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Learning material for this module:

I James et al (2013): An Introduction to Statistical Learning.
Chapter 3.

Remark: there are no classnotes for this module since I wrote on the
slides in class. Screencast from the lectures are available under
Course Modules (column with “Dates”) on Blackboard.



Move to:

I Part A: Simple linear regression and introduction to multiple
linear regression

I Part B: Multiple linear regression - continued
I Recommended exercises
I Further reading
I Packages to install before knitting this R Markdown file



Topics in this module

Part A: Simple linear regression and introduction to multiple
linear regression

I Aim of linear regression
I Simple linear regression

I model
I parameter estimation
I confidence intervals
I single hypothesis testing: set-up and p-values
I model fit

I Multiple linear regression
I model
I parameter estimation with least squares
I properties of parameter estimators



Part B: Multiple linear regression - continued

I So far: simple linear regression - and multiple linear regression -
model, estimators

I Statistical inference
I estimators and properties
I confidence intervals and hypothesis tests
I significance of regression: F-test
I prediction and prediction intervals

I Model assessement and selection
I R2

I subset selection
I diagnostic plots - studentized residuals and leverages



I Special cases
I qualitative predictors: dummy coding
I non-additivity: including interactions
I nonlinearity: polynomials
I multiple linear regression vs. KNN-regression

I Optional material
I projection matrices and geometry of least squares

Recommended exercises

Further reading

Rpackages to install



Part A: Simple linear regression and introduction to
multiple linear regression



Aim of linear regression

1. Construct a model to help understand the relationship between
one response and one or several explanatory variables.
[Correlation, or cause and effect?]

2. Construct a model to predict the reponse from a set of (one or
several) explanatory variables. [More or less “black box”]

Is linear regression dull? Maybe, but very useful and widely used.
Important to understand because many learning methods can be
seen as generalization of linear regression.

Linear regression is a supervised and parametric method.



Motivating example: Munich rent index

Munich, 1999: 3082 observations on 9 variables.

I rent: the net rent per month (in Euro).
I rentsqm: the net rent per month per square meter (in Euro).
I area: Living area in square meters.
I yearc: year of construction.
I location: quality of location: a factor indicating whether the

location is average location, 1, good location, 2, and top
location, 3.

I bath: quality of bathroom: a a factor indicating whether the
bath facilities are standard, 0, or premium, 1.

I kitchen: Quality of kitchen: 0 standard 1 premium.
I cheating: central heating: a factor 0 without central heating,

1 with central heating.
I district: District in Munich.

More information in Fahrmeir et. al., (2013) page 5 (textbook used
in TMA4267 Linear statistical models).
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Interesting questions

1. Is there a relationship between rent and area?
2. How strong is this relationship?
3. Is the relationship linear?
4. Are also other variables associated with rent?
5. How well can we predict the rent of an appartment?
6. Is the effect of area the same on rent for appartments at

average, good and top location? (interaction)



Simple Linear Regression

I One quantitative response Y is modelled with
I from one covariate x (=simple),
I and the relationship between Y and x is assumed to be linear.



Model and assumptions

Y = f (x) + ε = β0 + β1x + ε

I Y is a quantitative (continuous) response variable.
I β0 is the intercept. It is the value of Y when x = 0.
I β1 is the regression coefficient or regression parameter (slope).

The slope represents the average increase in Y given a one-unit
increase in x .

I x is the covariate. It can be continuous or discrete.
I ε is the error term also called the measurement noise. It

replaces all the unobserved covariates that influence Y .
I E(ε) = 0
I Var(ε) = σ2

ε (for all x).
I Often we also assume that ε is normally distributed.

Here the model parameters β0, β1 and σ2
ε are unknown and have to

be estimated from observed data.



Estimation and prediction

I Fitting a model is to find the best estimates for the model
parameters.

I This is based on data: independent pairs (xi ,Yi ), i = 1, . . . , n.
I The least squares method is used.
I We can predict the value of the response for a (new)

observation of the covariate at x0.

ŷ = β̂0 + β̂1x0.

We use theˆsymbol for estimated or predicted values.



Example continued: Munich rent index

Assume a linear relationship between the monthly net rent (rent)
and the living area (area) in square meters.

In R: fit simple linear regression model using the lm function to the
data, and plot the data together with the fitted model.

We see that the model fits the data quite well. It captures the
essence. It looks that a linear relationship between the response
rent and covariate area is a good approximation.
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Q:

I The blue line gives the estimated model. Explain what the line
means in practice.

I How does this relate to the true (population) model?
I The spread around the fit does not look constant. What does

this mean? Is that a problem?

A:

I If we compare two appartment where one has area 1 sq metre
more then the other, we would expect the rent to be β̂ Euro
higher.

I The true model: tja, might also be approximately linear on the
population level (all appartments in Munich), and it might be
different from the blue line. To give the population level area
vs rent we need to plot the relationship between all units in
the population - and if we assume the relationship is linear that
line might deviate from our blue line.

I Yes, in linear regression we assume the variance of ε to be
constant - the same for all areas.



Parameter estimates: least squares

Assume that we have a data set consisting of n observation pairs
(xi ,Yi ) for i = 1, 2, ..., n. We usually assume the pairs are
independent.

Further, assume we fit a linear model to our data. For a single pair
of observations (xi , yi ) it can be written as Ŷi = β̂0 + β̂1xi .

The i-th residual of the model is the difference between the i-th
observed response value and the i-th predicted value, and is written
as:

ei = Yi − Ŷi .

We may regard the residuals as predictions (not estimates) of the
error terms εi .

Remark: the error terms are random variables and can not be
estimated - they can be predicted.



The residual sum of squares (RSS) is the squared sum of all residuals

RSS = e2
1 + e2

2 + ...+ e2
n

= (Y1 − β̂0 − β̂1x1)2 + (Y2 − β̂0 − β̂1x2)2 + ...+ (Yn − β̂0 − β̂1xn)2

We find the parameter estimates for β0 and β1 by minimizing the
RSS.

Least squares estimators:

β̂0 = Ȳ − β̂1x̄

and
β̂1 =

∑n
i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2 ,

where Ȳ = 1
n

∑n
i=1 Yi and x̄ = 1

n
∑n

i=1 xi are the sample means.



Example continued

The coefficient estimates from our simple linear model fit to the
Munich rent index data can be printed using the coef function in R:

coef(munich1.lm)

## (Intercept) area
## 134.592194 4.821464

Q: Explain what these two values mean.



Accuracy of the parameter estimates

(We will derive a general version of these formulas for multiple linear
regression, because without matrix notation this is very cumbersome
- e.g. “Egenskaper til estimatorene” for the TMA4240/TMA4245
Thematic pages.)

The standard errors of the estimates are given by the following
formulas:

Var(β̂0) = SE(β̂0)2 = σ2
ε

[1
n + x̄2∑n

i=1(xi − x̄)2

]
and

Var(β̂1) = SE(β̂1)2 = σ2
ε∑n

i=1(xi − x̄)2 .

In addition Cov(β̂0, β̂1) is in general different from zero.

We see how the estimated coefficient will vary when our experiment
is repeated.

Remark: SE=standard error vs SD=standard deviation - since we
write SE of a random variable this means the standard deviation of
this variable (square root of variance) - so for us SD and SE will be
the same.

In general much confusion about SD and SE in articles:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1255808/

https://wiki.math.ntnu.no/tma4245/tema/begreper/regression
https://wiki.math.ntnu.no/tma4245/tema/begreper/regression
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1255808/


Q: The best design

Assume that we know the value of σ2
ε . Now, observe that

SE(β̂1)2 = σ2
ε∑n

i=1(xi − x̄)2

is only dependent on the design of the xi ’s.

I Would we like the SE(β̂1)2 large or small? Why?
I If it is possible for us to choose the xi ’s, which strategy should

we use to choose them?
I Assume x can take values from 1 to 10 and we choose n = 10

values. Which is the best design?
I evenly in a grid: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
I only lower and upper value: [1, 1, 1, 1, 1, 10, 10, 10, 10, 10].
I randomly drawn from a uniform distribution on [1, 10].



x1=seq(1:10)
x2=c(rep(1,5),rep(10,5))
x3=runif(10,1,10)

sd1=sqrt(1/sum((x1-mean(x1))^2))
sd2=sqrt(1/sum((x2-mean(x2))^2))
sd3=sqrt(1/sum((x3-mean(x3))^2))

print(c(sd1,sd2,sd3))

## [1] 0.11009638 0.07027284 0.11877358

A: the second design - all observations at extremes.



Residual standard error
Remember - residual sum of squares: RSS =

∑n
i=1(Yi − β̂0− β̂1xi )2.

The residual standard error, RSE, is given by

RSE =
√

1
n − 2RSS =

√√√√ 1
n − 2

n∑
i=1

(Yi − Ŷi )2

and is an estimate of σε, that is, the standard deviation of the error
term ε. This is the socalled restricted maximum likelihood
estimator, and is unbiased.

This is related to the amount the response variables deviate from
the estimated regression line. Recall that we will always have
observations with noise.

