariate normal and
observed covariance 0, then your variables are independent.



Contours of multivariate normal distribution
Contours of constant density for the p-dimensional normal
distribution are ellipsoids defined by x such that

(x− µ)T Σ−1(x− µ) = b

where b > 0 is a constant.

These ellipsoids are centered at µ and have axes ±
√
bλiei , where

Σei = λiei , for i = 1, ..., p.

Remark: to see this the spectral decomposition of the covariance
matrix is useful.

I (x− µ)T Σ−1(x− µ) is distributed as χ2
p.

I The volume inside the ellipsoid of x values satisfying

(x− µ)T Σ−1(x− µ) ≤ χ2
p(α)

has probability 1− α.



In Module 4: Classification the mvN is very important and we will
often draw contours of the mvN as ellipses- and this is the reason
why.

Q: Take a look at the 3D-printed figures - there you may see that
with equal variances we have circles and with unequal variances we
have ellipses.



Identify the 3D-printed mvNs

Let Σ =
[

σ2
x ρσxσy

ρσxσy σ2
y

]
.

The following four 3D-printed figures have been made:

I A: σx = 1, σy = 2, ρ = 0.3
I B: σx = 1, σy = 1, ρ = 0
I C: σx = 1, σy = 1, ρ = 0.5
I D: σx = 1, σy = 2, ρ = 0

The figures have the following colours:

I white
I purple
I red
I black

Task: match letter and colour.



Multiple choice - previously a Kahoot! quiz

Choose the correct answer - time limit was 30 seconds for each
question! Let’s go!

Multivariate normal pdf

The probability density function is ( 1
2π )

p
2 det(Σ)− 1

2 exp{−1
2Q}

where Q is

I A: (x− µ)T Σ−1(x− µ)
I B: (x− µ)Σ(x− µ)T

I C: Σ− µ



Trivariate normal pdf

What graphical form has the solution to f (x) = constant?

I A: Circle
I B: Parabola
I C: Ellipsoid
I D: Bell shape



Multivariate normal distribution
Xp ∼ Np(µ,Σ), and C is a k × p constant matrix. Y = CX is

I A: Chi-squared with k degrees of freedom
I B: Multivariate normal with mean kµ
I C: Chi-squared with p degrees of freedom
I D: Multivariate normal with mean Cµ



Independence

Let X ∼ N3(µ,Σ), with

Σ =

 1 1 0
2 3 1
0 2 5

 .
Which two variables are independent?

I A: X1 and X2
I B: X1 and X3
I C: X2 and X3
I D: None – but two are uncorrelated.



Constructing independent variables?

Let X ∼ Np(µ,Σ). How can I construct a vector of independent
standard normal variables from X?

I A: Σ(X− µ)
I B: Σ−1(X + µ)
I C: Σ− 1

2 (X− µ)
I D: Σ 1

2 (X + µ)



Conditional distribution: mean

X =
(

X1
X2

)
is a bivariate normal random vector. What is true for

the conditional mean of \X2 given X1 = x1?

I A: Not a function of x1
I B: A linear function of x1
I C: A quadratic function of x1



Conditional distribution: variance

X =
(

X1
X2

)
is a bivariate normal random vector. What is true for

the conditional variance of X2 given X1 = x1?

I A: Not a function of x1
I B: A linear function of x1
I C: A quadratic function of x1



Answers?
ACDBCBB



Recommended exercises
Problem 1: Reflections and practicals

1. Describe a real-life application in which classification might be
useful. Identify the response and the predictors. Is the goal
inference or prediction?

2. Describe a real-life application in which regression might be
useful. Identify the response and the predictors. Is the goal
inference or prediction?

3. Take a look at Figure 2.9 in the book (p. 31).
3.1 Will a flexible or rigid method typically have the highest test

error?
3.2 Does a small variance imply an overfit or rather an underfit to

the data?
3.3 Relate the problem of over-and underfitting to the bias-variance

trade-off.

