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Learning material for this module:

I James et al (2013): An Introduction to Statistical Learning.
Chapter 2.2.3, 4.

I Classnotes Part A: 29.01.2018 and
I Classnotes Part B: 31.01.2018.

Move to:

I Part A: Introduction to classification, and modelling class
densities

I Part B: Modelling posterior probabilites, ROC/AUC and
comparions

I Recommended exercises
I Further reading
I Packages to install before knitting this R Markdown file

https://www.math.ntnu.no/emner/TMA4268/2018v/notes/TMA4268ClassnotesM4L1.pdf
https://www.math.ntnu.no/emner/TMA4268/2018v/notes/TMA4268ClassnotesM4L2.pdf


Topics in this module

Part A: Introduction to classification, and modelling class
densities

I Aim of this module
I What is classification and what is discrimination?
I Loss function and the Bayes classifier
I Modelling class densities

I Linear discriminant analysis
I Quadratic discriminant analysis
I Naive Bayes (optional)

I Modelling posterior probabilities
I KNN-classifier



Part B: Modelling posterior probabilites, ROC/AUC and
comparisions

I Modelling posterior probabilities (cont.)
I Linear regression for classification problems
I Logistic regression

I Sensitivity, specificity, ROC and AUC
I Comparisons
I Extensions

Recommended exercises

Further reading

Packages to install before knitting this R Markdown file



Part A

What will you learn?

I What is classification and discrimination?
I What is the Bayes classifier and the Bayes risk?
I What is the sampling paradigm and what is modelled then?
I Linear discriminant analysis: model, method, results.
I Quadratic discriminant analysis: model, method, results.
I Naive Bayes - when and why?
I That is the diagnostic paradigm and what is modelled then?
I KNN - majority vote or estimate posterior class probability?



Example: Which type of iris species?
The iris flower data set was introduced by the British statistician
and biologist Ronald Fisher in 1936.

I Three plant species {setosa, virginica, versicolor} (50
observation of each), and

I four features: Sepal.Length, Sepal.Width, Petal.Length
and Petal.Width.

Image taken from http://blog.kaggle.com/2015/04/22/
scikit-learn-video-3-machine-learning-first-steps-with-the-iris-dataset/

http://blog.kaggle.com/2015/04/22/scikit-learn-video-3-machine-learning-first-steps-with-the-iris-dataset/
http://blog.kaggle.com/2015/04/22/scikit-learn-video-3-machine-learning-first-steps-with-the-iris-dataset/


Discrimination and classification
I Discrimination is concerned with the description and the

separation of the classes and
I classification with the allocation and the assignment of

observations to predefined classes
I The two tasks are closely related and often overlap.

Suppose we have a qualititative response value that can be a
member in one of K classes C = {c1, c2, ..., ck , ..., cK}. Further,
suppose these elements are numbered 1, 2, ...,K .
In classification we build a function f (X ) that takes a vector of input
variables X and predicts its class membership, such that Y ∈ C.
We would also assess the uncertainty in this classification.
Sometimes the role of the different predictors may be of main
interest. Often we are interested in estimating the probability that
X belongs to a class rather than the classification.
In discrimination we might also focus on describing the class
boundaries using discriminant functions.



Set-up
Training set: observations (independent pairs)
{(x1, y1), ..., (xn, yn)} where the response variable Y is qualitative
and labelled 1, 2, ...,K .

The training set is used to construct the classification rule (or
similar).

Test set: observations (independent pairs), same format as the
training set.

The test set is used to evaluate the classification rule.

Loss function:: The misclassifications are given the loss 1 and the
correct classifications loss 0 - this is called 0/1-loss. (Quadratic loss
is not used for classification.)

But, what if the cost of misclassification is different for the classes?
In a more general set-up we could also take that into account. Read
more about this: Decision theoretic framework (sample space,
action space, loss function, risk function, Bayes risk, cost function).



Bayes classifier

Assume that we know or can estimate the probability that a new
observation x0 belongs to class k:

pk(x0) = Pr(Y = k|X = x0), k = 1, 2, ...K .

This is the probability that Y = k given the observation x0. The
Bayes classifier assigns an observation to the most likely class, given
its predictor values.

It can be proven that the Bayes classifier is the classifier minimizing
the expected 0/1-loss. This classifier is also called the maximum
posterior probability (MAP) classifier.



The Bayes classifier

I has the smallest test error rate.
I However, we do not know the conditional distribution of Y

given X for real data. Computing the Bayes classifier is thus
impossible for real situations.

I The class boundaries using the Bayes classifier is called the
Bayes decision boundary.

I The error rate at X = x0 is 1−maxPr(Y = j | X = x0).
I The overall Bayes error rate therefore is given as

1− E(maxPr(Y = j | X ))

where the expectation is over X .
I The Bayes error rate is comparable to the irreducible error in

the regression setting - we can’t go lower!



