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Learning material for this module:

» James et al (2013): An Introduction to Statistical Learning.
Chapter 2.2.3, 4.

» Classnotes Part A: 29.01.2018 and

» Classnotes Part B: 31.01.2018.

Move to:

» Part A: Introduction to classification, and modelling class
densities

» Part B: Modelling posterior probabilites, ROC/AUC and
comparions

» Recommended exercises

» Further reading

» Packages to install before knitting this R Markdown file


https://www.math.ntnu.no/emner/TMA4268/2018v/notes/TMA4268ClassnotesM4L1.pdf
https://www.math.ntnu.no/emner/TMA4268/2018v/notes/TMA4268ClassnotesM4L2.pdf

Topics in this module

Part A: Introduction to classification, and modelling class
densities

Aim of this module

What is classification and what is discrimination?
Loss function and the Bayes classifier

Modelling class densities

vV vyYyYyywy

» Linear discriminant analysis
» Quadratic discriminant analysis
» Naive Bayes (optional)

v

Modelling posterior probabilities
» KNN-classifier



Part B: Modelling posterior probabilites, ROC/AUC and
comparisions

» Modelling posterior probabilities (cont.)

» Linear regression for classification problems
> Logistic regression

» Sensitivity, specificity, ROC and AUC
» Comparisons
» Extensions

Recommended exercises

Further reading

Packages to install before knitting this R Markdown file



Part A

What will you learn?

vV VvV VY VvV VvV VY VY

What is classification and discrimination?

What is the Bayes classifier and the Bayes risk?

What is the sampling paradigm and what is modelled then?
Linear discriminant analysis: model, method, results.
Quadratic discriminant analysis: model, method, results.
Naive Bayes - when and why?

That is the diagnostic paradigm and what is modelled then?
KNN - majority vote or estimate posterior class probability?



Example: Which type of iris species?
The iris flower data set was introduced by the British statistician
and biologist Ronald Fisher in 1936.

» Three plant species {setosa, virginica, versicolor} (50
observation of each), and

» four features: Sepal.Length, Sepal.Width, Petal.Length
and Petal.Width.

Image taken from http://blog.kaggle.com/2015/04/22/
scikit-learn-video-3-machine-learning-first-steps-with-the-iris-dataset /


http://blog.kaggle.com/2015/04/22/scikit-learn-video-3-machine-learning-first-steps-with-the-iris-dataset/
http://blog.kaggle.com/2015/04/22/scikit-learn-video-3-machine-learning-first-steps-with-the-iris-dataset/

Discrimination and classification

» Discrimination is concerned with the description and the
separation of the classes and

» classification with the allocation and the assignment of
observations to predefined classes

» The two tasks are closely related and often overlap.

Suppose we have a qualititative response value that can be a
member in one of K classes C = {1, ¢, ..., ¢k, ..., ck }. Further,
suppose these elements are numbered 1,2, ..., K.

In classification we build a function f(X) that takes a vector of input
variables X and predicts its class membership, such that Y € C.

We would also assess the uncertainty in this classification.
Sometimes the role of the different predictors may be of main
interest. Often we are interested in estimating the probability that
X belongs to a class rather than the classification.

In discrimination we might also focus on describing the class
boundaries using discriminant functions.



Set-up

Training set: observations (independent pairs)
{(x1,¥1), -, (Xn, ¥n) } Where the response variable Y is qualitative
and labelled 1,2, ..., K.

The training set is used to construct the classification rule (or
similar).

Test set: observations (independent pairs), same format as the
training set.

The test set is used to evaluate the classification rule.

Loss function:: The misclassifications are given the loss 1 and the
correct classifications loss 0 - this is called 0/I-loss. (Quadratic loss
is not used for classification.)

But, what if the cost of misclassification is different for the classes?
In a more general set-up we could also take that into account. Read
more about this: Decision theoretic framework (sample space,

action space, loss function, risk function, Bayes risk, cost function).



Bayes classifier

Assume that we know or can estimate the probability that a new
observation xg belongs to class k:

pk(x0) =Pr(Y =kl X =x), k=1,2,..K.

This is the probability that Y = k given the observation xp. The
Bayes classifier assigns an observation to the most likely class, given
its predictor values.

It can be proven that the Bayes classifier is the classifier minimizing
the expected 0/1-loss. This classifier is also called the maximum
posterior probability (MAP) classifier.



The Bayes classifier

> has the smallest test error rate.

» However, we do not know the conditional distribution of Y
given X for real data. Computing the Bayes classifier is thus
impossible for real situations.

» The class boundaries using the Bayes classifier is called the
Bayes decision boundary.

» The error rate at X = xp is 1 — maxPr(Y =/ | X = xo).

» The overall Bayes error rate therefore is given as

1 —E(maxPr(Y =/ | X))

where the expectation is over X.
» The Bayes error rate is comparable to the irreducible error in
the regression setting - we can't go lower!



Synthetic example: what is the Bayes error?

Suppose we have observations coming from two classes: {green,
orange}, where

Xgreen ~ N'(—2,1.5%) and Xorange ~ N(2,1.5%)

and that the probability of observing each class is equal.

v

Where is the Bayes decision boundary here?

How can we calculate the Bayes error rate (intuitively- see the
graph)?

What would you estimate the Bayes error rate to be?

What if someone constructs a classifier and it has a lower error
rate than the Bayes error rate - is this possible?

v

vy
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Bayes error: round(0.5*2*pnorm(0,mean=2,sd=1.5),2)=0.09



Bayes theorem - for discrimination and classification

Bayes theorem

Pr(Y:k\X:x):Pr(X:XOY:k)

Pr(X = x)
_ Pr(X=x|Y = k)Pr(Y = k)
Pr(X = x)
_ TI'kfk(X)
ZIK:I mifi(x)

Here fi(x) = Pr(X = x|Y = k) is the density for X in class k and
7k = Pr(Y = k) is the prior probability for class k.



Bayes decision rule - two paradigms

The most popular approach to classication is to use the Bayes
decision rule with the 0/1 loss function= classify to the class with
the largest P(Y = k | X = xp).

Two approaches:

» The diagnostic paradigm: We focus on directly estimating
the posterior distribution for the classes Pr(Y = k | X = x).

» The sampling paradigm: There focus is on estimating the
prior probabilities 7, for the classes and the class conditional
distributions fx(x). We classify to the class with the maximal
product 7 fi(x).

We first look at the sampling paradigm - and then we need to model
the pdf for each class. Popular: the multivariate normal distribution!