4. Exercise 7 from the book (p.53) slightly modified. The table
below provides a training data set consisting of seven
observations, two predictors and one qualitative response
variable.

library(knitr)
library(kableExtra)
knnframe = data.frame(x1 = c(3, 2, 1, 0, -1, 2, 1), x2 = c(3, 0, 1, 1, 0, 1, 0), y=c("A", "A", "A", "B", "B", "B", "B"))
#kable(knnframe,format="html")
kable(knnframe)

x1 x2 y

3 3 A
2 0 A
1 1 A
0 1 B
-1 0 B
2 1 B
1 0 B

We wish to use this data set to make a prediction for Y when
X1 = 1,X2 = 2 using the K -nearest neighbors classification method.

1. Compute the Euclidean distance between each observation and
the test point, X1 = 1,X2 = 2.

2. What is our prediction with K = 1? Why?
3. What is our prediction with K = 4? Why?
4. If the Bayes decision boundary in this problem is highly

non-linear, when would we expect the best value for K to be
large or small? Why?

5. Install and load the ggplot2 library:

install.packages(ggplot2)
library(ggplot2)

Plot the points in R using the functions ggplot, and geom_points.

6. Use the function knn from the class library to make a
prediction for the test point using k=1. Do you obtain the
same result as by hand?

7. Use the function knn to make a prediction for the test point
using k=4 and k=7.



Problem 2: Theory and practice - MSEtrain, MSEtest, and
bias-variance
We will now look closely into the simulations and calculations
performed for the MSEtrain, MSEtest, and bias-variance trade-off in
PartA.

I The simulations are based on f (x) = x2 and standard normal
noise is added.

I x is on a 0.1 grid from -2 to 4.
I Parametric models of different complexity are fitted -

poly1-poly2
I M=100 simulations are done.

The aim of this problem is to understand:

I trainMSE
I testMSE
I bias-variance trade-off



a) Problem set-up

I See the code below. Explain what is done. (You need not
understand the code in detail.) Run the code.

I We will learn more about the lm function in Module 3 - now
just think of this as fitting a polynomial regression and predict
gives the fitted curve in our grid points. predarray is just a
way to save M simulations of 61 gridpoints in x and 20
polynomial models.

library(ggplot2)
library(ggpubr)
set.seed(2) # to reproduce

M=100 # repeated samplings, x fixed
nord=20 # order of polynoms

x = seq(-2, 4, 0.1)
truefunc=function(x) return(x^2)
true_y = truefunc(x)

error = matrix(rnorm(length(x)*M, mean=0, sd=2),nrow=M,byrow=TRUE)
ymat = matrix(rep(true_y,M),byrow=T,nrow=M) + error

predarray=array(NA,dim=c(M,length(x),nord))
for (i in 1:M)
{

for (j in 1:nord)
{

predarray[i,,j]=predict(lm(ymat[i,]~poly(x, j)))
}

}
# M matrices of size length(x) times nord
# first, only look at variablity in the M fits and plot M curves where we had 1

# for plotting need to stack the matrices underneath eachother and make new variable "rep"
stackmat=NULL
for (i in 1:M) stackmat=rbind(stackmat,cbind(x,rep(i,length(x)),predarray[i,,]))
#dim(stackmat)
colnames(stackmat)=c("x","rep",paste("poly",1:20,sep=""))
sdf=as.data.frame(stackmat) #NB have poly1-20 now - but first only use 1,2,20
# to add true curve using stat_function - easiest solution
true_x=x
yrange=range(apply(sdf,2,range)[,3:22])
p1=ggplot(data=sdf,aes(x=x,y=poly1,group=rep,colour=rep))+scale_y_continuous(limits=yrange)+geom_line()
p1=p1+stat_function(fun=truefunc,lwd=1.3,colour="black")+ggtitle("poly1")
p2=ggplot(data=sdf,aes(x=x,y=poly2,group=rep,colour=rep))+scale_y_continuous(limits=yrange)+geom_line()
p2=p2+stat_function(fun=truefunc,lwd=1.3,colour="black")+ggtitle("poly2")
p10=ggplot(data=sdf,aes(x=x,y=poly10,group=rep,colour=rep))+scale_y_continuous(limits=yrange)+geom_line()
p10=p10+stat_function(fun=truefunc,lwd=1.3,colour="black")+ggtitle("poly10")
p20=ggplot(data=sdf,aes(x=x,y=poly20,group=rep,colour=rep))+scale_y_continuous(limits=yrange)+geom_line()
p20=p20+stat_function(fun=truefunc,lwd=1.3,colour="black")+ggtitle("poly20")
ggarrange(p1,p2,p10,p20)



b) Train and test MSE

I First we produce predictions at each grid point based on our
training data (x and ymat)