Synthetic example: what is the Bayes error?

Suppose we have observations coming from two classes: {green,
orange}, where

Xgreen ∼ N (−2, 1.52) and Xorange ∼ N (2, 1.52)

and that the probability of observing each class is equal.

I Where is the Bayes decision boundary here?
I How can we calculate the Bayes error rate (intuitively- see the

graph)?
I What would you estimate the Bayes error rate to be?
I What if someone constructs a classifier and it has a lower error

rate than the Bayes error rate - is this possible?
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Bayes error: round(0.5*2*pnorm(0,mean=2,sd=1.5),2)=0.09



Bayes theorem - for discrimination and classification

Bayes theorem

Pr(Y = k|X = x) = Pr(X = x ∩ Y = k)
Pr(X = x)

= Pr(X = x |Y = k)Pr(Y = k)
Pr(X = x)

= πk fk(x)∑K
l=1 πl fl (x)

Here fk(x) = Pr(X = x |Y = k) is the density for X in class k and
πk = Pr(Y = k) is the prior probability for class k.



Bayes decision rule - two paradigms

The most popular approach to classication is to use the Bayes
decision rule with the 0/1 loss function= classify to the class with
the largest P(Y = k | X = x0).

Two approaches:

I The diagnostic paradigm: We focus on directly estimating
the posterior distribution for the classes Pr(Y = k | X = x).

I The sampling paradigm: There focus is on estimating the
prior probabilities πk for the classes and the class conditional
distributions fk(x). We classify to the class with the maximal
product πk fk(x).

We first look at the sampling paradigm - and then we need to model
the pdf for each class. Popular: the multivariate normal distribution!



Univariate normal class distributions - the role of the prior

Suppose (again) we have observations coming from two classes:
{green, orange}, where

ygreen ∼ N (−2, 1.52) and yorange ∼ N (2, 1.52)

In the figure below we have specified the prior probabilities to be
equal, π1 = π2 = 0.5 and have plotted πk fk(x) for the two classes.

The decision boundary is where the point of intersection of the two
lines is, because here π1f1(x) = π2f2(x). Thus all points to left of
the decision boundary will be classified as green and similarly, all
points to the right of the decision boundary will be classified as
orange.
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We now specify different priors, such that π1 = 0.3 and π2 = 0.7.
We see that this has affected the decision boundary, which now has
shifted to the left.

π1 = 0.3 π2 = 0.7

0.00

0.05

0.10

0.15

0.20

−6 −3 0 3 6

x

πkfk(x)



Linear Discriminant Analysis (LDA) (p=1)

Using Linear discriminant analysis we assume the class conditional
distributions are normal (Gaussian).

The univariate normal pdf

f (x) = 1√
2πσ

e−
1
2

(
x−µ
σ

)2

,

has parameters µ (mean) and σ (standard deviation).

Assume that we observe K classes, where each class conditional
distribution is normal, where the classes have mean µk and standard
deviation σk :

fk(x) = 1√
2πσk

e−
1
2

( x−µk
σk

)2

With LDA we assume that all of the classes have the same standard
deviation σk = σ.



We can insert the expression for each class distribution into Bayes
formula to obtain the posterior probability
pk(x) = Pr(Y = k|X = x):

pk(x) = Pr(X = x |Y = k)Pr(Y = k)
Pr(X = x) =

πk
1√
2πσ e

− 1
2

( x−µk
σ

)2

∑K
l=1 πl

1√
2πσ e

− 1
2

( x−µl
σ

)2

Our rule is to classify to the class for which pk(x) is largest. It can
be shown that this is equivalent to assigning x to the class with the
largest discriminant score δk(x):

δk(x) = x · µk
σ2 −

µ2
k

2σ2 + log(πk).

This decision boundaries between the classes are linear in x .

Q: So, what do we need to use this result in practice?



Parameter estimators
In real life situations we will not know the prior probabilities, the
class mean or standard deviation=need parameter estimators.

I Prior probability for class k is (often) estimated by taking the
fraction of observations nk (out of n) coming from class k:
π̂k = nk

n .

I The mean value for class k is simply the sample mean of all
observations from class k:

µ̂k = 1
nk

∑
i :yi =k

xi .

I The standard deviation: sample standard deviation across all
classes:

σ̂2 = 1
n − K

K∑
k=1

∑
i :yi =k

(xi − µ̂k)2 =
K∑

k=1

nk − 1
n − K · σ̂

2
k .

σ̂k : estimated standard deviation of all observations from class
k.