Univariate normal class distributions - the role of the prior

Suppose (again) we have observations coming from two classes:
{green, orange}, where

_ygreen ~ N(_2, 152) and yorange ~ N(2, 152)

In the figure below we have specified the prior probabilities to be
equal, m; = m = 0.5 and have plotted 7, fx(x) for the two classes.

The decision boundary is where the point of intersection of the two
lines is, because here 71 f1(x) = maf2(x). Thus all points to left of
the decision boundary will be classified as green and similarly, all
points to the right of the decision boundary will be classified as
orange.






We now specify different priors, such that m3 = 0.3 and m, = 0.7.
We see that this has affected the decision boundary, which now has
shifted to the left.

(%)

0.20- m=0.3 - =07




Linear Discriminant Analysis (LDA) (p=1)

Using Linear discriminant analysis we assume the class conditional
distributions are normal (Gaussian).

The univariate normal pdf

f(x) = 1 e—%(xf.“f

2o

has parameters 1 (mean) and o (standard deviation).

Assume that we observe K classes, where each class conditional
distribution is normal, where the classes have mean puy and standard
deviation oy:

With LDA we assume that all of the classes have the same standard
deviation oy = 0.



We can insert the expression for each class distribution into Bayes
formula to obtain the posterior probability
pk(x) = Pr(Y = k| X = x):

1 e—%(xjk)z

 Pr(X=x|Y =k)Pr(Y =k) Tk
N Pr(X = x)

2o

Pi(x)

= = 5
Zﬁ:lﬂ/ﬁe 2( o )

Our rule is to classify to the class for which pg(x) is largest. It can
be shown that this is equivalent to assigning x to the class with the
largest discriminant score 6, (x):

2
. Mk M
Ok(x) = x- PRy i log(k).
This decision boundaries between the classes are linear in x.

Q: So, what do we need to use this result in practice?



Parameter estimators

In real life situations we will not know the prior probabilities, the
class mean or standard deviation=need parameter estimators.

» Prior probability for class k is (often) estimated by taking the
fraction of observations ny (out of n) coming from class k:
ANk
Tk — s

» The mean value for class k is simply the sample mean of all

observations from class k:

» The standard deviation: sample standard deviation across all
classes:

5 =

0. estimated standard deviation of all observations from class



How would the estimation affect our misclassification rate?

If uy1 = =2, up =2, 0 = 1.5, m; = m» = 0.5 we found that the class
boundary is at 0 and the Bayes error is
round (2*0.5*pnorm(0,2,1.5))=0.09.

But, in a real life situation

> we estimate the class boundary
» and we do not know the true distribution for the classes.

How can we then estimate the goodness of our estimator?



1. Use the training set to estimate parameters and class boundary:
2. Use the test set to estimate misclassification rate.

n=1000;pil=pi2=0.5;mul=-2;mu2=2;sigma=1.5;set.seed(1)
nitrain=rbinom(1l,n,pil) ;n2train=n-nltrain
nitest=rbinom(1l,n,pil) ;n2test=n-nltest
trainl=rnorm(nltrain,mul,sigma) ;train2=rnorm(n2train,mu2,sigma)
testl=rnorm(nitest,mul,sigma) ;test2=rnorm(n2test,mu2,sigma)
sigma2.1=var(trainl) ;sigma2.2=var(train2)
estsigma2=((nitrain-1)+*sigma2.1+(n2train-1)*sigma2.2)/(n-2)

rule=0.5%(mean(trainl)+mean(train2))+
estsigma2* (log(n2train/mn)-log(nltrain/n))/(mean(traini)-mean(train2))

c((sum(traini>rule)+sum(train2<rule))/n, (sum(testi>rule)-+sum(test2<rul

## [1] 0.105 0.115



Training error rate

the proportion of mistakes that are made if we apply classifier f to
the training observations, i.e. §; = f(x;).

1 N
- Z I(yi # i)
n“
i=1
Here | is the indicator function (to give our 0/1 loss) which is
defined as:
lifa=2a
[(a=23)=
( ) {0 else

The indicator function counts the number of times our model has
made a wrong classification. The training error rate is the fraction
of misclassifications made on our training set.

A very low training error rate may imply overfitting.



Test error rate

Here the fraction of misclassifications is calculated when our model
is applied on a test set. From what we have learned about
regression we can deduct that this gives a better indication of the
true performance of the classifier (than the traning error).

Ave(/(yo — 570))
where the average is over all the test observations (xg, yo)-

We assume that a good classifier is a classifier that has a fow test
error.



The confusion matrix

The confusion matrix is a table that can show the performance of
classifier, given that the true values are known.

We can make a confusion matrix from the training or test set, but
will in most cases do so for the test set only.

The rows represent the true classes, while the columns represent the
predicted classes. Inside the table we have counts (just labelled
“correct” and “wrong” below - but should be numbers). The sum of
the diagonal is the total number of correct classifications. The sum
of all elements off the diagonal is the total number of
misclassifications.

Predicted 1 Predicted 2 ... Predicted K
True 1 correct wrong ... wrong
True 2 wrong correct ... wrong

True K wrong wrong ... correct




The confusion matrix can be obtained in R by using the table
function with the predicted classes and the true classes need to be
given as function arguments.

We will soon come back to the special case of two classes - where
we may think of this as “-" (non disease) and “+" (disease).



LDA when p>1

Linear discriminant analysis can be generalized to situations when
p > 1 covariates are used. The decision boundaries are still linear.

The multivariate normal distribution function:
1

00 = Gymymargie @250~ 1) E e )

This gives the following expression for the discriminant function:

_ 1 _
() =xTE py — EVJZZ L + log

Compulsory Exercise 1, Problem 3: you are asked to derive this
expression for K=2!



Estimators for p>1:

» Prior probability for class k (unchanged from p=1): 7, = “«.
» The mean value for class k is simply the sample mean of all

observations from class k (but now these are vectors):

» The covariance matrices for each class:

1 A N
_ Z (Xi = B ) (Xi = Hk)T
Nk 1 iryi=k

£, -

» Pooled version:

A Knk—]_ A
3 = 3 2
k;ln—K k

Optional: Proof that the estimator 3, is unbiased for each class
(from TMA4267). Proof for pooled version missing for now.


https://www.math.ntnu.no/emner/TMA4268/2018v/notes/ProofMeanS.pdf
https://www.math.ntnu.no/emner/TMA4268/2018v/notes/ProofMeanS.pdf

Posterior probabilites

Sometimes the probability that an observation comes from a class k
is more interesting than the actual classification itself. These class
probabilities can be estimated from the priors and class conditional
distributions, or from the discriminant functions:

A L 1 ~ T L N
N fk s eXp(—3(x — ) TE T(x— f1y))
Pr(Y = k| X =x) = (2m)P/2E[1/2 5 : 0
I i e 0P (= ) TE T (x— )

eék (X)

- Z;il eSI(X)



Quadratic Discriminant Analysis (QDA)

In quadratic discriminant analysis we assume that the distributions
of the classes is Gaussian, but with covariance matrix X, for each
class.