I but we also draw new observations to calculate testMSE - see
testymat

I observe how trainMSE and testMSE is calculated
I run the code

set.seed(2) # to reproduce

M=100 # repeated samplings,x fixed but new errors
nord=20
x = seq(-2, 4, 0.1)
truefunc=function(x) return(x^2)
true_y = truefunc(x)

error = matrix(rnorm(length(x)*M, mean=0, sd=2),nrow=M,byrow=TRUE)
testerror = matrix(rnorm(length(x)*M, mean=0, sd=2),nrow=M,byrow=TRUE)
ymat = matrix(rep(true_y,M),byrow=T,nrow=M) + error
testymat = matrix(rep(true_y,M),byrow=T,nrow=M) + testerror

predarray=array(NA,dim=c(M,length(x),nord))
for (i in 1:M)
{

for (j in 1:nord)
{

predarray[i,,j]=predict(lm(ymat[i,]~poly(x, j)))
}

}
trainMSE=matrix(ncol=nord,nrow=M)
for (i in 1:M) trainMSE[i,]=apply((predarray[i,,]-ymat[i,])^2,2,mean)
testMSE=matrix(ncol=nord,nrow=M)
for (i in 1:M) testMSE[i,]=apply((predarray[i,,]-testymat[i,])^2,2,mean)

I Then we plot train and testMSE - first for one train + test
data set, then for 99 more.

library(ggplot2)
library(ggpubr)

# format suitable for plotting
stackmat=NULL
for (i in 1:M) stackmat=rbind(stackmat,cbind(rep(i,nord),1:nord,trainMSE[i,],testMSE[i,]))
colnames(stackmat)=c("rep","poly","trainMSE","testMSE")
sdf=as.data.frame(stackmat)
yrange=range(sdf[,3:4])
p1=ggplot(data=sdf[1:nord,],aes(x=poly,y=trainMSE))+scale_y_continuous(limits=yrange)+geom_line()
pall= ggplot(data=sdf,aes(x=poly,group=rep,y=trainMSE,colour=rep))+scale_y_continuous(limits=yrange)+geom_line()
testp1=ggplot(data=sdf[1:nord,],aes(x=poly,y=testMSE))+scale_y_continuous(limits=yrange)+geom_line()
testpall= ggplot(data=sdf,aes(x=poly,group=rep,y=testMSE,colour=rep))+scale_y_continuous(limits=yrange)+geom_line()
ggarrange(p1,pall,testp1,testpall)

I More plots: first boxplot and then mean for train and test MSE

library(reshape2)
df=melt(sdf,id=c("poly","rep"))[,-2]
colnames(df)[2]="MSEtype"
ggplot(data=df,aes(x=as.factor(poly),y=value))+geom_boxplot(aes(fill=MSEtype))

trainMSEmean=apply(trainMSE,2,mean)
testMSEmean=apply(testMSE,2,mean)
meandf=melt(data.frame(cbind("poly"=1:nord,trainMSEmean,testMSEmean)),id="poly")
ggplot(data=meandf,aes(x=poly,y=value,colour=variable))+geom_line()



c) Bias and variance - we use the truth!

Finally, we want to see how the expected quadratic loss can be
decomposed into

I irreducible error: Var(ε) = 1
I squared bias: difference between mean of estimated parametric

model chosen and the true underlying curve (truefunc)
I variance: variance of the estimated parametric model

Notice that the test data is not used - only predicted values in each
x grid point.