How would the estimation affect our misclassification rate?
If µ1 = −2, µ2 = 2, σ = 1.5, π1 = π2 = 0.5 we found that the class
boundary is at 0 and the Bayes error is
round(2*0.5*pnorm(0,2,1.5))=0.09.

But, in a real life situation

I we estimate the class boundary
I and we do not know the true distribution for the classes.

How can we then estimate the goodness of our estimator?



1. Use the training set to estimate parameters and class boundary:
2. Use the test set to estimate misclassification rate.

n=1000;pi1=pi2=0.5;mu1=-2;mu2=2;sigma=1.5;set.seed(1)
n1train=rbinom(1,n,pi1);n2train=n-n1train
n1test=rbinom(1,n,pi1);n2test=n-n1test
train1=rnorm(n1train,mu1,sigma);train2=rnorm(n2train,mu2,sigma)
test1=rnorm(n1test,mu1,sigma);test2=rnorm(n2test,mu2,sigma)
sigma2.1=var(train1);sigma2.2=var(train2)
estsigma2=((n1train-1)*sigma2.1+(n2train-1)*sigma2.2)/(n-2)

rule=0.5*(mean(train1)+mean(train2))+
estsigma2*(log(n2train/n)-log(n1train/n))/(mean(train1)-mean(train2))

c((sum(train1>rule)+sum(train2<rule))/n, (sum(test1>rule)+sum(test2<rule))/n)

## [1] 0.105 0.115



Training error rate

the proportion of mistakes that are made if we apply classifier f̂ to
the training observations, i.e. ŷi = f̂ (xi ).

1
n

n∑
i=1

I(yi 6= ŷi ).

Here I is the indicator function (to give our 0/1 loss) which is
defined as:

I(a = â) =
{
1 if a = â
0 else

The indicator function counts the number of times our model has
made a wrong classification. The training error rate is the fraction
of misclassifications made on our training set.

A very low training error rate may imply overfitting.



Test error rate
Here the fraction of misclassifications is calculated when our model
is applied on a test set. From what we have learned about
regression we can deduct that this gives a better indication of the
true performance of the classifier (than the traning error).

Ave(I(y0 − ŷ0))

where the average is over all the test observations (x0, y0).

We assume that a good classifier is a classifier that has a low test
error.



The confusion matrix
The confusion matrix is a table that can show the performance of
classifier, given that the true values are known.

We can make a confusion matrix from the training or test set, but
will in most cases do so for the test set only.

The rows represent the true classes, while the columns represent the
predicted classes. Inside the table we have counts (just labelled
“correct” and “wrong” below - but should be numbers). The sum of
the diagonal is the total number of correct classifications. The sum
of all elements off the diagonal is the total number of
misclassifications.

Predicted 1 Predicted 2 . . . Predicted K
True 1 correct wrong . . . wrong
True 2 wrong correct . . . wrong
. . . . . . . . . . . . . . .
True K wrong wrong . . . correct



The confusion matrix can be obtained in R by using the table
function with the predicted classes and the true classes need to be
given as function arguments.

We will soon come back to the special case of two classes - where
we may think of this as “-” (non disease) and “+” (disease).



LDA when p>1

Linear discriminant analysis can be generalized to situations when
p > 1 covariates are used. The decision boundaries are still linear.

The multivariate normal distribution function:

f (x) = 1
(2π)p/2|Σ|1/2 exp(−1

2(x− µ)T Σ−1(x− µ))

This gives the following expression for the discriminant function:

δk(x) = xT Σ−1µk −
1
2µT

k Σ−1µk + log πk .

Compulsory Exercise 1, Problem 3: you are asked to derive this
expression for K=2!



Estimators for p>1:

I Prior probability for class k (unchanged from p=1): π̂k = nk
n .

I The mean value for class k is simply the sample mean of all
observations from class k (but now these are vectors):

µ̂k = 1
nk

∑
i :yi =k

Xi .

I The covariance matrices for each class:

Σ̂k = 1
nk − 1

∑
i :yi =k

(Xi − µ̂k)(Xi − µ̂k)T

I Pooled version:

Σ̂ =
K∑

k=1

nk − 1
n − K · Σ̂k .

Optional: Proof that the estimator Σ̂k is unbiased for each class
(from TMA4267). Proof for pooled version missing for now.

https://www.math.ntnu.no/emner/TMA4268/2018v/notes/ProofMeanS.pdf
https://www.math.ntnu.no/emner/TMA4268/2018v/notes/ProofMeanS.pdf


Posterior probabilites

Sometimes the probability that an observation comes from a class k
is more interesting than the actual classification itself. These class
probabilities can be estimated from the priors and class conditional
distributions, or from the discriminant functions:

P̂r(Y = k|X = x) =
π̂k · 1

(2π)p/2|Σ̂|1/2 exp(−1
2(x− µ̂k)T Σ̂−1(x− µ̂k))∑K

l=1 π̂l
1

(2π)p/2|Σ̂|1/2 exp(−1
2(x− µ̂l )T Σ̂−1(x− µ̂l ))

= e δ̂k(x)∑K
l=1 e δ̂l (x)

.