The discriminant functions are now given by:

1 _ 1
Ok(x) = =5 (x = p) T (x = k) = 5 log || + log 7k

1 _ _ 1 _ 1
= —§XT2k 1y —i—xTZk L — EukTZk L — 5 log |X k| + log 7.

These decision boundaries are quadratic functions of x.



LDA vs QDA

In QDA we are allowed for the covariance matrices to be different
for the classes, but for LDA they are assumed to be the same, so
QDA is more flexible than LDA.

Q:
» But, if the covariance matrices in theory are equal - will they

not be estimated equal?
» Should we not always prefer QDA to LDA?



A:
Bias-variance trade-off:
If the assumption of equal covariance matrices
» is wrong, then LDA may suffer from high bias for the
parameter estimators.
> is correct, then QDA is better off. But, for small sample sizes

the covariance matrices might be poorly estimated (high
variance of estimators).

If the number of covariates is high:

» then QDA requires estimating K * p * (p + 1)/2 parameters,
» while LDA only requires p x (p + 1)/2.

Thus, LDA is less flexible than QDA and might therefore have much
less variance.



Naive Bayes - when we have many covariates (optional)

In Naive Bayes (ldiot's Bayes) we assume that each class density is
the product of marginal densities - i.e. inputs are conditionally
independent in each class.

fu(x) = 1:[ fii (%)

This is generally not true, but it simplifies the estimation
dramatically.

The original naive Bayes used univariate normal marginal
distributions, but generalizations can be made.

Instead of estimating a full covariance matrix, only the diagonal
elements are estimated.

This method often produces good results, even though the joint pdf
is not the product of the marginal pdf. This might be because we
are not focussing on estimation of class pdfs, but class boundaries.



Example: Classification of iris plants

We will use sepal width and sepal length to build a

classificator, here 50 observations from each class available.

attach(iris)
library(class)
library (MASS)
library(ggplot2)
library (dplyr)

kable (head(iris))

Sepal.Length  Sepal. Width Petal.Length Petal.Width Species
5.1 3.5 14 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 14 0.2 setosa



irisO_plot

irisO_plot

Sepal.Length

= ggplot(iris, aes(x=Sepal.Width, y=Sepal.Lengtl

Canal \Width

color=Species))+geom_point (s

°
°
°
Species
® setosa
® versicolor
® virginica
.
° °
° °
° °
°
°
° ° o
.
°
°
35 40 45



Iris: LDA

testgrid = expand.grid(Sepal.Length
by=0.05), Sepal.Width
by=0.05))

iris_lda = lda(Species~Sepal.Length+Sepal.Width, data=iris

res = predict(object = iris_lda, newdata = testgrid)

Species_lda = res$class

postprobs=res$posterior

seq(min(iris[,1]-0.2
seq(min(iris[,2]-0.2.

iris_lda_df = bind_rows(mutate(testgrid, Species_lda))
iris_lda_df$Species_lda = as.factor(iris_lda_df$Species_1d:

irislda_plot = irisO_plot + geom_point(aes(x = Sepal.Width
colour=Species_1lda), data=iris,
irislda_plot




Iris;: QDA

iris_qda = qda(Species~Sepal.Length + Sepal.Width, data=ir:
Species_qda = predict(object = iris_qda, newdata = testgri

iris_qda_df = bind_rows(mutate(testgrid, Species_qda))
iris_qda_df$Species_qda = as.factor(iris_qda_df$Species_qd:

gridprobs=
irisqda_plot = irisO_plot + geom_point(aes(x = Sepal.Width

colour=Species_qda), data=iris
irisqda_plot




Iris: compare LDA and QDA

We now want to compare the predictive performance of our two
classifiers. We do this by dividing the original iris data set,
randomly, into train and test samples of equal size:

set.seed (1)
train = sample(1:150, 75)

iris_train = iris[train, ]
iris_test = iris[-train, ]

iris_1da2 = lda(Species~Sepal.Length + Sepal.Width,
data=iris_train,
prior=c(1,1,1)/3)



# Training error

table(predict(iris_lda2, newdata=iris_train)$class,
iris_train$Species)

# Test error

iris_lda2_predict = predict(iris_lda2, newdata=iris_test)

table(iris_lda2_predict$class, iris$Species[-train])

##

## setosa versicolor virginica
##  setosa 25 0 0
##  versicolor 1 21 7
##  virginica 0 7 14
##

#i# setosa versicolor virginica
##  setosa 24 0 0
##  versicolor 0 13 6

##  virginica 0 9 23



The LDA classifier has a training error rate of 15/75, that is 20 %.

When tested on a new set it correctly classified 244+13+23 times

and misclassified 15 times. This gives a misclassification rate of
15

Test error pa = 75 =0.2.

Using a different division into training and test set will give (small)
changes to these numbers.



Iris: training and test error for QDA

iris_qda2 = qda(Species~Sepal.Length + Sepal.Width, data=i:
prior=c(1,1,1)/3)

Important: use the same division into training and test set for
methods we want to compare.



# Training error

table(predict(iris_qda2, newdata=iris_train)$class, iris_t:
# Test error

iris_qda2_predict = predict(iris_qda2, newdata=iris_test)
table(iris_qda2_predict$class, iris$Species[-train])

##

#i#t setosa versicolor virginica
##  setosa 26 0 0
##  versicolor 0 22 6
##  virginica 0 6 15
##

#Hit setosa versicolor virginica
##  setosa 24 0 0
##  versicolor 0 14 10

##  virginica 0 8 19



The QDA classifier has a training error rate of 16%. When tested
on a new set, the misclassification error rate was
18

Test =—=.24
€st errorqQpa 75

The LDA classifier has given the smallest test error for classifying
iris plants based on sepal width and sepal length for our test set and
should be preferred in this case.

1. Would another division of the data into training and test set
give the same conclusion (that LDA is better than QDA for
this data set)? (A: Not necessarily, but probably.)