RSE shows the lack of fit of the model to the data. It is measured
in units of Y , hence is value may be hard to interpret.



If we assume that the simple linear regression is a good model,
observation pairs (xi ,Yi ) are independent for i = 1, . . . , n and that
εi ∼ N(0, σ2

ε) then it can be shown that

RSE2(n − 2)
σ2
ε

=
∑n

i=1(Yi − Ŷi )2

σ2
ε

∼ χ2
n−2

Example continued

In R we can get a summary of our fitted linear model, by calling the
summary function. In this outprint we see the estimated coefficient
values in the first column, and the estimated standard errors in the
second column. Thus ŜE(β̂0) = 8.6135 and ŜE(β̂1) = 4.8215.



summary(munich1.lm)

##
## Call:
## lm(formula = rent ~ area, data = rent99)
##
## Residuals:
## Min 1Q Median 3Q Max
## -786.63 -104.88 -5.69 95.93 1009.68
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 134.5922 8.6135 15.63 <2e-16 ***
## area 4.8215 0.1206 39.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 158.8 on 3080 degrees of freedom
## Multiple R-squared: 0.3417, Adjusted R-squared: 0.3415
## F-statistic: 1599 on 1 and 3080 DF, p-value: < 2.2e-16



To illustrate this point further, we fit four models to our Munich
rent index data set. Each of the models has been fit using a random
sample of a fraction of our observations (1/4). We see how our
fitted line changes given a “new” set of observations.
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Distribution of parameter estimators

(We will derive a general version for multiple linear regression.)

I Let β̂j be the least squares estimator for βj , and that
I Var(β̂j) and V̂ar(β̂j) is as given above.

Then β̂j ∼ N(βj ,Var(β̂j)) and

Tj = β̂j − βj√
V̂ar(β̂j)

∼ tn−2

The t-distribution with n − 2 degrees of freedom.

See Rintermediate-sol.html for more on the t-distribution in R.

For the slope in the simple linear regression this is shown, together
with inference for β1, in this video from TMA4240/TMA4245
Statistics (in Norwegian - but formulas are still understood in
English).

https://wwww.math.ntnu.no/emner/TMA4268/2018v/1Intro/Rintermediate-sol.html
https://mediasite.ntnu.no/Mediasite/Play/2e9a209c58874e75bd47e3c5e0b7b4e81d?catalog=0fce6173-7a98-4db7-84b7-50cba3a3a341
https://mediasite.ntnu.no/Mediasite/Play/2e9a209c58874e75bd47e3c5e0b7b4e81d?catalog=0fce6173-7a98-4db7-84b7-50cba3a3a341
https://mediasite.ntnu.no/Mediasite/Play/2e9a209c58874e75bd47e3c5e0b7b4e81d?catalog=0fce6173-7a98-4db7-84b7-50cba3a3a341


α 2α 2 1 − α

The figure shows the t10 distribution with α = 0.05.



Confidence intervals
The t-distribution can be used to create confidence intervals for the
regression parameters. The lower and upper limits of a 95%
confidence intervals for βj are

β̂j ± tα/2,n−2 · SE(β̂j) j = 0, 1.

The interpretation of this confidence is that: (before we have
contructed the interval) there is a 95% chance that the interval will
contain the true value of βj .

If n is large, the normal approximation to the t-distribution can be
used (and is used in the textbook).

Q: Calculate the confidence intervals for the slope parameter in the
munich1.lm model by finding the numbers you need from the
summary output. Here t0.025,n−2=1.961.



We can find confidence intervals in R using the confint function on
lm object:

confint(munich1.lm)

## 2.5 % 97.5 %
## (Intercept) 117.703417 151.480972
## area 4.585017 5.057912



Based on the joint distribution of the intercept and slope it is
possible to find the distribution for the linear predictor β̂0 + β̂1x ,
and then confidence intervals for β0 + β1x .
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The figures show the fitted line and the confidence interval for the
(true) regression line based on all (left) and the first 100
observations (right) in the Munich rent index data.



Single hypothesis testing set-up

In single hypothesis testing we are interesting in testing one null
hypothesis against an alternative hypothesis. In linear regression the
hypothesis is often about a regression parameter βj :

H0 : βj = 0 vs. H1 : βj 6= 0

Two types of errors:

I “Reject H0 when H0 is true”=“false positives” = “type I error”
=“miscarriage of justice”. These are our fake news, which are
very important for us to avoid.

I “Fail to reject H0 when H1 is true (and H0 is false)”=“false
negatives” = “type II error”= “guilty criminal go free”.



We choose to reject H0 at some significance level α if the p-value of
the test (see below) is smaller than the chosen significance level.
We say that : Type I error is “controlled” at significance level α,
which means that the probability of miscarriage of justice (Type I
error) does not exceed α.

Q: Draw a 2 by 2 table showing the connection between

I “truth” (H0 true or H0 false) - rows in the table, and
I “action” (reject H0 and accept H0) - columns in the table,

and place the two types of errors in the correct position within the
table.

What else should be written in the last two cells?



Hypothesis test on βj (t-test)

In linear regression models our test statistic for testing H0 : βj = 0 is

T0 = β̂j − 0
√cjj σ̂ε

∼ tn−2

where cjj σ̂
2
ε = V̂ar(β̂j).

Inserted observed values (and estimates) we have t0.

We would in a two-sided setting reject H0 for large values of abs(t0).
We may rely on calculating a p-value.



The p-value

A p-value is a test statistic satisfying 0 ≤ p(Y) ≤ 1 for every vector
of observations Y.

I Small values give evidence that H1 is true.
I In single hypothesis testing, if the p-value is less than the

chosen significance level (chosen upper limit for the probability
of committing a type I error), then we reject the null hypothesis,
H0. The chosen significance level is often referred to as α.

I A p-value is valid if

P(p(Y) ≤ α) ≤ α

for all α, 0 ≤ α ≤ 1, whenever H0 is true, that is, if the
p-value is valid, rejection on the basis of the p-value ensures
that the probability of type I error does not exceed α.

I If P(p(Y) ≤ α) = α for all α, 0 ≤ α ≤ 1, the p-value is called
an exact p-value.



In our linear regression we use the t-distibution to calculate p-values
for our two-sided test situation H0 : βj = 0 vs. H1 : βj 6= 0. Assume
we have observed that our test statistic T0 takes the numerical
value t0. Since the t-distribution is symmetric around 0 we have

p-value = P(T0 > abs(t0))+P(T0 < −abs(t0)) = 2·P(T0 > abs(t0)).

We reject H0 if our calculated p-value is below our chosen
signficance level. We often choose as significance level α = 0.05.



Q: Comment on the p-values listed in the summary output from
fitting the simple linear regression of area and rent. Then,
pinpoint σ̂ε = RSE . Where are the entries in the output that you
do not (yet) know what is?

##
## Call:
## lm(formula = rent ~ area, data = rent99)
##
## Residuals:
## Min 1Q Median 3Q Max
## -786.63 -104.88 -5.69 95.93 1009.68
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 134.5922 8.6135 15.63 <2e-16 ***
## area 4.8215 0.1206 39.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 158.8 on 3080 degrees of freedom
## Multiple R-squared: 0.3417, Adjusted R-squared: 0.3415
## F-statistic: 1599 on 1 and 3080 DF, p-value: < 2.2e-16



Model accuracy
Coefficient of determination, R2

The total sum of squares is defined as

TSS =
n∑

i=1
(yi − ȳ)2,

and is proportional to the estimated variance of the response
variable.

The R2 statisitic is the fraction of variance explained by the model
and is given by

R2 = TSS− RSS
TSS = 1− RSS

TSS = 1−
∑n

i=1(yi − ŷi )2∑n
i=1(yi − ȳi )2 .

The value is between 0 and 1, and we want an as high R2 statistic
as possible. This statistic is independent of the scale of Y .

For a simple linear regression model the squared correlation r2 is
equal to R2.



Q: Look back at the summary outprint for the munich1.lm model.
What is the value of the R2 statistic? Based on this value, would
you conclude that this model gives a good fit to the data?



Multiple Linear Regression

Back to the Munich rent index data, but now we want to include
more than one covariate. Suggestions?

I rent: the net rent per month (in Euro).
I rentsqm: the net rent per month per square meter (in Euro).
I area: Living area in square meters.
I yearc: year of construction.
I location: quality of location: a factor indicating whether the

location is average location, 1, good location, 2, and top
location, 3.

I bath: quality of bathroom: a a factor indicating whether the
bath facilities are standard, 0, or premium, 1.

I kitchen: Quality of kitchen: 0 standard 1 premium.
I cheating: central heating: a factor 0 without central heating,

1 with central heating.
I district: District in Munich.



Multiple linear regression model

We assume, for observation i :

Yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + εi ,

where i = 1, 2, ..., n.

Here: what is xij?

The model can be written in matrix form:

Y = Xβ + ε.

⊕: write out in detail!



Notation
Y : (n × 1) vector of responses [e.g. one of the following: rent,
weight of baby, ph of lake, volume of tree]

X : (n × (p + 1)) design matrix [e.g. location of flat, gestation age
of baby, chemical measurement of the lake, height of tree]

β : ((p + 1)× 1) vector of regression parameters (intercept included)

ε : (n × 1) vector of random errors.