Quadratic Discriminant Analysis (QDA)

In quadratic discriminant analysis we assume that the distributions
of the classes is Gaussian, but with covariance matrix Σk for each
class.

The discriminant functions are now given by:

δk(x) = −1
2(x − µk)T Σ−1

k (x − µk)− 1
2 log |Σk |+ log πk

= −1
2x

T Σ−1
k x + xT Σ−1

k µk −
1
2µ

T
k Σ−1

k µk −
1
2 log |Σk |+ log πk .

These decision boundaries are quadratic functions of x .



LDA vs QDA

In QDA we are allowed for the covariance matrices to be different
for the classes, but for LDA they are assumed to be the same, so
QDA is more flexible than LDA.

Q:

I But, if the covariance matrices in theory are equal - will they
not be estimated equal?

I Should we not always prefer QDA to LDA?



A:

Bias-variance trade-off:

If the assumption of equal covariance matrices

I is wrong, then LDA may suffer from high bias for the
parameter estimators.

I is correct, then QDA is better off. But, for small sample sizes
the covariance matrices might be poorly estimated (high
variance of estimators).

If the number of covariates is high:

I then QDA requires estimating K ∗ p ∗ (p + 1)/2 parameters,
I while LDA only requires p ∗ (p + 1)/2.

Thus, LDA is less flexible than QDA and might therefore have much
less variance.



Naive Bayes - when we have many covariates (optional)
In Naive Bayes (Idiot’s Bayes) we assume that each class density is
the product of marginal densities - i.e. inputs are conditionally
independent in each class.

fk(x) =
p∏

j=1
fkj(xj)

This is generally not true, but it simplifies the estimation
dramatically.

The original naive Bayes used univariate normal marginal
distributions, but generalizations can be made.

Instead of estimating a full covariance matrix, only the diagonal
elements are estimated.

This method often produces good results, even though the joint pdf
is not the product of the marginal pdf. This might be because we
are not focussing on estimation of class pdfs, but class boundaries.



Example: Classification of iris plants

We will use sepal width and sepal length to build a
classificator, here 50 observations from each class available.

attach(iris)
library(class)
library(MASS)
library(ggplot2)
library(dplyr)

kable(head(iris))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa



iris0_plot = ggplot(iris, aes(x=Sepal.Width, y=Sepal.Length,
color=Species))+geom_point(size=2.5)

iris0_plot
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Iris: LDA

testgrid = expand.grid(Sepal.Length = seq(min(iris[,1]-0.2), max(iris[,1]+0.2),
by=0.05), Sepal.Width = seq(min(iris[,2]-0.2), max(iris[,2]+0.2),
by=0.05))

iris_lda = lda(Species~Sepal.Length+Sepal.Width, data=iris, prior=c(1,1,1)/3)
res = predict(object = iris_lda, newdata = testgrid)
Species_lda = res$class
postprobs=res$posterior

iris_lda_df = bind_rows(mutate(testgrid, Species_lda))
iris_lda_df$Species_lda = as.factor(iris_lda_df$Species_lda)

irislda_plot = iris0_plot + geom_point(aes(x = Sepal.Width, y=Sepal.Length,
colour=Species_lda), data=iris_lda_df, size=0.8)

irislda_plot
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Iris: QDA

iris_qda = qda(Species~Sepal.Length + Sepal.Width, data=iris, prior=c(1,1,1)/3)
Species_qda = predict(object = iris_qda, newdata = testgrid)$class

iris_qda_df = bind_rows(mutate(testgrid, Species_qda))
iris_qda_df$Species_qda = as.factor(iris_qda_df$Species_qda)

gridprobs=

irisqda_plot = iris0_plot + geom_point(aes(x = Sepal.Width, y=Sepal.Length,
colour=Species_qda), data=iris_qda_df, size=0.8)

irisqda_plot
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Iris: compare LDA and QDA

We now want to compare the predictive performance of our two
classifiers. We do this by dividing the original iris data set,
randomly, into train and test samples of equal size:

set.seed(1)
train = sample(1:150, 75)

iris_train = iris[train, ]
iris_test = iris[-train, ]

iris_lda2 = lda(Species~Sepal.Length + Sepal.Width,
data=iris_train,
prior=c(1,1,1)/3)



# Training error
table(predict(iris_lda2, newdata=iris_train)$class,

iris_train$Species)
# Test error
iris_lda2_predict = predict(iris_lda2, newdata=iris_test)
table(iris_lda2_predict$class, iris$Species[-train])

##
## setosa versicolor virginica
## setosa 25 0 0
## versicolor 1 21 7
## virginica 0 7 14
##
## setosa versicolor virginica
## setosa 24 0 0
## versicolor 0 13 6
## virginica 0 9 23



The LDA classifier has a training error rate of 15/75, that is 20 %.
When tested on a new set it correctly classified 24+13+23 times
and misclassified 15 times. This gives a misclassification rate of

Test errorLDA = 15
75 = 0.2.