We will look into other choice than dividing into one training and
one test set in Module 5 (crossvalidation).

2. What about the other two covariates? Would adding them to
the model (4 covariates) give a better classification rule? (A:
Probably. Try if you want.)



Fishers idea (Optional)
In 1936 R. A. Fisher developed LDA.

» His aim was to find a linear combination of the explanatory
variables which maximized the ratio of its between class to
within class variance.

> In this way the observations are transformed so that they are
separated as much as possible.

» His approach has the advantage that it is suited for visual
inspection and graphical description , it “separates” the
populations.

Let the between-class variance be denoted
B=YM (u, —n)(p, — )7, where u,, denotes the mean of
class wp, and @ the overall mean.

The within-class variance is assumed equal for all classes and is
denoted X (X is assumed to have full rank).



The linear combination /7 X that maximize I” BI/I" X1 under the
constraint that /7 X/ = 1 is found to be the scaled eigenvectors of
¥ !B corresponding to the nonzero eigenvalues of £"1B. The
eigenvector corresponding to the largest eigenvalue defines the first
discriminant I{ X. The second linear discriminant 1] X is
constructed from the eigenvector corresponding to the second
largest eigenvalue and so on. (We also have Cov(IjTX, I’X)=0
for i # j and Var(IjTX) =1.)



The number of linear discriminants equals the number of nonzero
eigenvalues. Observations are assigned to the class of the nearest
(Euclidean distance) class mean in the discriminant space.

This equals classification to the nearest Mahalanobis distance
population mean in the input space. Again, the parameters u; and
2 and the between-class variance B are usually unavailable.
Replacing the parameters by estimates from the training set leads to
Fisher's sample linear discriminants.



Bayes decision rule - over to diagnostic paradigm

Remember:

» The diagnostic paradigm: We focus on directly estimating
the posterior distribution for the classes Pr(Y = k | X = x).

» The sampling paradigm: There focus is on estimating the
prior probabilities for the classes and the class conditional
distributions. We classify to the class with the maximal
product 7 fi(x).

Now we move to the diagnostic paradigm and the K-nearest
neighbor classifier.

The K-nearest neighbour classifier estimates Pr(Y = k | X = x)
and classifies a new observation based on this estimated probability



Synthetic example for KNN classification

Consider a two-class example, and equal class prior probabilites.

A new observation xg will be classified to A if
Pr(Y = A|X = x0) > 0.5 and to class B otherwise.

» The figure below shows a plot of 100 observations from two
classes A (red dots) and B (turquoise dots),

» simulated from a bivariate normal distribution with mean
vectors jia = (1,1)7 and g = (3,3)7 and a covariance matrix

20

02)

» We want to find a rule to classify a new observation to class A
or B.

ta=2p=



X1

class
oA
es



Remark: since the truth is known here we can calculate the Bayes
boundary and the Bayes error.

Since we have bivariate normal class distributions with common
covariance matrix, the optimal boundary is given by LDA. The
boundary will be at 04(x) = d5(x), where

Sa(x) =xTZ p, — %uz\-z_luA + log wa, and for dg(x) with pg.

_ 1 _ _ 1 _
x ¥ 1IJJA—§M£Z "patlogma =x"X IUB_EUJEZ 'pp+logma

_ 1 _ 1 _
X" (pa—pg) =5 HAT pat g T pptlogma—logms =0
Inserting numerical values gives: —x; — xo + 4 = 0, and boundary
Xo = 4 — X1.

mulA=matrix(c(1,1) ,ncol=1)
muB=matrix(c(3,3),ncol=1)
sigmainv=diag(2)/2
siomainv’*% (muA-muB)



K-nearest neighbour classifier

(warning: K is not the number of classes, but neighbours. ..)

The K-nearest neighbour classifier (KNN) works in the following
way:

» Given a new observation xg it searches for the K points in our
training data that are closest to it.

» These points make up the neighborhood of xp, Ng.

» The point xp is classified by taking a majority vote of the
neighbors.

> This means that KNN estimate the posterior class probability
as:

Pr(Y =jIX = x) = Z/

IGNo



Synthetic data for KNN - continued

» Assume we have a new observation Xy = (xo1, x02) " which we
want to classify as belonging to the class A or B.

» To illustrate this problem we fit the K-nearest neighbor
classifier to our simulated data set with K =1,3,10 and 150
and observe what happens.

In our plots, the small colored dots show the predicted classes for an
evenly-spaced grid. The lines show the decision boundaries. If our
new observation falls into the region within the red decision
boundary, it will be classified as A. If it falls into the region within
the turqouise decision boundary, it will be classified as B.



class

class

class
A
- B

class
A
- B



We see that the choice of K has a big influence on the result of our
classification. By choosing K = 1 the classification is made to the
same class as the one nearest neighbor. When K = 3 a majority
vote is taken among the three nearest neighbors, and so on. We see
that as K gets very large, the decision boundary tends towards a
straight line (which is the Bayes boundary in this set-up).

To find the optimal value of K the typical procedure is to try
different values of K and then test the predictive power of the
different classifiers, for example by cross-validation, which will be
discussed in Module 5.

We see that after trying all choices for K between 1 and 50, we see
that a few choices of K gave the smallest misclassification error
rate, estimating by leave-one out cross-validation (Leave-one-out
cross-validation will be discussed in Module 5). The smallest error
rate is equal to 0.165. This means that the classifier makes a
misclassification 16.5% of the time and a correct classification
83.5% of the time.



Misclassification error

0.275-

0.250 -

0.225-

0.200-

0.175-

Error rate for KNN with different choices of K

20

30
Number of neighbors K

40

50



This above example showed the bias-variance trade-off in a
classification setting. Choosing a value of K amounts to choosing
the correct level of flexibility of the classifier. This again is critical
to the success of the classifier. A too low value of K will give a very
flexible classifier (with high variance and low bias) which will fit the
training set too well (it will overfit) and make poor predictions for
new observations. Choosing a high value for K makes the classifier
loose its flexibility and the classifier will have low variance but high
bias.



The curse of dimensionality

The nearest neighbor classifier can be quite good if the number of
predictor p is small and the number of observations n is large. We
need enough close neighbors to make a good classification.

The effectiveness of the KNN classifier falls quickly when the
dimension of the preditor space is high. This is because the nearest
neighbors tend to be far away in high dimensions and the method
no longer is local. This is referred to as the curse of dimensionality.