We assume that pairs (xT
i , yi ) (i = 1, ..., n) are measured from

sampling units. That is, the observation pair (xT
1 , y1) is independent

from (xT
2 , y2).



Example continued

Assume that we have rent as response and area and bath as
covariates.

I What is Y, X, β and ε?
I Which of these are known/unknown, observed/unobserved?

Remember: n = 3802 and bath=0 gives standard quality and
bath=1 premium and the model is

Y = Xβ + ε.



fit=lm(rent~area+bath,data=rent99)
head(model.matrix(fit))

## (Intercept) area bath1
## 1 1 26 0
## 2 1 28 0
## 3 1 30 0
## 4 1 30 0
## 5 1 30 0
## 6 1 30 0

head(rent99$rent)

## [1] 109.9487 243.2820 261.6410 106.4103 133.3846 339.0256



Classical linear model
Assumptions:

1. E(ε) = 0.
2. Cov(ε) = E(εεT ) = σ2I.
3. The design matrix has full rank, rank(X) = p + 1. (We assume

n >> (p + 1).)

The classical normal linear regression model is obtained if
additionally

4. ε ∼ Nn(0, σ2I) holds.

For random covariates these assumptions are to be understood
conditionally on X.

The interpretation of the coefficients βj is now as following: holding
all other covariates fixed, what is the average effect on Y of a
one-unit increase in the jth covariate.



Distribution of the response vector

Assume that Y = Xβ + ε and ε ∼ Nn(0, σ2I).

Q:

I Find the mean E(Y) and
I the covariance matrix Cov(Y).
I What is then the distribution of Y?

A:
Y ∼ Nn(Xβ, σ2I)



Parameter estimation
In multiple linear regression parameters in β are estimated with
maximum likelihood and least squares. These two methods give the
same estimator when we assume the normal linear regression model.

Least squares and maximum likelihood estimator for β:

β̂ = (XT X)−1XT Y

The estimator is found by minimizing the RSS for a multiple linear
regression model:

RSS =
n∑

i=1
(yi − ŷi )2 =

n∑
i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂pxip)2

=
n∑

i=1
(yi − xT

i β)2 = (Y− Xβ̂)T(Y− Xβ̂)

The estimator is found by solving the system of (p+1) equation
:∂RSS
∂β = 0, see LeastSquaresMLR.pdf for a derivation (from

TMA4267V2017).

https://www.math.ntnu.no/emner/TMA4268/2018v/notes/LeastSquaresMLR.pdf


Example continued

Write down the model and explain what the values under Estimate
mean in practice.

##
## Call:
## lm(formula = rentsqm ~ area + yearc + location + bath + kitchen +
## cheating, data = rent99)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.4303 -1.4131 -0.1073 1.3244 8.6452
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -45.475484 3.603775 -12.619 < 2e-16 ***
## area -0.032330 0.001648 -19.618 < 2e-16 ***
## yearc 0.026959 0.001846 14.606 < 2e-16 ***
## location2 0.777133 0.076870 10.110 < 2e-16 ***
## location3 1.725068 0.236062 7.308 3.45e-13 ***
## bath1 0.762808 0.157559 4.841 1.35e-06 ***
## kitchen1 1.136908 0.183088 6.210 6.02e-10 ***
## cheating1 1.765261 0.129068 13.677 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.031 on 3074 degrees of freedom
## Multiple R-squared: 0.3065, Adjusted R-squared: 0.3049
## F-statistic: 194.1 on 7 and 3074 DF, p-value: < 2.2e-16



Reproduce the values under Estimate by calculating without the
use of lm.

X=model.matrix(rentsqm~area+yearc+location+bath+kitchen+cheating,data=rent99)
Y=rent99$rentsqm
betahat=solve(t(X)%*%X)%*%t(X)%*%Y
print(betahat)

## [,1]
## (Intercept) -45.47548356
## area -0.03233033
## yearc 0.02695857
## location2 0.77713297
## location3 1.72506792
## bath1 0.76280784
## kitchen1 1.13690814
## cheating1 1.76526110



Distribution of the regression parameter estimator

1. We assumed that Y = Xβ + ε and ε ∼ Nn(0, σ2I), leading to

Y ∼ Nn(Xβ, σ2I).

2. Then we “found” that an estimator for β is

β̂ = (XT X)−1XT Y.

3. From Module 2: Part B: Y(n×1) with mean vector µ and
variance-covariance matrix Σ, then Z = CY has E(Z) = Cµ
and Cov(Z) = CΣCT .

4. Also Module 2: Part B: If Y is multivariate normal, then also
CY is multivariate normal.

Q: Homework

I Find the mean E(β̂) and the covariance matrix Cov(β̂).
I What is then the distribution of β̂?



Part B: Multiple linear regression - continued!
Munich rent index (as in Part A)

Munich, 1999: 3082 observations on 9 variables.

I rent: the net rent per month (in Euro).
I rentsqm: the net rent per month per square meter (in Euro).
I area: Living area in square meters.
I yearc: year of construction.
I location: quality of location: a factor indicating whether the

location is average location, 1, good location, 2, and top
location, 3.

I bath: quality of bathroom: a a factor indicating whether the
bath facilities are standard, 0, or premium, 1.

I kitchen: Quality of kitchen: 0 standard 1 premium.
I cheating: central heating: a factor 0 without central heating,

1 with central heating.
I district: District in Munich.



Ozone
New York, 1973: 111 observations of

I ozone : ozone concentration (ppm)
I radiation : solar radiation (langleys)
I temperature : daily maximum temperature (F)
I wind : wind speed (mph)

ozone as our response variable and temperature, wind and
‘radiation as covariates.

First 6 observations in data set printed.



ozone radiation temperature wind

41 190 67 7.4
36 118 72 8.0
12 149 74 12.6
18 313 62 11.5
23 299 65 8.6
19 99 59 13.8



Plan

I So far: simple linear regression - and multiple linear regression -
model, estimators

I Statistical inference
I estimators and properties
I confidence intervals and hypothesis tests
I significance of regression: F-test
I prediction and prediction intervals

I Model assessement and selection
I R2

I subset selection
I diagnostic plots - studentized residuals and leverages



I Special cases
I qualitative predictors: dummy coding
I non-additivity: including interactions
I nonlinearity: polynomials
I multiple linear regression vs. KNN-regression

I Optional material
I projection matrices and geometry of least squares

I Summing-up with team Kahoot!



Model and parameter estimator

Model:
Y = Xβ + ε

with full rank design matrix X. Classical normal linear regression
model when

ε ∼ Nn(0, σ2I).

In Part A we found that :

Y ∼ Nn(Xβ, σ2I)

Parameter of interest is β and σ2 is a nuisance (=parameter not of
interest).

Using the least squares (and maximum likelihood) method the
estimator for β is

β̂ = (XT X)−1XT Y



head(model.matrix(ozone.lm))

## (Intercept) temperature wind radiation
## 1 1 67 7.4 190
## 2 1 72 8.0 118
## 3 1 74 12.6 149
## 4 1 62 11.5 313
## 5 1 65 8.6 299
## 6 1 59 13.8 99

head(ozone$ozone)

## [1] 41 36 12 18 23 19



How does this compare to simple linear regression?

β̂0 = Ȳ − β̂1x̄ and β̂1 =
∑n

i=1(xi − x̄)(Yi − Ȳ )∑n
i=1(xi − x̄)2 ,

β̂ = (XT X)−1XT Y

Often we use centered data (and also scaled) to ease interpretation.
In design of experiments often orthogonal columns of the design
matrix is chosen to get XT X to be diagonal, which leads to easier
interpretation and identifiability.



Distribution of the regression parameter estimator

β̂ = (XT X)−1XT Y

This can be written as β̂ = CY where

I C = (XT X)−1XT

I Y ∼ Nn(Xβ, σ2I).

Therefore

I β̂ is multivariate normal (p+1) dimensions, with
I E(β̂) = CE(Y) = (XT X)−1XT Xβ = β
I Cov(β̂) = CCov(Y)CT = (XT X)−1XTσ2I((XT X)−1XT )T =

(XT X)−1σ2.

So: β̂ ∼ Np+1(β, σ2(XT X)−1).



β̂ ∼ Np+1(β, σ2(XT X)−1).

coefficients(ozone.lm)

## (Intercept) temperature wind radiation
## -64.23208116 1.65120780 -3.33759763 0.05979717

vcov(ozone.lm)

## (Intercept) temperature wind radiation
## (Intercept) 530.93558002 -5.503192281 -1.043562e+01 0.0266688733
## temperature -5.50319228 0.064218138 8.034556e-02 -0.0015749279
## wind -10.43562350 0.080345561 4.275126e-01 -0.0003442514
## radiation 0.02666887 -0.001574928 -3.442514e-04 0.0005371733

Q: Explain what all these numbers are!