Using a different division into training and test set will give (small)
changes to these numbers.



Iris: training and test error for QDA

iris_qda2 = qda(Species~Sepal.Length + Sepal.Width, data=iris_train,
prior=c(1,1,1)/3)

Important: use the same division into training and test set for
methods we want to compare.



# Training error
table(predict(iris_qda2, newdata=iris_train)$class, iris_train$Species)
# Test error
iris_qda2_predict = predict(iris_qda2, newdata=iris_test)
table(iris_qda2_predict$class, iris$Species[-train])

##
## setosa versicolor virginica
## setosa 26 0 0
## versicolor 0 22 6
## virginica 0 6 15
##
## setosa versicolor virginica
## setosa 24 0 0
## versicolor 0 14 10
## virginica 0 8 19



The QDA classifier has a training error rate of 16%. When tested
on a new set, the misclassification error rate was

Test errorQDA = 18
75 = .24

The LDA classifier has given the smallest test error for classifying
iris plants based on sepal width and sepal length for our test set and
should be preferred in this case.

1. Would another division of the data into training and test set
give the same conclusion (that LDA is better than QDA for
this data set)? (A: Not necessarily, but probably.)

We will look into other choice than dividing into one training and
one test set in Module 5 (crossvalidation).

2. What about the other two covariates? Would adding them to
the model (4 covariates) give a better classification rule? (A:
Probably. Try if you want.)



Fishers idea (Optional)

In 1936 R. A. Fisher developed LDA.

I His aim was to find a linear combination of the explanatory
variables which maximized the ratio of its between class to
within class variance.

I In this way the observations are transformed so that they are
separated as much as possible.

I His approach has the advantage that it is suited for visual
inspection and graphical description , it “separates” the
populations.

Let the between-class variance be denoted
B =

∑M
m=1(µm − µ̄)(µm − µ̄)T , where µm denotes the mean of

class ωm and µ̄ the overall mean.

The within-class variance is assumed equal for all classes and is
denoted Σ (Σ is assumed to have full rank).



The linear combination lT X that maximize lT Bl/lT Σl under the
constraint that lT Σl = 1 is found to be the scaled eigenvectors of
Σ−1B corresponding to the nonzero eigenvalues of Σ−1B. The
eigenvector corresponding to the largest eigenvalue defines the first
discriminant lT

1 X . The second linear discriminant lT
2 X is

constructed from the eigenvector corresponding to the second
largest eigenvalue and so on. (We also have Cov(lT

j X , lT
i X) = 0

for i 6= j and Var(lT
j X) = 1.)



The number of linear discriminants equals the number of nonzero
eigenvalues. Observations are assigned to the class of the nearest
(Euclidean distance) class mean in the discriminant space.

This equals classification to the nearest Mahalanobis distance
population mean in the input space. Again, the parameters µi and
Σ and the between-class variance B are usually unavailable.
Replacing the parameters by estimates from the training set leads to
Fisher’s sample linear discriminants.



Bayes decision rule - over to diagnostic paradigm

Remember:

I The diagnostic paradigm: We focus on directly estimating
the posterior distribution for the classes Pr(Y = k | X = x).

I The sampling paradigm: There focus is on estimating the
prior probabilities for the classes and the class conditional
distributions. We classify to the class with the maximal
product πk fk(x).

Now we move to the diagnostic paradigm and the K -nearest
neighbor classifier.

The K -nearest neighbour classifier estimates Pr(Y = k | X = x)
and classifies a new observation based on this estimated probability



Synthetic example for KNN classification

Consider a two-class example, and equal class prior probabilites.

A new observation x0 will be classified to A if
Pr(Y = A|X = x0) > 0.5 and to class B otherwise.

I The figure below shows a plot of 100 observations from two
classes A (red dots) and B (turquoise dots),

I simulated from a bivariate normal distribution with mean
vectors µA = (1, 1)T and µB = (3, 3)T and a covariance matrix

ΣA = ΣB =
(
2 0
0 2

)
.