Part B: Modelling posterior probabilites, ROC/AUC and
comparisons

What to remember from Part A?

Aim: Discrimination and classification

Today - data from:

» Default: will a new customer default or not based on his/her
status (student or not), balance and income?

> South African heart disease data set: classify to coronary heart
disease or not, based on 9 covariates.



Notation

Training set: observations (independent pairs)
{(x1,¥1), ---, (Xn, ¥n)} where the response variable Y is qualitative
and labelled 1,2, ..., K.

The training set is used to construct the classification rule (by
estimating parameters in class densities or posterior probabilites).

Test set: observations (independent pairs), same format as the
training set.

The test set is used to evaluate the classification rule.

Loss function:: The misclassifications are given the loss 1 and the
correct classifications loss 0 - this is called 0/1-/oss.



Bayes classifier

» Assume that we know or can estimate the probability that a
new observation xp belongs to class k:

pk(Xo) = Pr(Y = k|X = Xo), k= ].,27 ..K.

This is the probability that Y = k given the observation xp.
The Bayes classifier assigns an observation to the most likely
class, given its predictor values.



Two paradigms

» The sampling paradigm: There focus is on estimating the
prior probabilities for the classes and the class conditional
distributions. We classify to the class with the maximal
product 7, fi(x). We have looked at LDA (multivariate normal
densities with equal covariance matrices) and QDA (ditto, but
each class has it's own covariance matrix).

» The diagnostic paradigm: We focus on directly estimating
the posterior distribution for the classes Pr(Y = k | X = x).
We have looked at the KNN-classifier in Part A.

Focus now is on diagnostic paradigm = we estimates
Pr(Y = k| X = x) and classify a new observation based on this
estimated probability.

But first, what about linear regression Y on x to make a
classification?



Using linear regression on a classification problem?

Example 1: This example uses the Default data set from the
ISLR package. Suppose we want to predict if a new customer will
default or not based on his/her balance or income. We try to
model this using a simple linear regression and a binary response
variable:

3 {1 if default = "Yes"

0 if default = "No"

It would be tempting to do the classification according to the rule:
classify as yes if Y > 0.5, else as no.



default student balance income

No No 729.5265 44361.625
No Yes 817.1804 12106.135
No No 1073.5492 31767.139
No No 529.2506 35704.494
No No 785.6559  38463.496

No Yes 019.5885  7491.559
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The above plots shows default as a function of balance and
default as a function of income with corresponding fitted linear
regression lines (red for x=balance and orange for x=income).
Notice that linear regression in this case produces predictions that
are smaller than zero or bigger than one, this it is hard to interpret
these as probabilities.

It is still possible to use linear regression for classification problems
with two classes. It turns out that - if the conditional class densities
are (multivariate) normal with equal covariance matrices then this
linear regression (with 0 and 1 response) will in fact give the same
classification as LDA. See e.g. Ripley (1995), Section 3.2.



Using linear regression on a classification problem?

Example 2: Suppose we want to classify a film. We have defined
three classes: { drama, comedy, science-fiction}. We could try to
model this using linear regression and the following coding:

1 if drama,
Y =<{2 if comedy,
3 if science-fiction.

However, this coding implies an ordering of the variables and that
the difference between the classes is equal. There is in general no
natural way to code a quantitative variable with more than two
classes such that it can be used with linear regression.



So, using linear regression to solve a classification problem seems
hard with more than two classes - as done here. But, it turns out
that using a dummy variable conding for the classes, it is possible to
produce the same result as LDA (also with many classes). This is
the starting point for flexible discriminant analysis.

Linear regression to do classification is not a bad idea, but requires
some extra work (multivariate Y due to the dummy variable coding).
Therefore we leave linear regression for now.

For two classes binary regression, in particular logistic regression, is
very popular - and is up next.



Logistic regression - two classes

The model

Assume that Y is coded (C = {1,0} or {success, failure}), and we
focus on success. We may assume that Y; follows a Bernoulli
distribution with probability of success p;.

i =

] 1 with probability p;,
0 with probability 1 — p;.

In logistic regression we link together our covariates x; with this
probability p; using a logistic function.



In the case of one covariate, the logistic function has the form:

ebo+Bixi
Pi= T eBothin
This function is S-shaped, and ranges between 0 and 1 (so the p; is
between 0 and 1). The parameter /31 determines the rate of increase
or decrease of the S-shaped curve, and the sign indicates whether
the curve ascends or descends.

Q: Where did that come from? There are other transforms that
takes a linear predictor and transforms into the range 0 to 1.



Logistic regression ensures that the estimated probabilities lie in the
interval between 0 and 1. This is illustrated in the figure below.
The blue line shows the fitted line when performing logistic
regression on default as a function of balance.

The parameters are estimated using the method of maximum
likelihood - we will look at that soon, but first we look at how to
interpret the estimated parameters.



Example estimated 3 and logistic curve
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Default data: here BAO = -10.65 and Bl 0.005.



Observe effect of intercept and slope term:

ePotPixi
pi = 1 + ePotBixi

Solid lines: By = 0 and (; is 0.8 (blue), 1 (red) and 2 (orange).
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The odds and the odds ratio

For the logistic regression it is hard to give a simple interpretation
regression coefficients 3, because an increase in x; by one unit does
not give the same increase (decrease) in the probability p; for all
values of x;. But, looking at odds - it is simpler to explain what the
(s mean.

For a probability p; the ratio lf"pl is called the odds.

If pj = % then the odds is 1, and if p; = % then the odds is % We
may make a table for probability vs. odds in R:

p 0.10 0.20 030 040 05 06 070 08 0.9
odds 0.11 025 043 067 10 15 233 4.0 9.0

Odds may be seen to be a better scale than probability to represent
chance, and is used in betting. In addition, odds are unbounded
above.



Why is the odds relevant?

(Since p is used for probability we use r for number of covariates
now.)

Let us assume that we have r covariates, and we use 7; (linear
predictor) to help with our notation.

ni = Bo + Pixin + Boxia + - + Brxir

__exp(mi)
"1+ exp(n;)
Pi
i=1
ni = In(3= p,-)
In( Pi ) = Bo + Bixi1 + Boxio + - -+ + Brxir

1—pi
i P(Y: = 1|x;
1 f pi :PEYI = ét:; = exp(fo) - exp(Brxi1) - exp(Brir)

We have a multiplicative model for the odds - which can help us to
interpret our fs.