Estimator for σ2

RSS =
n∑

i=1
(yi − ŷi )2 =

n∑
i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂pxip)2

=
n∑

i=1
(yi − xT

i β̂)2 = (Y− Xβ̂)T(Y− Xβ̂)

Restricted maximum likelihood estimator for σ2:

σ̂2 = 1
n − p − 1(Y− Xβ̂)T (Y− Xβ̂) = RSS

n − p − 1

with (n−p−1)σ̂2

σ2 ∼ χ2
n−p−1.



Distribution of regression parameters (contd.)

β̂ ∼ Np+1(β, σ2(XT X)−1).

I unbiased
I covariance matrix dependent on the design (and σ2)

Multicollinearity: columns in design matrix (that is, the covariates)
are correlated, which may lead to difficulty in “identifying” the
effect of each covariate on the response, and thus large variances
(and covariances) for the elements of β̂.

The variance inflation factor (VIF) is the ratio of the variance of β̂j
when fitting a model with the chosen covariates divided by the
variance of β̂j in a simple linear regression.

I VIF=1: absence of collinearity
I VIF exceeding 5 or 10 might be problematic.
I Solution: drop a covariate (that do not add much since it is

correlated with other covariates).



oz1=as.data.frame(apply(ozone,2,scale,scale=FALSE))
fitoz=lm(ozone~temperature+wind+radiation, data=oz1)
vif(fitoz)

## temperature wind radiation
## 1.431201 1.328979 1.095241

corrplot(cov2cor(vcov(fitoz)),cex.lab=0.7);
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Inference about βj : confidence interval

β̂ ∼ Np+1(β, σ2(XT X)−1)

Statistic for inference about βj , cjj is diagonal element
corresponding to β̂j of (XT X)−1.

Tj = β̂j − βj√cjj σ̂
∼ tn−p−1

P(β̂j − tα/2,n−p−1
√cjj σ̂ ≤ βj ≤ β̂j + tα/2,n−p−1

√cjj σ̂) = 1− α

A (1− α)% CI for βj is when we insert numerical values for the
upper and lower limits:
[β̂j − tα/2,n−p−1

√cjj σ̂, β̂j + tα/2,n−p−1
√cjj σ̂].

When we work with large samples then n− p − 1 becomes large and
the t distribution goes to a normal distribution, so we may use the
standard normal in place of the tn−p−1. This is in done in our
textbook.



fitoz=lm(ozone~temperature+wind+radiation, data=ozone)
confint(fitoz)

## 2.5 % 97.5 %
## (Intercept) -109.91023689 -18.5539254
## temperature 1.14884613 2.1535695
## wind -4.63376808 -2.0414272
## radiation 0.01385147 0.1057429



Inference about βj : hypothesis tests

H0 : βj = 0 vs H1 : βj 6= 0

Nothing new: using t-tests based on

Tj = β̂j − βj√cjj σ̂
∼ tn−p−1

Again, cjj is diagonal element corresponding to β̂j of (XT X)−1.



fitoz=lm(ozone~temperature+wind+radiation, data=ozone); summary(fitoz)

##
## Call:
## lm(formula = ozone ~ temperature + wind + radiation, data = ozone)
##
## Residuals:
## Min 1Q Median 3Q Max
## -40.485 -14.210 -3.556 10.124 95.600
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -64.23208 23.04204 -2.788 0.00628 **
## temperature 1.65121 0.25341 6.516 2.43e-09 ***
## wind -3.33760 0.65384 -5.105 1.45e-06 ***
## radiation 0.05980 0.02318 2.580 0.01124 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.17 on 107 degrees of freedom
## Multiple R-squared: 0.6062, Adjusted R-squared: 0.5952
## F-statistic: 54.91 on 3 and 107 DF, p-value: < 2.2e-16



Q:

1. Where is hypothesis testing performed here, and which are the
hypotheses rejected at level 0.01?

2. Will the test statistics and p-values change if we change the
regression model?

3. What is the relationship between performing an hypothesis test
and constructing a CI interval?



More complex hypotheses

Consider the hypotheses:

H0 : β1 = β2 = · · · = βk = 0 vs. H1 : at least one different from zero.

This means we test a set of regression parameters is different from 0.

This is used to

I let k = p and thest if any parameters are different from 0 - this
is called to test if the regression is significant.

I to compare two models - one where a the subset of the
coefficients are omitted.

To do this F -tests are used.



Is the regression significant?

H0 : β1 = β2 = · · · = βp = 0 vs. H1 : at least one different from zero.

F-statistic

F = (TSS-RSS)/p
RSS/(n − p − 1) ∼ Fp,n−p−1

When H0 is false we expect that the numerator is larger than the
denominator and thus F is greater than 1. A p value is calculated
from the upper tail of the F -distribution

We find p-value = P(Fp,n−p−1 > f0), where f0 is the numerical
value of F inserted RSS, TSS from the data.



fitoz=lm(ozone~temperature+wind+radiation, data=ozone); summary(fitoz)

##
## Call:
## lm(formula = ozone ~ temperature + wind + radiation, data = ozone)
##
## Residuals:
## Min 1Q Median 3Q Max
## -40.485 -14.210 -3.556 10.124 95.600
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -64.23208 23.04204 -2.788 0.00628 **
## temperature 1.65121 0.25341 6.516 2.43e-09 ***
## wind -3.33760 0.65384 -5.105 1.45e-06 ***
## radiation 0.05980 0.02318 2.580 0.01124 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.17 on 107 degrees of freedom
## Multiple R-squared: 0.6062, Adjusted R-squared: 0.5952
## F-statistic: 54.91 on 3 and 107 DF, p-value: < 2.2e-16



Tested a subset by comparing two nested models

Large model: RSS with p + 1 regression parameters Small model:
RSS0 with q + 1 regression parameters

H0 : the additional p − q coefficients in the large model are all zero
vs. H1: at least one different from zero.

F = (RSS0-RSS)/q
RSS/(n − p − 1) ∼ Fp−q,n−p−1

When H0 is false we expect that the numerator is larger than the
denominator and thus F is greater than 1. A p value is calculated
from the upper tail of the F -distribution

We find p-value = P(Fp−q,n−p−1 > f0), where f0 is the numerical
value of F inserted RSS, TSS from the data.

In R we perform the test by fitting the two models fit.large and
fit.small and use ‘anova(fit.small,fit.large).



fit.large=lm(ozone~temperature+wind+radiation, data=ozone)
fit.small=lm(ozone~temperature, data=ozone)
anova(fit.small,fit.large)

## Analysis of Variance Table
##
## Model 1: ozone ~ temperature
## Model 2: ozone ~ temperature + wind + radiation
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 109 62367
## 2 107 47964 2 14403 16.066 7.921e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Prediction intervals for multiple linear regression

Once we have estimated the coeffients β̂0, β̂1,.., β̂p, we can make a
prediction for a response value Y0 for a new observation
x0 = (x1, x2, ..., xp) as before:

Ŷ0 = β̂0 + β̂1x1 + β̂2x2 + ...+ β̂pxp = xT
0 β̂.

This is an intuitive point estimate.

Remember, one aim for regression was to “construct a model to
predict the reponse from a set of (one or several) explanatory
variables- more or less black box”.

To assess the uncertainty in this prediction we present a prediction
interval for the Y0.



After some work (see “details on the derivation”):

P(xT
0 β̂ − tα/2,n−p−1σ̂

√
1 + xT

0 (XT X)−1x0 ≤ Y0 ≤

xT
0 β̂ + tα/2,n−p−1σ̂

√
1 + xT

0 (XT X)−1x0) = 1− α

A (1− α)% PI for Y0 is when we insert numerical values for the
upper and lower limits:
[xT

0 β̂ − tα/2,n−p−1σ̂
√
1 + xT

0 (XT X)−1x0, xT
0 β̂ +

tα/2,n−p−1σ̂
√
1 + xT

0 (XT X)−1x0].



PIs can be found in R using predict on an lm object, but make
sure that newdata is a data.frame with the same names as the
original data.

Example: Using the Munich rent index data

We want to predict the rent - with PI - for an appartment with area
50, location 2 (“good”), nice bath and kitchen and with central
heating.



require(gamlss.data)
fit=lm(rent~area+location+bath+kitchen+cheating,data=rent99)
newobs=rent99[1,]
newobs[1,]=c(NA,NA,50,NA,2,1,1,1,NA)
predict(fit,newdata=newobs,interval="prediction",type="response")

## fit lwr upr
## 1 602.1298 315.5353 888.7243

Q

1. When is a prediction interval of interest?
2. Explain the result from predict above.



Details in the derivation of the PI
We start to look at the difference between the unobserved response
Y0 (for a given covariate vector x0) and the point prediction Ŷ0,
Y0 − Ŷ0.

First, we assume that the unobserved response at covariate x0 is
independent of our previous observations and follows the same
distibution, that is Y0 ∼ N(xT

0 β, σ
2). Further,

Ŷ0 = xT
0 β̂ ∼ N(xT

0 β, σ
2xT

0 (XT X)−1x0).