I We want to find a rule to classify a new observation to class A
or B.
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Remark: since the truth is known here we can calculate the Bayes
boundary and the Bayes error.
Since we have bivariate normal class distributions with common
covariance matrix, the optimal boundary is given by LDA. The
boundary will be at δA(x) = δB(x), where
δA(x) = xT Σ−1µA − 1

2µT
A Σ−1µA + log πA, and for δB(x) with µB.

xT Σ−1µA−
1
2µT

A Σ−1µA+log πA = xT Σ−1µB−
1
2µT

B Σ−1µB+log πB

xT Σ−1(µA−µB)−1
2µT

A Σ−1µA+1
2µT

B Σ−1µB +log πA−log πB = 0

Inserting numerical values gives: −x1 − x2 + 4 = 0, and boundary
x2 = 4− x1.

muA=matrix(c(1,1),ncol=1)
muB=matrix(c(3,3),ncol=1)
sigmainv=diag(2)/2
sigmainv%*%(muA-muB)
-0.5*t(muA)%*%sigmainv%*%muA+0.5*t(muB)%*%sigmainv%*%muB+log(0.5)-log(0.5)

## [,1]
## [1,] -1
## [2,] -1
## [,1]
## [1,] 4

The Bayes error can then be found by calculation of areas for the
two class densities on the wrong side of the boundary, or by
simulating many test data and counting misclassifications rates.



K-nearest neighbour classifier

(warning: K is not the number of classes, but neighbours. . . )

The K -nearest neighbour classifier (KNN) works in the following
way:

I Given a new observation x0 it searches for the K points in our
training data that are closest to it.

I These points make up the neighborhood of x0, N0.
I The point x0 is classified by taking a majority vote of the

neighbors.
I This means that KNN estimate the posterior class probability

as:
P̂r(Y = j |X = x0) = 1

K
∑

i∈N0

I(yi = j).



Synthetic data for KNN - continued

I Assume we have a new observation X0 = (x01, x02)T which we
want to classify as belonging to the class A or B.

I To illustrate this problem we fit the K -nearest neighbor
classifier to our simulated data set with K = 1, 3, 10 and 150
and observe what happens.

In our plots, the small colored dots show the predicted classes for an
evenly-spaced grid. The lines show the decision boundaries. If our
new observation falls into the region within the red decision
boundary, it will be classified as A. If it falls into the region within
the turqouise decision boundary, it will be classified as B.
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We see that the choice of K has a big influence on the result of our
classification. By choosing K = 1 the classification is made to the
same class as the one nearest neighbor. When K = 3 a majority
vote is taken among the three nearest neighbors, and so on. We see
that as K gets very large, the decision boundary tends towards a
straight line (which is the Bayes boundary in this set-up).

To find the optimal value of K the typical procedure is to try
different values of K and then test the predictive power of the
different classifiers, for example by cross-validation, which will be
discussed in Module 5.

We see that after trying all choices for K between 1 and 50, we see
that a few choices of K gave the smallest misclassification error
rate, estimating by leave-one out cross-validation (Leave-one-out
cross-validation will be discussed in Module 5). The smallest error
rate is equal to 0.165. This means that the classifier makes a
misclassification 16.5% of the time and a correct classification
83.5% of the time.
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This above example showed the bias-variance trade-off in a
classification setting. Choosing a value of K amounts to choosing
the correct level of flexibility of the classifier. This again is critical
to the success of the classifier. A too low value of K will give a very
flexible classifier (with high variance and low bias) which will fit the
training set too well (it will overfit) and make poor predictions for
new observations. Choosing a high value for K makes the classifier
loose its flexibility and the classifier will have low variance but high
bias.



The curse of dimensionality

The nearest neighbor classifier can be quite good if the number of
predictor p is small and the number of observations n is large. We
need enough close neighbors to make a good classification.

The effectiveness of the KNN classifier falls quickly when the
dimension of the preditor space is high. This is because the nearest
neighbors tend to be far away in high dimensions and the method
no longer is local. This is referred to as the curse of dimensionality.





Part B: Modelling posterior probabilites, ROC/AUC and
comparisons

What to remember from Part A?

Aim: Discrimination and classification
Today - data from:

I Default: will a new customer default or not based on his/her
status (student or not), balance and income?

I South African heart disease data set: classify to coronary heart
disease or not, based on 9 covariates.



Notation
Training set: observations (independent pairs)
{(x1, y1), ..., (xn, yn)} where the response variable Y is qualitative
and labelled 1, 2, ...,K .

The training set is used to construct the classification rule (by
estimating parameters in class densities or posterior probabilites).

Test set: observations (independent pairs), same format as the
training set.

The test set is used to evaluate the classification rule.

Loss function:: The misclassifications are given the loss 1 and the
correct classifications loss 0 - this is called 0/1-loss.



Bayes classifier

I Assume that we know or can estimate the probability that a
new observation x0 belongs to class k:

pk(x0) = Pr(Y = k|X = x0), k = 1, 2, ...K .