So, what if we increase x;; to xj; + 17

If the covariate xj; increases by one unit (while all other covariates
are kept fixed) then the odds is multiplied by exp(/51):

PP((:,:":OI) ‘fi,-llill)) = exp(Po) - exp(B1(xi1 + 1)) exp(B2(xi2)) - - - exp(Brx

= exp(fo) - exp(B1xi1) exp(B1) exp(Baxi2) - - - exp( B>
. P(Y, =1 ‘ X,'1)
=PV =0 ) -exp(f1)

This means that if x;; increases by 1 then: if 51 < 0 we get a
decrease in the odds, if 81 = 0 no change, and if 51 > 0 we have an
increase. Here exp(f1) is easier to interpret than f;.



Default-example

Default as response and student, balance and income as covariates
Result:

P(Yi=1|xp1+1) P(Yi=1]|xn)
P(Y;=0)|x1+1) P(Y;=0]x1) exp(1)

What is done below? Explain what the effect of student gives.

colnames(Default)
fit=glm(default~student+balance+income,family="binomial",data=Default)
coef (fit)

round (exp(coef (fit)),3)

## [1] "default" "student" "balance" "income"

## (Intercept) studentYes balance income
## -1.086905e+01 -6.467758e-01 5.736505e-03 3.033450e-06
## (Intercept) studentYes balance income

## 0.000 0.524 1.006 1.000



Maximum Likelihood

We assume that pairs of covariates and responses {x;, y;} are
measured independently of each other. Given n such observation
pairs, the likelihood function of a logistic regression model can be
written as:

n n n

1(8) =TT 1i(8) =TT (v ) = T1(piY" (1~ pi)'

i=1 i=1 i=1

where 8 = (Bo, B1, B2, --.,3,) " enters into p;.

pi = exp(Bo + Bixi1 + -+ + BpXip)
" 1+ exp(Bo + Bixin + -+ Brxir)




The maximum likelihood estimates are found by maximizing the
likelihood, and since the log is a monotone transform (and
maximizing the log-likelihood will give the same result as
maximizing the likelihood) we usually work with the log-likelihood
(because this makes the maths easier).

In(L(B) j (y, log pi + (1 — y;) log(1 — Pi))

1

(y, log (1 f"p,) + log(1 — p;))

I
-

I
.MZ

Il
—

( i(Bo + Bixit + - - + Bpxip) — log(1 + eﬁﬁﬁlx"l*“'*ﬁpx’l’)



v

v vy

To maximize the log-likelihood function we find the p + 1
partial derivatives, and set equal til 0.

This gives us a set of p + 1 non-linear equations in the fSs.
This set of equations does not have a closed form solution.
These equations are therefore solved numerically. The
Newton-Raphson algorithm (or Fisher Scoring) is used.



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:

glm(formula = default ~ student + balance + income, family = "binomi

data = Default)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.4691 -0.1418 -0.0557 -0.0203 3.7383

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16
studentYes -6.468e-01 2.363e-01 -2.738 0.00619
balance 5.737e-03 2.319e-04 24.738 < 2e-16
income 3.033e-06 8.203e-06 0.370 0.71152
Signif. codes: O '**x' 0.001 '*x' 0.01 'x' 0.05 '

(Dispersion parameter for binomial family taken to

k%%

*kk

o1t 1

be 1)

Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1571.5 on 9996 degrees of freedom

AIC: 1579.5



Inference

We may construct confidence intervals and test hypotheses about
the s, with the aim to understand which covariate that contributes
to our posterior probabilites and classification.

This is done by assuming that each BAj is approximately normally
distributed with mean ; and variance Var(3;) (related to the

negative of the inverse of the expected Hessian of the loglikelihood
function).



The Akaike Information Criterion (AIC) for model selection

The AIC score is given by:
AIC =2 r—2-loglik,

where p is the number of model parameters. The loglik is the
maximized log-likelihood I(fi) and B is the maximum-likelihood
estimate of the parameter-vector 8 = (5o, 51, ..., ;). The role of
p is to penalize models with many parameters as a high number of
parameters may lead to overfitting.r The AIC value can be used to
choose between candidate logistic regression models, where the
model with the lowest AIC value is the one expected to give the
best fit.

More about the AIC in Module 6.



Predictions

» We fit a (simple) logistic regression model to our data set, and

> get parameter estimates Bo and 61

» We want to use this model to make a prediction when given a
new observation xg.

. eBO+BIXO
p(XO) N 1+ eBo+/§1Xo

This p(xp) is the estimated probability that the new observation xg
belongs to the class defined by Y = 1.

In the case of qualitative covariates, a dummy variable needs to be
introduced. This is done in a similar fashion as for linear regression.



Want to learn more (theory) about logistic regression?

In TMA4315 Generalized linear models we spent 3 weeks with
binary regression - mainly logistic regression. The focus there was
on all parts of the regression (not classification) with a
mathematical focus on estimation, inference, model fit.



Example: South African heart disease data set

In this example we use the SAhert data set from the
ElemStatLearn package. This is a retrospective sample of males in
a heart-disease high-risk region in South Africa. It consists of 462
observations on the 10 variables. All subjects are male in the age
range 15-64. There are 160 cases (individuals who have suffered
from a conorary heart disease) and 302 controls (individuals who
have not suffered from a conorary heart disease).



The response value (chd) and covariates

>

vV VvV VvYyVvyy

vVVvyYyYyywy

chd : conorary heart disease {yes, no} coded by the numbers
{1, 0}

sbp : systolic blood pressure

tobacco : cumulative tobacco (kg)

1d1 : low density lipoprotein cholesterol

adiposity : a numeric vector

famhist : family history of heart disease. Categorical variable
with two levels: {Absent, Present}.

typea : type-A behavior

obesity : a numerical value

alcohol : current alcohol consumption

age : age at onset

The goal is to identify important risk factors. We start by loading

and

looking at the data:



sbp  tobacco Idl  adiposity famhist typea obesity alcohol age chd
160 12.00 5.73 23.11  Present 49 25.30 97.20 52 1
144 0.01 441 28.61 Absent 55 28.87 206 63 1
118 0.08 3.48 32.28 Present 52 29.14 381 46 O
170 750 6.41 38.03 Present 51 31.99 2426 58 1
134 13.60 3.50 27.78  Present 60 25.99 5734 49 1
132 6.20 6.47 36.21 Present 62 30.77 1414 45 O




In order to investigate the data further, we use the ggpairs
function from the GGally library, to make scatter plots of the
covariates. The coloring is done according to the response variable,
where green represents a case Y = 1 and red represents a control