Study and run the code. Explain the plots produced.

meanmat=matrix(ncol=length(x),nrow=nord)
varmat=matrix(ncol=length(x),nrow=nord)
for (j in 1:nord)
{

meanmat[j,]=apply(predarray[,,j],2,mean) # we now take the mean over the M simulations - to mimic E and Var at each x value and each poly model
varmat[j,]=apply(predarray[,,j],2,var)

}
# nord times length(x)
bias2mat=(meanmat-matrix(rep(true_y,nord),byrow=TRUE,nrow=nord))^2 #here the truth is finally used!

I Plotting polys as a function of x

df=data.frame(rep(x,each=nord),rep(1:nord,length(x)),c(bias2mat),c(varmat),rep(1,prod(dim(varmat)))) #irr is just 1
colnames(df)=c("x","poly","bias2","variance","irreducible error") #suitable for plotting
df$total=df$bias2+df$variance+df$`irreducible error`
hdf=melt(df,id=c("x","poly"))
hdf1=hdf[hdf$poly==1,]
hdf2=hdf[hdf$poly==2,]
hdf10=hdf[hdf$poly==10,]
hdf20=hdf[hdf$poly==20,]

p1=ggplot(data=hdf1,aes(x=x,y=value,colour=variable))+geom_line()+ggtitle("poly1")
p2=ggplot(data=hdf2,aes(x=x,y=value,colour=variable))+geom_line()+ggtitle("poly2")
p10=ggplot(data=hdf10,aes(x=x,y=value,colour=variable))+geom_line()+ggtitle("poly10")
p20=ggplot(data=hdf20,aes(x=x,y=value,colour=variable))+geom_line()+ggtitle("poly20")
ggarrange(p1,p2,p10,p20)

I Now plotting effect of more complex model at 4 chosen values
of x, compare to Figures in 2.12 on page 36 in ISL (our
textbook).



d) Repeat a-c

I Then try to change the true function truefunc to something
else - mayby order 3? What does this do the the plots
produced? Maybe you then also want to plot poly3?

I Or, change to the true function that is not a polynomial?



Problem 3: Visualization tools in R
For each of the plots (scatter plot, histogram, boxplot, area chart,
heat map, correlogram) explain what you see (including what is on
the x- and y-axis) and try to transform what you see into insight
about the data. All except the correlogram use ggplot2 for plotting.
If you want to read more about the idea behind ggplot2 (grammar
of graphics) Chapter 3 of R for Data Science is a good read.

Three different data sets are used - read descriptions in R:

I SLID: ?car::SLID
I mtcars: ?datasets::mtcars
I ozone: ?faraway::ozone

Scatter Plot

library(car)
library(ggplot2)
SLID = na.omit(SLID)
ggplot(SLID, aes(education, wages))+geom_point()+labs(title="Scatterplot")
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ggplot(SLID, aes(education, wages)) + geom_point(aes(color = language)) +
scale_x_continuous("Education")+
scale_y_continuous("Wages")+
theme_bw() + labs(title="Scatterplot") + facet_wrap( ~ language)
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Histogram

ggplot(SLID, aes(wages))+geom_histogram(binwidth=2)+labs(title="Histogram")
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Box-plot

ggplot(SLID, aes(language,wages ))+geom_boxplot(fill="skyblue")+labs(title="Box Plot")
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All pairs and different plots

library(GGally)
ggpairs(SLID)
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Area chart

ages = cut(SLID$age, breaks=3)
SLID2 = cbind(SLID, ages)
ggplot(SLID, aes(x=wages, fill=ages))+geom_area(stat="bin")
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Heat map

library(reshape)
head(mtcars)

## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

carsdf = data.frame(scale(mtcars))
carsdf$model = rownames(mtcars)
cars_melt = melt(carsdf, id.vars="model")

ggplot(cars_melt, aes(x =variable, y = model))+geom_raster(aes(fill=value))+labs(title="Heat Map") + scale_fill_continuous(name="Value")
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Correlogram

The ozone data:

library(faraway)
data(ozone)
library(corrplot)
ozonecorr = cor(ozone)
corrplot(ozonecorr)
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library(corrgram)
corrgram(ozone, upper.panel=panel.conf)
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Additional resources

Suggestions?