Then, for Y0 − xT
0 β̂ we have

E(Y0 − xT
0 β̂) = 0 and Var(Y0 − xT

0 β̂) = Var(Y0) + Var(xT
0 β̂) =

σ2 + σ2xT
0 (XT X)−1x0

so that
Y0 − xT

0 β̂ ∼ N(0, σ2(1 + xT
0 (XT X)−1x0))



Inserting our REML-estimate for σ2 gives

T = Y0 − xT
0 β̂

σ̂
√
1 + xT

0 (XT X)−1x0
∼ tn−p−1.

Then, we start with

P(−tα/2,n−p−1 ≤
Y0 − xT

0 β̂

σ̂
√
1 + xT

0 (XT X)−1x0
≤ tα/2,n−p−1) = 1− α

and solve so that Y0 is in the middle, which gives

P(xT
0 β̂ − tα/2,n−p−1σ̂

√
1 + xT

0 (XT X)−1x0 ≤ Y0 ≤

xT
0 β̂ + tα/2,n−p−1σ̂

√
1 + xT

0 (XT X)−1x0) = 1− α



Coefficient of determination, R2

R2 = TSS− RSS
TSS = 1− RSS

TSS = 1−
∑n

i=1(yi − ŷi )2∑n
i=1(yi − ȳi )2 .

1. The interpretation of this coefficient is that the closer it is to 1
the better the fit to the data. If R2 = 1 then all residuals are
zero - that is, perfect fit to the data.

2. In a simple linear regression the R2 equals the squared
correlation coefficient between the reponse and the predictor.
In multiple linear regression R2 is the squared correlation
coefficient between the observed and predicted response.

3. If we have two models M1 and M2, where model M2 is a
submodel of model M1, then

R2
M1 ≥ R2

M2 .

This can be explained from the fact that RSSM1 ≤ RSSM2 .
(More in the Recommended exercises.)



Model assessment and selection

Quality measures

To assess the quality of the regression we can report the R2

coefficient of determination. However, since adding covariates to
the linear regression can not make the RSS larger, this means that
adding covariates can not make the R2 smaller. This means that
RSS and R2 are only useful measures for comparing models with the
same number of regression parameters estimated.

If we consider two models with the same model complexity then
RSS can be used to choose between (or compare) these models.

But, if we want to compare models with different model complexity
we need to look at other measures of quality for the regression.



R2 adjusted (corrected)

R2
adj = 1−

RSS
n−p−1

TSS
n−1

= 1− n − 1
n − p − 1(1− R2)

Choose the model with the largest R2
adj.



AIC Akaike information criterion
AIC is one of the most widely used criteria, and is designed for
likelihood-based inference. Let l(β̂M , σ̃

2) be the maximum of the
log-likelihood of the data inserted the maximum likelihood estimates
for the regression parameters. Further, let |M| be the number of
estimated regression parameters in our model.

AIC = −2 · l(β̂M , σ̃
2) + 2(|M|+ 1)

For a normal regression model:

AIC ∝ n ln(σ̃2) + 2(|M|+ 1) + C

where C is a function of n (will be the same for two models for the
same data set). Remark that σ̃2 = RSS/n - our ML estimator, so
that the first term in the AIC is just a function of the RSS.

Choose the model with the minimum AIC.



The likelihood - for the normal linear regression model:

l(β̂, σ̃2) = ln(L(β̂, σ2)) = −n
2 ln(2π)−n

2 lnσ̃
2− 1

2σ̃2 (y−Xβ̂)T (y−Xβ̂)



BIC Bayesian information criterion.

The BIC is also based on the likelihood (see notation above).

BIC = −2 · l(β̂M , σ̃
2) + ln(n) · (|M|+ 1)

For a normal regression model:

BIC ∝ n ln(σ̃2) + ln(n)(|M|+ 1)

Choose the model with the minimum BIC.

AIC and BIC are motivated in very different ways, but the final
result for the normal regression model is very similar. BIC has a
larger penalty than AIC (log(n) vs. 2), and will often give a smaller
model (=more parsimonious models) than AIC. In general we would
not like a model that is too complex.



Subset selection procedures

Given a full multiple linear regression model the case is often that
not all of the covariates are of equal importance for predicting the
response. Some of the covariates could be removed from the model
without affecting the fit. At the same time one would gain a more
interpretable model with fewer parameters. We will here shortly
discuss three subset selction procedures. These will be discussed in
greater detail in Module 6.

Forward selection The forward selection procedure stars with the
null model (no covariates, only β0). In a step-wise procedure,
additional covariates are added one at a time. The inclusion of the
covariate is based on a quality of fit measure (f.ex. R2

adj or AIC) and
the covariate giving the greatest improve of the fit is added to the
model at each step.



Backward selection The backward selection proceudre has the
opposite procedure: Here the starting point is the full multiple linear
regression model (with all covariates included). At each step of the
procedure, one covariate is removed from the model. The removal
of this covariate is based on a quality of fit measure, where the
covariate corresponding to the smallest decrease in the fit is
removed at each step.

Mixed selection Combine forward and backward.

All subset selection All subset selection is a procedure where all
possible combination of covariates are tested. This approach is
efficient but computationally expensive.

Model selection is a major point in Module 6.



Challenges - for model fit

1. Non-linearity of data
2. Correlation of error terms
3. Non-constant variance of error terms
4. Normality of error terms
5. Outliers
6. High leverage points
7. Collinearity



Diagnostic plots

Plotting residuals - and what to do when assumptions are
violated?

1. Plot the residuals against the predicted values, ŷi .

I Dependence of the residuals on the predicted value: wrong
regression model?

I Nonconstant variance: transformation or weighted least squares
is needed?

2. Plot the residuals, against predictor variable or functions of
predictor variables. Trend suggest that transformation of the
predictors or more terms are needed in the regression.



3. Assessing normality of errors: QQ-plots and histograms of
residuals. As an additional aid a test for normality can be used,
but must be interpreted with caution since for small sample
sizes the test is not very powerful and for large sample sizes
even very small deviances from normality will be labelled as
significant.

4. Plot the residuals versus time or collection order (if possible).
Look for dependence or autocorrelation.

Residuals can be used to check model assumptions, and also to
discover outliers.



Different types of residuals

If can be shown that the vector of residuals, e = (e1, e2, . . . , en)
have a normal (singular) distribution with mean E(e) = 0 and
covariance matrix Cov(e) = σ2(I−H) where H = X(XT X)−1XT .

This means that the residuals (possibly) have different variance, and
may also be correlated.

Q: How can we say that the residuals can have different variance
and may be correlated? Why is that a problem?



We would like to check the model assumptions - we see that they
are all connected to the error terms. But, but we have not observed
the error terms ε so they can not be used for this. However, we
have made “predictions” of the errors - our residuals. And, we want
to use our residuals to check the model assumptions.

That is, we want to check that our errors are independent,
homoscedastic (same variance for each observation), and not
dependent on our covariates - and we want to use the residuals
(observed) in place of the errors (unobserved). Then it would have
been great if the residuals have these properties when the underlying
errors have. To amend our problem we need to try to fix the
residual so that they at least have equal variances. We do that by
working with standardized or studentized residuals.



Standardized residuals:

ri = ei
σ̂
√
1− hii

where hi i is the ith diagonal element of the hat matrix H.

In R you can get the standardized residuals from an lm-object
(named fit) by rstandard(fit).

Studentized residuals:

r∗
i = ei

σ̂(i)
√
1− hii

where σ̂(i) is the estimated error variance in a model with
observation number i omitted. This seems like a lot of work, but it
can be shown that it is possible to calculated the studentized
residuals directly from the standardized residuals.

In R you can get the studentized residuals from an lm-object
(named fit) by rstudent(fit).



Diagnostic plots in R

More information on the plots here:
http://data.library.virginia.edu/diagnostic-plots/ and
http://ggplot2.tidyverse.org/reference/fortify.lm.html

You can use the function fortify.lm in ggplot2 to create a
dataframe from an lm-object, which ggplot uses automatically
when given a lm-object. This can be used to plot diagnostic plots.

For simplicity we use the Munch rent index with rent as response
and only area as the only covariate. (You may change the model to
a more complex one, and rerun the code chunks.)

## rent area .hat .sigma .cooksd .fitted .resid .stdresid
## 1 109.9 26 0.001312 158.8 5.870e-04 260.0 -150.00 -0.9454
## 2 243.3 28 0.001219 158.8 1.678e-05 269.6 -26.31 -0.1658
## 3 261.6 30 0.001130 158.8 6.956e-06 279.2 -17.60 -0.1109
## 4 106.4 30 0.001130 158.8 6.711e-04 279.2 -172.83 -1.0891
## 5 133.4 30 0.001130 158.8 4.779e-04 279.2 -145.85 -0.9191
## 6 339.0 30 0.001130 158.8 8.032e-05 279.2 59.79 0.3768

http://data.library.virginia.edu/diagnostic-plots/
http://ggplot2.tidyverse.org/reference/fortify.lm.html


Residuals vs fitted values
A plot with the fitted values of the model on the x-axis and the
residuals on the y-axis shows if the residuals have non-linear
patterns. The plot can be used to test the assumption of a linear
relationship between the response and the covariates. If the residuals
are spread around a horizontal line with no distinct patterns, it is a
good indication on no non-linear relationships, and a good model.