Y =0.
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We now fit a (multiple) logistic regression model using the glm
function and the full data set. In order to fit a logistic model, the
family argument must be set equal to ="binomial". The
summary function prints out the estimates of the coefficients, their
standard errors and z-values. As for a linear regression model, the
significant coefficients are indicated by stars where the significant
codes are included in the R outprint.



glm_heart = glm(chd~., data=heartds, family="binomial")
summary (glm_heart)

##

## Call:

## glm(formula = chd ~ ., family = "binomial", data = heartds)
##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.7781 -0.8213 -0.4387 0.8889 2.5435

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -6.1507209 1.3082600 -4.701 2.58e-06 *x*x*
## sbp 0.0065040 0.0057304 1.135 0.256374

## tobacco 0.0793764 0.0266028 2.984 0.002847 *x*
## 141 0.1739239 0.0596617 2.915 0.003555 *x*
## adiposity 0.0185866 0.0292894 0.635 0.525700

## famhistPresent 0.9253704 0.2278940 4.061 4.90e-05 #**x
## typea 0.0395950 0.0123202 3.214 0.001310 *x*
## obesity -0.0629099 0.0442477 -1.422 0.155095

## alcohol 0.0001217 0.0044832 0.027 0.978350

## age 0.0452253 0.0121298  3.728 0.000193 *x*x*

## ———



Estimated coeffs exp(estimated coeffs)

(Intercept) -6.151 0.002
sbp 0.007 1.007
tobacco 0.079 1.083
dI 0.174 1.190
adiposity 0.019 1.019
famhistPresent 0.925 2.523
typea 0.040 1.040
obesity -0.063 0.939
alcohol 0.000 1.000
age 0.045 1.046

How did we find the coefficients and what does the second column
mean?



Multinomial logistic regression

The logistic regression model can be generalized for a response
variable with more than two classes. Assume we have a response
variable with K possible classes and r covariates. The probability
that Y belongs to class k, given an observation vector

x = (x1,x2,...,%)" is (usually) modelled by:

Pr(Y = kx)

n—m — ~
"Pr(Y = K|x)

= Bok + Bikx1 + -+ + Brixr.

The multinomial logistic regression model is implemented in the
glmnet package in R.

We will not discuss this further since LDA is more popular (than
logistic regression) in the multi-class setting. And, as we shall see
soon - they are not that different.



Confusion - sensitivity, specificity

In a two class problem - assume the classes are labelled “-" (non
disease) and “+" (disease). In a population setting we define the
following event and associated number of observations.

Predicted - Predicted + Total
True -  True Negative TN  False Positive FP N
True + False Negative FN  True Positive TP P
Total N* p*




Sensitivity is the proportion of correctly classified positive
: . #True Positive _ TP
observations: #Condition Positive — P -

Specificity is the proportion of correctly classified negative
- . #True Negative _ TN
observations: #Condition Negative = N -

We would like that a classification rule (or a diagnostic test) have
both a high sensitivity and a high specificity.




Other useful quantities:

Name Definition  Synonyms
False positive rate FP/N Type | error, 1-specificity
True positive rate TP/P 1-Type Il error, power, set

Positive predictive value (PPV)  TP/P* Precision, 1-false discover
Negative predictive value (NPV) TN/N*

(These two tables are tables 4.6 and 4.7 in our ISL-textbook.)



Example Continued: South African heart disease

We want to evaluate our multiple logistic model for the SAheart
data set. In order to investigate the training error and the test error,
we divide the original data set, randomly, into two samples of equal
size.

set.seed(20)

train_ID = sample(l:nrow(heartds), nrow(heartds)/2)
train_SA = heartds([train_ID, ]

test_SA = heartds[-train_ID, ]



We now fit a logistic regression model, using the training set only:

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
glm(formula = chd ~ ., family = "binomial", data = train_SA)
Deviance Residuals:

Min 1Q Median 3Q Max
-1.9715 -0.7993 -0.4098 0.8780 2.2163
Coefficients:

Estimate Std. Error z value Pr(>|zl)

(Intercept) -7.425033 1.919850 -3.868 0.00011 *x*x*
sbp 0.013101 0.008822 1.485 0.13755
tobacco 0.088854 0.037542 2.367 0.01794 =*
141 0.160858 0.082623 1.947 0.05155 .
adiposity 0.010770 0.038713 0.278 0.78086
famhistPresent 1.039578 0.335824 3.096 0.00196 **
typea 0.042366 0.018254 2.321 0.02029 =*
obesity -0.044412 0.058290 -0.762 0.44611
alcohol -0.004820 0.006672 -0.722 0.47000
age 0.045777 0.016873 2.713 0.00667 *x*
Signif. codes: O '*x*x' 0.001 'x*x' 0.01 'x' 0.05 '.' 0.1 ' '

1



By comparing this outprint with the corresponding outprint above,
we see that the estimated coefficients slightly differ. This is because
a different data set has been used to fit the model. We previously

used the full data set.

We want to estimate the probability of a chd event for the
observations in the test set. To do this we can insert the estimated
coefficient into the logistic equation, remembering that famhist is
a categorical covariate, modeled by a dummy variable:

1, if Present,
X R _=
famhist =10, if Absent.

The estimated probability of Y =1 if famhist = "Present",

given a vector X of covariate observations is:
o—7-43+0.01x5pp+0.09x10bacco+-0-16Xidn+0.01 Xadiposity +1.04- 1+-0.04xtypea—0.04x

p(X) = 1 + e 7-4370.00x5,+0.09%0bacco -0-16Xidh +0-0 Lxaiposity + 1.04-1F-0.04xeypea— 0.

Whereas, if famhist = "Absent" the estimated probability is:
o~ 7+4340.01x5bp+0.09t0bacco+0-16Xian +0-0Lxadiposity +1.04-0-+0.04xiypea —0.04x

p(X) = 1 + e 7-43+0.01xp+0.09%tobaceo 0. 16xidn+0.01 Xpaiposity + 1.04-0+0.04x¢ypea 0.1



The predict function does these calculations for us. When

specifying type="response" the function returns the probabilities
for Y = 1.

probs_SA = predict(glm_SA, newdata=test_SA, type="response!