This is the probability that Y = k given the observation x0.
The Bayes classifier assigns an observation to the most likely
class, given its predictor values.



Two paradigms

I The sampling paradigm: There focus is on estimating the
prior probabilities for the classes and the class conditional
distributions. We classify to the class with the maximal
product πk fk(x). We have looked at LDA (multivariate normal
densities with equal covariance matrices) and QDA (ditto, but
each class has it’s own covariance matrix).

I The diagnostic paradigm: We focus on directly estimating
the posterior distribution for the classes Pr(Y = k | X = x).
We have looked at the KNN-classifier in Part A.

Focus now is on diagnostic paradigm = we estimates
Pr(Y = k | X = x) and classify a new observation based on this
estimated probability.

But first, what about linear regression Y on x to make a
classification?



Using linear regression on a classification problem?

Example 1: This example uses the Default data set from the
ISLR package. Suppose we want to predict if a new customer will
default or not based on his/her balance or income. We try to
model this using a simple linear regression and a binary response
variable:

Y =
{
1 if default = "Yes"
0 if default = "No"

.

It would be tempting to do the classification according to the rule:
classify as yes if Ŷ > 0.5, else as no.



default student balance income

No No 729.5265 44361.625
No Yes 817.1804 12106.135
No No 1073.5492 31767.139
No No 529.2506 35704.494
No No 785.6559 38463.496
No Yes 919.5885 7491.559
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The above plots shows default as a function of balance and
default as a function of income with corresponding fitted linear
regression lines (red for x=balance and orange for x=income).
Notice that linear regression in this case produces predictions that
are smaller than zero or bigger than one, this it is hard to interpret
these as probabilities.

It is still possible to use linear regression for classification problems
with two classes. It turns out that - if the conditional class densities
are (multivariate) normal with equal covariance matrices then this
linear regression (with 0 and 1 response) will in fact give the same
classification as LDA. See e.g. Ripley (1995), Section 3.2.



Using linear regression on a classification problem?

Example 2: Suppose we want to classify a film. We have defined
three classes: { drama, comedy, science-fiction}. We could try to
model this using linear regression and the following coding:

Y =


1 if drama,
2 if comedy,
3 if science-fiction.

However, this coding implies an ordering of the variables and that
the difference between the classes is equal. There is in general no
natural way to code a quantitative variable with more than two
classes such that it can be used with linear regression.



So, using linear regression to solve a classification problem seems
hard with more than two classes - as done here. But, it turns out
that using a dummy variable conding for the classes, it is possible to
produce the same result as LDA (also with many classes). This is
the starting point for flexible discriminant analysis.

Linear regression to do classification is not a bad idea, but requires
some extra work (multivariate Y due to the dummy variable coding).
Therefore we leave linear regression for now.

For two classes binary regression, in particular logistic regression, is
very popular - and is up next.



Logistic regression - two classes

The model
Assume that Y is coded (C = {1, 0} or {success, failure}), and we
focus on success. We may assume that Yi follows a Bernoulli
distribution with probability of success pi .

Yi =
{
1 with probability pi ,

0 with probability 1− pi .

In logistic regression we link together our covariates xi with this
probability pi using a logistic function.



In the case of one covariate, the logistic function has the form:

pi = eβ0+β1xi

1 + eβ0+β1xi
.

This function is S-shaped, and ranges between 0 and 1 (so the pi is
between 0 and 1). The parameter β1 determines the rate of increase
or decrease of the S-shaped curve, and the sign indicates whether
the curve ascends or descends.

Q: Where did that come from? There are other transforms that
takes a linear predictor and transforms into the range 0 to 1.



Logistic regression ensures that the estimated probabilities lie in the
interval between 0 and 1. This is illustrated in the figure below.
The blue line shows the fitted line when performing logistic
regression on default as a function of balance.

The parameters are estimated using the method of maximum
likelihood - we will look at that soon, but first we look at how to
interpret the estimated parameters.
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The odds and the odds ratio
For the logistic regression it is hard to give a simple interpretation
regression coefficients β, because an increase in x1 by one unit does
not give the same increase (decrease) in the probability pi for all
values of x1. But, looking at odds - it is simpler to explain what the
βs mean.

For a probability pi the ratio pi
1−p1

is called the odds.

If pi = 1
2 then the odds is 1, and if pi = 1

4 then the odds is 1
3 . We

may make a table for probability vs. odds in R:

p 0.10 0.20 0.30 0.40 0.5 0.6 0.70 0.8 0.9
odds 0.11 0.25 0.43 0.67 1.0 1.5 2.33 4.0 9.0

Odds may be seen to be a better scale than probability to represent
chance, and is used in betting. In addition, odds are unbounded
above.