Does this look like a good plot for this data set?
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Normal Q-Q

This plot shows if the residuals are Gaussian (normally) distributed.
If they follow a straigt line it is an indication that they are, and else
they are probably not.
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##
## Anderson-Darling normality test
##
## data: rstudent(fit)
## A = 6.4123, p-value = 9.809e-16



Scale-location
This is also called spread-location plot. It shows if the residuals are
spread equally along the ranges of predictors. Can be used to check
the assumption of equal variance (homoscedasticity). A good plot is
one with a horizontal line with randomly spread points.

Is this plot good for your data?



ggplot(fit, aes(.fitted, sqrt(abs(.stdresid)))) +
geom_point() +
geom_smooth(se = FALSE, col = "red", size = 0.5, method = "loess") +
labs(x = "Fitted values", y = expression(sqrt("Standardized residuals")), title = "Scale-location", subtitle = deparse(fit$call))
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lm(formula = rent ~ area, data = rent99)
Scale−location



Residual vs Leverage

This plot can reveal influential outliers. Not all outliers are
influential in linear regression; even though data have extreme
values, they might not be influential to determine the regression line
(the results don’t differ much if they are removed from the data set).
These influential outliers can be seen as observations that does not
get along with the trend in the majority of the observations. In
plot.lm, dashed lines are used to indicate the Cook’s distance,
instead of using the size of the dots as is done here.



Cook’s distance is the Euclidean distance between the ŷ (the fitted
values) and ŷ(i) (the fitted values calculated when the i-th
observation is omitted from the regression). This is then a measure
on how much the model is influences by observation i . The distance
is scaled, and a rule of thumb is to examine observations with
Cook’s distance larger than 1, and give some attention to those with
Cook’s distance above 0.5.

Leverage is defined as the diagonal elements of the hat matrix, i.e.,
the leverage of the i-th data point is hii on the diagonal of
H = X(XTX)−1XT. A large leverage indicated that the observation
(i) has a large influence on the estimation results, and that the
covariate values (xi) are unusual.
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Extensions and challenges
Qualitative covariates

See Rob Tibshirani explain - from ca 9 minutes

Qualitative predictors can be included in a linear regression model
by introducing dummy variables

Example: consider our rent dataset with rent as reponse, and
continuous covariate area and categorical covariate location. Let
the location be a factor with levels average, good, top.

require(gamlss.data)
require(tidyverse)
require(GGally)

ds=rent99 %>%
select(location, area,rent)

levels(ds$location)
# change to meaningful names
levels(ds$location)=c("average","good","top")
ggpairs(ds)

Corr:
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Q: comment on what you see in the ggpairs plot.

https://www.youtube.com/watch?v=3T6RXmIHbJ4&index=4&list=PL5-da3qGB5IBSSCPANhTgrw82ws7w_or9


Categorical covariates may either be ordered or unordered. We will
only consider unordered categories here. In general, we could like to
estimate regression coefficients for all levels for the categorical
covariates. However, if we want to include an intercept in our model
we can only include codings for one less variable than the number of
levels we have - or else our design matrix will not have full rank.
Q: Assume you have a categorical variable with three levels. Check
for yourself that making a design matrix with one intercept and
three columns with dummy (0-1) variable coding will result in a
matrix that is singular.
# make "wrong" dummy variable coding with 3 columns
n=length(ds$location)
X=cbind(rep(1,n),ds$area,rep(0,n),rep(0,n),rep(0,n))
X[ds$location=="average",3]=1
X[ds$location=="good",4]=1
X[ds$location=="top",5]=1
X[c(1,3,69),]

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 26 0 1 0
## [2,] 1 30 1 0 0
## [3,] 1 55 0 0 1

require(Matrix)
dim(X)

## [1] 3082 5

rankMatrix(X)

## [1] 4
## attr(,"method")
## [1] "tolNorm2"
## attr(,"useGrad")
## [1] FALSE
## attr(,"tol")
## [1] 6.843415e-13



This is why we need to instead work with different ways of coding
categorical variables. One solution is to not include an intercept in
the model, but that is often not what we want. We will look at two
other solutions - one where we decide on a reference category (that
we not include in the coding, and therefore is kind of included in the
intercept - this is called “treatment coding”) and one where we
require that the the sum of the coeffisients are zero (called “effect
coding”). This mainly effects how we interpret parameter estimates
and communicate our findings to the world. We will here restrict
our discussion to “treatment coding”.



If we fit a regression model with lm to the data with rent as
response and area and location as covariates, a model matrix is
made - and how to handle the categorical variable is either specified
the call to lm in
contrasts=list(location="contr.treatment") (or to
model.matrix) or globally for all categorical variables with
options(contrasts=c("contr.treatment","contr.poly"))-
where first element give choice for unordered factor (then treatment
contrast is default) and second for ordered (and then this polynomial
contrast is default). We will only work with unordered factors now.



Dummy variable coding

This is the default coding. The reference level is automatically
chosen as the “lowest” level (sorted alphabetically). For our example
this means that the reference category for location is “average”.

xi locationgood =
{
1 if i -th location = "good"
0 if i -th location 6= "good"

xi locationtop =
{
1 if i -th location = "top"
0 if i -th location 6= "top"

yi = β0 + β1xiarea + β2xi locationgood + β3xi locationtop + εi

=


β0 + β1xiarea + β2 + εi if i -th location = "good"
β0 + β1xiarea + β3 + εi if i -th location = "top"
β0 + εi if i -th location = "average"

If we instead wanted “good” to be reference category we could
relevel the factor.



X1=model.matrix(~area+location,data=ds)
X1[c(1,3,69),]

## (Intercept) area locationgood locationtop
## 1 1 26 1 0
## 3 1 30 0 0
## 69 1 55 0 1

ds$locationRELEVEL=relevel(ds$location,ref="good")
X2=model.matrix(~area+locationRELEVEL,data=ds)
X2[c(1,3,69),]

## (Intercept) area locationRELEVELaverage locationRELEVELtop
## 1 1 26 0 0
## 3 1 30 1 0
## 69 1 55 0 1

So, what does this mean in practice? Model 1 has average as
reference category and model 2 good.

fit1=lm(rent~area+location,data=ds,contrasts = list(location="contr.treatment"))
summary(fit1)

##
## Call:
## lm(formula = rent ~ area + location, data = ds, contrasts = list(location = "contr.treatment"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -790.98 -100.89 -4.87 94.47 1004.98
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 128.0867 8.6947 14.732 < 2e-16 ***
## area 4.7056 0.1202 39.142 < 2e-16 ***
## locationgood 28.0040 5.8662 4.774 1.89e-06 ***
## locationtop 131.1075 18.2614 7.180 8.73e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 157.1 on 3078 degrees of freedom
## Multiple R-squared: 0.3555, Adjusted R-squared: 0.3549
## F-statistic: 566 on 3 and 3078 DF, p-value: < 2.2e-16

fit2=lm(rent~area+locationRELEVEL,data=ds,contrasts = list(locationRELEVEL="contr.treatment"))
summary(fit2)

##
## Call:
## lm(formula = rent ~ area + locationRELEVEL, data = ds, contrasts = list(locationRELEVEL = "contr.treatment"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -790.98 -100.89 -4.87 94.47 1004.98
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 156.0907 9.4950 16.439 < 2e-16 ***
## area 4.7056 0.1202 39.142 < 2e-16 ***
## locationRELEVELaverage -28.0040 5.8662 -4.774 1.89e-06 ***
## locationRELEVELtop 103.1034 18.4021 5.603 2.30e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 157.1 on 3078 degrees of freedom
## Multiple R-squared: 0.3555, Adjusted R-squared: 0.3549
## F-statistic: 566 on 3 and 3078 DF, p-value: < 2.2e-16

Q: Comment on the print-out. How do we interpret the intercept
estimate?



Interactions
See Trevor Hastie explain

To illustrate how interactions between covaraites can be included we
use the ozone data set from the ElemStatLearn library. This data
set is measurements from 1973 in New York and contains 111
observations of the following variables:

I ozone : ozone concentration (ppm)
I radiation : solar radiation (langleys)
I temperature : daily maximum temperature (F)
I wind : wind speed (mph)

We start by fitting a multiple linear regression model to the data,
with ozone as our response variable and temperature and wind as
covariates.

ozone radiation temperature wind

41 190 67 7.4
36 118 72 8.0
12 149 74 12.6
18 313 62 11.5
23 299 65 8.6
19 99 59 13.8

https://www.youtube.com/watch?v=IFzVxLv0TKQ&list=PL5-da3qGB5IBSSCPANhTgrw82ws7w_or9&index=5


##
## Call:
## lm(formula = ozone ~ temperature + wind, data = ozone)
##
## Residuals:
## Min 1Q Median 3Q Max
## -42.160 -13.209 -3.089 10.588 98.470
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -67.2008 23.6083 -2.846 0.00529 **
## temperature 1.8265 0.2504 7.293 5.32e-11 ***
## wind -3.2993 0.6706 -4.920 3.12e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.72 on 108 degrees of freedom
## Multiple R-squared: 0.5817, Adjusted R-squared: 0.574
## F-statistic: 75.1 on 2 and 108 DF, p-value: < 2.2e-16



The model can be written as:

Y = β0 + β1xt + β2xw + ε

In this model we have assumed that increasing the value of one
covariate is independent of the other covariates. For example: by
increasing the temperature by one-unit always increases the
response value by β2 ≈ 1.651, regardless of the value of wind.