From these probabilities we can obtain classifications, by specifying
a threshold value. We have here chosen a threshold value of 0.5. By
using the ifelse function we specify that all probabilities larger
than 0.5 are to be classified as 1, while the remaining probabilities
are to be classified as 0.



pred_SA = ifelse(probs_SA > 0.5, 1, 0)

predictions_SA = data.frame(probs_SA, pred_SA, test_SA[,10:
colnames(predictions_SA) = c("Estim. prob. of Y=1","Predic
kable (head(predictions_SA))

Estim. prob. of Y=1 Predicted class True class

2 0.3547764 0 1
4 0.7732669 1 1
5 0.6889170 1 1
6 0.6404794 1 0
10 0.6507839 1 1
11 0.7241305 1 1




We can now use the confusion matrix to count the number of
misclassifications. The below confusion matrix is calculated using
the test set and comparing the predicted classes with the true
classes.

table(pred_SA, SAheart[-train_ID,10])

##

## pred_SA O 1
## 0 130 37
#i# 1 24 40

The logistic model has correctly classified 130440 times, and
misclassified 24437 times. The misclassification test error rate is

thus: 24 4 37
T = —— ~0.264
est error 71 0.26



The training error can be calculated in a similar fashion, but now we
use the fitted model to make prediction for the training set.

SA_train_prob glm_SA$fitted.values

SA_train_pred = ifelse(SA_train_prob>0.5, 1, 0)
conf_train = table(SA_train_pred, SAheart[train_ID, 10])
misclas_train = (231-sum(diag(conf_train)))/231
misclas_train

## [1] 0.2510823

The train misclassification error rate is ~ 25.1%.



ROC curves

The receiver operating characteristics (ROC) curve gives a graphical
display of the sensitivity against specificity, as the threshold value
(cut-off on probability of success or disease) is moved over the range
of all possible values. An ideal classifier will give a ROC curve which
hugs the top left corner, while a straight line represents a classifier
with a random guess of the outcome.

The AUC score is the area under the AUC curve. It ranges between
the values 0 and 1, where a higher value indicates a better classifier.
The AUC score is useful for comparing the performance of different
classifiers, as all possible threshold values are taken into account.



Example Continued: South African heart disease

In order to see how our model performs for different threshold
values, we can plot a ROC curve:

ROC curve

0.50-

sensitivity

AUC = 0.7762

1.00 075 050 0.25
specificity



To check where in the plot we find the default cut-off on 0.5, we
need to calculate sensitivity and specificity for this cut-off:

res=table(pred_SA, SAheart[-train_ID,10])
sens=res[2,2] /sum(res[2,])
spec=res[1,1]/sum(res[1,])

sens

spec

## [1] 0.625
## [1] 0.7784431

Observe that the value 0.625 (on y-axis) and 0.7784431 (on x-axis)
is on our ROC curve.

The ROC-curve is made up of all possible cut-offs and their
associated sensitivity and specificity.



Which classification method is the best?

Advantages of discriminant analysis

» Discriminant analysis is more stable than logistic regression
when the classes are well-separated.

» Discriminant analysis is more stable than logistic regression if
the number of observations n is small and the distribution of
the predictors X is approximately (multivariate) normal.



Linearity

Assume a binary classification problem with one covariate. Recall
that logistic regression can be written:

p(x)

o8 (1 — p(x)

) = fo + P1x.

For LDA we have that py(x) is the probability that the observation
x belongs to class 0, while p;(x) =1 — po(x) is the probability that
it belongs to class 1.

Observe that this show that our class boundary is linear.

Compulsory Exercise 1, Problem 3a.



Pr(Y =0 X) 0 fo(x)
I = log — + log —~—~
Bh(Y—1X=x)  Em T%%00
o 2 1 2
— log 0 — - -
g T 202 (x = po)™ + 202 (x = p)
o
= log - — 53 (X% = 2xp0 + g — x* + 2xpm1 — 4
= | E—@(Mo—ﬂl)‘i‘?(ﬂo—ﬂl)x
=g + a1Xx

The two methods can thus be written in the same form (linear in
parameters and in x). The difference is in how the parameters
(w0, 1, Bo, S1) are estimated.



LDA vs logistic regression

» Logistic regression uses the diagnostic paradigm, and models
the posterior distribution P(Y = 1|x).

> Linear discriminant analysis models the class conditional
densities fx(x).

> The results are usually quite similar, but

» LDA is “more available” in the multi-class settting

» if the class conditional distributions are multivariate normal then
LDA (or QDA) is preferred

» if the class conditional distributions are far from multivariate
normal then logistic regression is preferred

» in medicine for two-class problems logistic regression is often
preferred (for interpretability) and (always) together with ROC
and AUC (for model comparsion).

and KNN?

» KNN is used when the class boundaries are non-linear.



Extensions for classifications

vV VvV VvYyVvVvyy

Module 5: how to use cross-validation in model evaluation and
model selection

(Module 6: model selection - but mainly regression)

Module 7: maybe a taste of nonlinear methods

Module 8: classification trees (binary splits for the covariates)
Module 9: support vector machines

Module 11: neural nets



Recommended Exercises
Theoretical exercises

Bank notes and LDA (with calculations by hand)

To distinguish between genuine and fake bank notes measurements
of length and diagonal of an image part of the bank notes have
been performed. For 1000 bank notes (500 of each of genuine and
false) this gave the following values for the mean and the covariance
matrix (using unbiased estimators), where the first value is the
length of the bank note.

Genuine bank notes:

o _ | 21497 | o [0.1502 0.0055
¢~ | 141.52 ¢ | 0.0055 0.1998

A

Fake bank notes:

_ [ 214.82 } and £, — [ 0.1240 0.0116 }

XF =1 12045 00116 03112



Further reading

» More on logistic regression from TMA4315 Generalized linear
models H2017: TMA4315M3: Binary regression
» Videoes on YouTube by the authors of ISL, Chapter 4


https://www.math.ntnu.no/emner/TMA4315/2017h/3BinReg.html
https://www.youtube.com/playlist?list=PL5-da3qGB5IC4vaDba5ClatUmFppXLAhE

R packages to install before knitting this R Markdown file

# packages to install before knitting this R Markdown file
# to knit the Rmd

install.packages("knitr")
install.packages("rmarkdown")

# nice tables in Rmd
install.packages("kableExtra")

# cool layout for the Rmd
install.packages("prettydoc") # alternative to github
#plotting

install.packages("ggplot2") # cool plotting
install.packages("ggpubr") # for many ggplots
install.packages("GGally") # for ggpairs
#datasets

install.packages("ElemStatLearn")
install.packages("ISLR")

#data manipulations

install.packages("dplyr")
install.packages("reshape")

# classificaton

install.packages("class")
install.packages("pROC")

# div statistics
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