However, one might think that the covariate wind (wind speed)
might act differently upon ozone for different values of
temperature and vice verse.

Y = β0 + β1xt + β2xw + β3 · (xt · xw ) + ε

= β0 + (β1 + β3xw ) · xt + β2xw + ε

= β0 + β1xt + (β2 + β3xt) · xw + ε

.

We fit this model in R. An interaction term can be included in the
model using the * symbol.

Q: Look at the summary below. Is this a better model than without
the interaction term? It the term significant?



ozone.int = lm(ozone~temperature+wind+ temperature*wind, data=ozone)
summary(ozone.int)

##
## Call:
## lm(formula = ozone ~ temperature + wind + temperature * wind,
## data = ozone)
##
## Residuals:
## Min 1Q Median 3Q Max
## -40.929 -11.190 -3.037 8.209 97.440
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -239.94146 48.59004 -4.938 2.92e-06 ***
## temperature 4.00151 0.59311 6.747 8.02e-10 ***
## wind 13.60882 4.28070 3.179 0.00193 **
## temperature:wind -0.21747 0.05446 -3.993 0.00012 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.36 on 107 degrees of freedom
## Multiple R-squared: 0.636, Adjusted R-squared: 0.6258
## F-statistic: 62.31 on 3 and 107 DF, p-value: < 2.2e-16



Below we see that the interaction term is highly significant. The
p-value is very small, so that there is strong evidence that β3 6= 0.
Furthermore, R2

adj has increased, indicating that more of the
variability in the data has been explained by the model (than
without the interaction).



Interpretation of the interaction term:

I If we now increase the temperature by 10◦ F, the increase in
wind speed will be

(β̂1 + β̂3 · xw ) · 10 = (4.0− 0.22 · xw ) · 10 = 40− 2.2xw units.

I If we increase the wind speed by 10 mph, the increase in
temperature will be

(β̂2 + β̂3 · xt) · 10 = (14− 0.22 · xt) · 10 = 140− 2.2xt units.



The hierarchical principle

It is possilb that the interaction term is higly significant, but the
main effects are not.

In our ozone.int model above: the main effects are temperature
and wind. The hierarchical principle states that if we include an
interaction term in our model, the main effects are also to be
included, even if they are not significant. This means that if the
coefficients β̂1 or β̂2 would be insignificant, while the coefficient β̂3
is significant, β̂1 and β̂2 should still be included in the model.

There reasons for this is that a model with interaction terms, but
without the main effects is hard to interpret.



Interactions between qualitative (discrete) and quantitative
(continuous) covariates

We create a new variable temp.cat which is a temperature as a
qualitative covariate with two levels and fit the model:

y = β0 + β1xw +
{
β2 + β3xw if temperature="low"
0 if temperature = "high"

=
{

(β0 + β2) + (β1 + β3) · xw if temperature="low"
β0 + β1xw if temperature="high""



ozone radiation temperature wind temp.cat

41 190 67 7.4 low
36 118 72 8.0 low
12 149 74 12.6 low
18 313 62 11.5 low
23 299 65 8.6 low
19 99 59 13.8 low

##
## Call:
## lm(formula = ozone ~ wind + temp.cat + temp.cat * wind, data = ozone2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -53.291 -9.091 -1.307 11.227 71.815
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 119.0450 7.5004 15.872 < 2e-16 ***
## wind -6.7235 0.8195 -8.204 5.61e-13 ***
## temp.catlow -92.6316 12.9466 -7.155 1.09e-10 ***
## wind:temp.catlow 6.0544 1.1999 5.046 1.86e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.26 on 107 degrees of freedom
## Multiple R-squared: 0.6393, Adjusted R-squared: 0.6291
## F-statistic: 63.2 on 3 and 107 DF, p-value: < 2.2e-16
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Nonlinearity

We may extend the linear model to handle non-linear relationships
by using polynomial regression - as we did in Module 2 in our
bias-variance trade-off example.

More on non-linearity in Module 7.



Multiple linear regression vs. KNN-regression

read pages 104-109 in the textbook.



Optional: Projection matrices

First, we define predictions as Ŷ = Xβ̂, and inserted the ML (and
LS) estimate we get Ŷ = X(XT X)−1XT Y.

We define the projection matrix

H = X(XT X)−1XT

called the hat matrix. This simplifies the notation for the
predictions,

Ŷ = HY

so the hat matrix is putting the hat on the response Y.

In addition we define residuals as

ε̂ = Y− Ŷ
ε̂ = Y−HY = (I−H)Y

so we have a second projection matrix

I−H = I− X(XT X)−1XT



Optional: Geometry of Least Squares (involving our two
projection matrices)

I Mean response vector: E(Y) = Xβ
I As β varies, Xβ spans the model plane of all linear

combinations. I.e. the space spanned by the columns of X: the
column-space of X.

I Due to random error (and unobserved covariates), Y is not
exactly a linear combination of the columns of X.

I LS-estimation chooses β̂ such that Xβ̂ is the point in the
column-space of X that is closes to Y.

I The residual vector ε̂ = Y− Ŷ = (I−H)Y is perpendicular to
the column-space of X.

I Multiplication by H = X(XT X)−1XT projects a vector onto
the column-space of X.

I Multiplication by I−H = I− X(XT X)−1XT projects a vector
onto the space perpendicular to the column-space of X.



Sadly not covered this year (but maybe next year - or you
check for yourself)

I Big data - big.lm
I Fitting a linear model with with gradient descent - to motivate

neural net estimation methods.



Important results in linear regression
I Linear regression assumes a linear relationship between the

response variable and the covariates.
I Simple linear regression has only one covariate and has the

form Y = β0 + β1X + ε.
I Muliple linear regression has p covariates and has the form

Y = β0 + β1X1 + β2X2 + ...+ βpXp + ε.
I Quantitative (categorical) covariates can be included using

dummy variables.
I Correlations among the covariates can mask each others effects

in the linear model.
I Parameter estimates can be obtained by minimizing the least

squares (RSS) or maximum likelihood.
I We can calculate the standard errors of the parameter

estimates, and use this to obtain confidence intervals.
I We can test the hypothesis of H0 : βj = 0 agains H1 : βj 6= 0

by a t-test.
I We use the F -statistic to test if at least one of the covariates

are useful.



I Not only additive effects: Interactions between covariates can
be included in the model (also between qualitative and
quantitative covariates).

I Transformations of the response variable or of a covariate can
be useful if the relationship is not linear. A linear model can
then be fit to the transformed variables.

I The overall accuracy of the model can be evaluated by
calculating the R2 statistic, AIC score and by using diagnostic
plots.

I Model selection can not be based on RSS or R2.
I Multiple linear regression might require subset selection if the

number of covariates is high.



Summing up with Kahoot!



Recommended exercises
Problem 1: Theoretical questions

a)

A core finding is β̂.

β̂ = (XT X)−1XT Y

with β̂ ∼ Np(β, σ2(XT X)−1).

I Show that β̂ has this distribution with the given mean and
covariance matrix.

I What do you need to assume to get to this result?
I What does this imply for the distribution of the jth element of
β̂?

I In particular, how can we calculate the variance of β̂j?

b)

What is the interpretation of a 95% confidence interval? Hint:
repeat experiment (on Y ), on average how many CIs cover the true
βj?

c)

What is the interpretation of a 95% prediction interval? Hint:
repeat experiment (on Y ) for a given x0.

d)

Construct a 95% CI for xT
0 β. Explain what is the connections

between a CI for βj , a CI for xT
0 β and a PI for Y at x0.

e)

Explain the difference between error and residual. What are the
properties of the raw residuals? Why don’t we want to use the raw
residuals for model check? What is our solution to this?

f)

Consider a multiple linear regression model A and a submodel B (all
parameters in B are in A also). We say that B is nested within A.
Assume that regression parameters are estimated using least squares.
Why is then the following true: RSS for model A will always be
smaller or equal to RSS for model B. And thus, R2 for model A can
never be worse than R2 for model B. (See also Problem 2d below.)



Problem 2: Munich Rent index

a)

Fit the regression model with first rent and then rentsqm as
reponse and following covariates: area, location (dummy variable
coding using location2 and location3, just write
as.factor(location)), bath, kitchen and cheating (central
heating).

Look at diagnostic plots for the two fits. Which response do you
prefer?

Consentrate on the response-model you choose for the rest of the
tasks.

b)

Explain what the parameter estimates mean in practice. In
particular, what is the interpretation of the intercept?

c)

Go through the summary printout and explain all parts.

d)

Now we add random noise as a covariance, but simulating the IQ of
the landlord of each appartment. Observe that R2 increases (or
stays unchanged) and RSS decreases (or stays the same) if we add
IQ as covariate, but R2

adj decreases. What does this tell you about
model selection and overfitting?

For the code - what is the connection between sigma and RSS?

orgfit=lm(rent~area+as.factor(location)+bath+kitchen+cheating,data=rent99)
summary(orgfit)
set.seed(1) #to be able to reproduce results
n=dim(rent99)[1]
IQ=rnorm(n,100,16)
fitIQ=lm(rent~area+as.factor(location)+bath+kitchen+cheating+IQ,data=rent99)
summary(fitIQ)

summary(orgfit)$sigma
summary(fitIQ)$sigma

summary(orgfit)$r.squared
summary(fitIQ)$r.squared
summary(orgfit)$adj.r.squared
summary(fitIQ)$adj.r.squared

##
## Call:
## lm(formula = rent ~ area + as.factor(location) + bath + kitchen +
## cheating, data = rent99)
##
## Residuals:
## Min 1Q Median 3Q Max
## -633.41 -89.17 -6.26 82.96 1000.76
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -21.9733 11.6549 -1.885 0.0595 .
## area 4.5788 0.1143 40.055 < 2e-16 ***
## as.factor(location)2 39.2602 5.4471 7.208 7.14e-13 ***
## as.factor(location)3 126.0575 16.8747 7.470 1.04e-13 ***
## bath1 74.0538 11.2087 6.607 4.61e-11 ***
## kitchen1 120.4349 13.0192 9.251 < 2e-16 ***
## cheating1 161.4138 8.6632 18.632 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 145.2 on 3075 degrees of freedom
## Multiple R-squared: 0.4504, Adjusted R-squared: 0.4494
## F-statistic: 420 on 6 and 3075 DF, p-value: < 2.2e-16
##
##
## Call:
## lm(formula = rent ~ area + as.factor(location) + bath + kitchen +
## cheating + IQ, data = rent99)
##
## Residuals:
## Min 1Q Median 3Q Max
## -630.95 -89.50 -6.12 82.62 995.76
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -41.3879 19.5957 -2.112 0.0348 *
## area 4.5785 0.1143 40.056 < 2e-16 ***
## as.factor(location)2 39.2830 5.4467 7.212 6.90e-13 ***
## as.factor(location)3 126.3356 16.8748 7.487 9.18e-14 ***
## bath1 74.1979 11.2084 6.620 4.23e-11 ***
## kitchen1 120.0756 13.0214 9.221 < 2e-16 ***
## cheating1 161.4450 8.6625 18.637 < 2e-16 ***
## IQ 0.1940 0.1574 1.232 0.2179
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 145.2 on 3074 degrees of freedom
## Multiple R-squared: 0.4507, Adjusted R-squared: 0.4494
## F-statistic: 360.3 on 7 and 3074 DF, p-value: < 2.2e-16
##
## [1] 145.1879
## [1] 145.1757
## [1] 0.4504273
## [1] 0.4506987
## [1] 0.449355
## [1] 0.4494479

e)

We now want to use model selection to arrive at a good model.
Start by defining which covariates you want to include and how to
code them (use dummy variable coding of location). What about
year of construction - is that a linear covariate? Maybe you want to
make intervals in time instead? Linear or categorical for the time?
What about the district? We leave that since we have not talked
about how to use spatial covariates.

Hint: if you want to test out interval versions of year of construction
the function mutate (from dplyr) is useful:

rent99 <- rent99 %>% mutate(yearc.cat = cut(yearc, breaks = c(-Inf, seq(1920,2000,10)), labels = 10*1:9))

More on dplyr: Tutorial:
http://genomicsclass.github.io/book/pages/dplyr_tutorial.html and
Cheat sheet (data wrangling): https://www.rstudio.com/
wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf and
dplyr in particular: https://github.com/rstudio/cheatsheets/raw/
master/source/pdfs/data-transformation-cheatsheet.pdf

f)

(More on this in Module 6.)

There are many ways to perform model selection for multiple linear
regression. One possibility is best subsets, which can be done using
the regsubsets function from library leaps. Assume your “full”
model fitted by lm is called fit. You may define x from
model.matrix(fit)[,-1] (not including the intercept term), and
then run
best=regsubsets(x=model.matrix(fit)[,-1],y=rent99$rent)
and look at summary(best). Explain the print-out (with all the
stars). Using the Mallows Cp (named cp in the list from
summary(best)) will give the same result at using AIC (which is
not available in this function). What is your preferred model? Hint:
look at the R-code in Problem 2 (Figure 3) from the
TMA4267V2017 exam: pdf, and maybe the solutions for the
interprtation pdf

http://genomicsclass.github.io/book/pages/dplyr_tutorial.html
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
https://github.com/rstudio/cheatsheets/raw/master/source/pdfs/data-transformation-cheatsheet.pdf
https://github.com/rstudio/cheatsheets/raw/master/source/pdfs/data-transformation-cheatsheet.pdf
https://www.math.ntnu.no/emner/TMA4267/2017v/Exam/eV2017Enew.pdf
https://www.math.ntnu.no/emner/TMA4267/2017v/Exam/mergedLFV2017.pdf


Problem 3: Simulations in R

1. Make R code that shows the interpretation of a 95% CI for βj .
Hint: Theoretical question 1.

2. Make R code that shows the interpretation of a 95% PI for a
new response at x0. Hint: Theoretical question 2.

3. For simple linear regression, simulate at data set with
homoscedastic errors and with heteroscedastic errors. Here is a
suggestion of one solution - not using ggplot. You use
ggplot. Why this? To see how things looks when the model is
correct and wrong.

#Homoscedastic errore
n=1000
x=seq(-3,3,length=n)
beta0=-1
beta1=2
xbeta=beta0+beta1*x
sigma=1
e1=rnorm(n,mean=0,sd=sigma)
y1=xbeta+e1
ehat1=residuals(lm(y1~x))
plot(x,y1,pch=20)
abline(beta0,beta1,col=1)
plot(x,e1,pch=20)
abline(h=0,col=2)
#Heteroscedastic errors
sigma=(0.1+0.3*(x+3))^2
e2=rnorm(n,0,sd=sigma)
y2=xbeta+e2
ehat2=residuals(lm(y2~x))
plot(x,y2,pch=20)
abline(beta0,beta1,col=2)
plot(x,e2,pch=20)
abline(h=0,col=2)

4. All this fuss about raw, standardized and studentized residuals-
does really matter in practice? Below is one example where the
raw residuals are rather different from the standardized, but the
standardized is identical to the studentized. Can you come up
with a simuation model where the standardized and studentized
are very different? Hint: what about at smaller sample size?

n=1000
beta=matrix(c(0,1,1/2,1/3),ncol=1)
set.seed(123)
x1=rnorm(n,0,1); x2=rnorm(n,0,2); x3=rnorm(n,0,3)
X=cbind(rep(1,n),x1,x2,x3)
y=X%*%beta+rnorm(n,0,2)
fit=lm(y~x1+x2+x3)
yhat=predict(fit)
summary(fit)
ehat=residuals(fit); estand=rstandard(fit); estud=rstudent(fit)
plot(yhat,ehat,pch=20)
points(yhat,estand,pch=20,col=2)



Further reading

I Need details on the simple linear regression: From
TMA4240/TMA4245 Statistics we have the thematic page for
Simple linear regression (in Norwegian).

I Need more advanced thory: Theoretical version (no simple
linear regression) from TMA4315 Generalized linear models
H2017: TMA4315M2: Multiple linear regression

I Slightly different presentation (more focus on multivariate
normal theory): Slides and written material from TMA4267

I And, same source, but now Slides and written material from
TMA4267 Linear Statistical Models in 2017, Part 3:
Hypothesis testing and ANOVA

I Videoes on YouTube by the authors of ISL, Chapter 2

https://wiki.math.ntnu.no/tma4245/tema/begreper/regression
https://www.math.ntnu.no/emner/TMA4315/2017h/2MLR.html
https://www.math.ntnu.no/emner/TMA4267/2017v/TMA4267V2017Part2.pdf
http://www.math.ntnu.no/emner/TMA4267/2017v/TMA4267V2017Part3.pdf
http://www.math.ntnu.no/emner/TMA4267/2017v/TMA4267V2017Part3.pdf
http://www.math.ntnu.no/emner/TMA4267/2017v/TMA4267V2017Part3.pdf
https://www.youtube.com/playlist?list=PL5-da3qGB5IBSSCPANhTgrw82ws7w_or9


R packages to install before knitting this R Markdown file
# packages to install before knitting this R Markdown file
# to knit the Rmd
install.packages("knitr")
install.packages("rmarkdown")

# nice tables in Rmd
install.packages("kableExtra")

# cool layout for the Rmd
install.packages("prettydoc") # alternative to github

#plotting
install.packages("ggplot2") # cool plotting
install.packages("ggpubr") # for many ggplots
install.packages("GGally") # for ggpairs
#datasets
install.packages("ElemStatLearn") # for ozone data set
install.packages("gamlss.data")#rent index data set here
#methods
install.packages("nortest")#test for normality - e.g. Anderson-Darling

install.packages("car") # vif
library(Matrix)
install.packages("reshape")
install.packages("corrplot")
install.packages("tidyverse")