Why is the odds relevant?
(Since p is used for probability we use r for number of covariates
now.)
Let us assume that we have r covariates, and we use ηi (linear
predictor) to help with our notation.

ηi = β0 + β1xi1 + β2xi2 + · · ·+ βrxir

pi = exp(ηi )
1 + exp(ηi )

ηi = ln( pi
1− pi

)

ln( pi
1− pi

) = β0 + β1xi1 + β2xi2 + · · ·+ βrxir

pi
1− pi

=P(Yi = 1|xi )
P(Yi = 0|xi )

= exp(β0) · exp(β1xi1) · · · exp(βrxir )

We have a multiplicative model for the odds - which can help us to
interpret our βs.
In addition we see that the logit of pi , ln( pi

1−pi
), is linear in the βs

(and in the x ’s).



So, what if we increase x1i to x1i + 1?

If the covariate x1i increases by one unit (while all other covariates
are kept fixed) then the odds is multiplied by exp(β1):

P(Yi = 1 | xi1 + 1)
P(Yi = 0) | xi1 + 1) = exp(β0) · exp(β1(xi1 + 1)) exp(β2(xi2)) · · · exp(βrxir )

= exp(β0) · exp(β1xi1) exp(β1) exp(β2xi2) · · · exp(βrxir )

= P(Yi = 1 | xi1)
P(Yi = 0 | xi1) · exp(β1)

This means that if xi1 increases by 1 then: if β1 < 0 we get a
decrease in the odds, if β1 = 0 no change, and if β1 > 0 we have an
increase. Here exp(β1) is easier to interpret than β1.



Default-example

Default as response and student, balance and income as covariates

Result:

P(Yi = 1 | xi1 + 1)
P(Yi = 0) | xi1 + 1) = P(Yi = 1 | xi1)

P(Yi = 0 | xi1) · exp(β1)

What is done below? Explain what the effect of student gives.

colnames(Default)
fit=glm(default~student+balance+income,family="binomial",data=Default)
coef(fit)
round(exp(coef(fit)),3)

## [1] "default" "student" "balance" "income"
## (Intercept) studentYes balance income
## -1.086905e+01 -6.467758e-01 5.736505e-03 3.033450e-06
## (Intercept) studentYes balance income
## 0.000 0.524 1.006 1.000



Maximum Likelihood
We assume that pairs of covariates and responses {xi , yi} are
measured independently of each other. Given n such observation
pairs, the likelihood function of a logistic regression model can be
written as:

L(β) =
n∏

i=1
Li (β) =

n∏
i=1

f (yi ; β) =
n∏

i=1
(pi )yi (1− pi )1−yi ,

where β = (β0, β1, β2, . . . , βr )T enters into pi .

pi = exp(β0 + β1xi1 + · · ·+ βpxip)
1 + exp(β0 + β1xi1 + · · ·+ βrxir )



The maximum likelihood estimates are found by maximizing the
likelihood, and since the log is a monotone transform (and
maximizing the log-likelihood will give the same result as
maximizing the likelihood) we usually work with the log-likelihood
(because this makes the maths easier).

ln(L(β)) = l(β) =
n∑

i=1

(
yi log pi + (1− yi ) log(1− pi )

)
=

n∑
i=1

(
yi log

( pi
1− pi

)
+ log(1− pi )

)
=

n∑
i=1

(
yi (β0 + β1xi1 + · · ·+ βpxip)− log(1 + eβ0+β1xi1+···+βpxip

)
.



I To maximize the log-likelihood function we find the p + 1
partial derivatives, and set equal til 0.

I This gives us a set of p + 1 non-linear equations in the βs.
I This set of equations does not have a closed form solution.
I These equations are therefore solved numerically. The

Newton-Raphson algorithm (or Fisher Scoring) is used.



##
## Call:
## glm(formula = default ~ student + balance + income, family = "binomial",
## data = Default)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4691 -0.1418 -0.0557 -0.0203 3.7383
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 ***
## studentYes -6.468e-01 2.363e-01 -2.738 0.00619 **
## balance 5.737e-03 2.319e-04 24.738 < 2e-16 ***
## income 3.033e-06 8.203e-06 0.370 0.71152
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1571.5 on 9996 degrees of freedom
## AIC: 1579.5
##
## Number of Fisher Scoring iterations: 8



Inference
We may construct confidence intervals and test hypotheses about
the βs, with the aim to understand which covariate that contributes
to our posterior probabilites and classification.

This is done by assuming that each β̂j is approximately normally
distributed with mean βj and variance V̂ar(β̂j) (related to the
negative of the inverse of the expected Hessian of the loglikelihood
function).



The Akaike Information Criterion (AIC) for model selection

The AIC score is given by:

AIC = 2 · r − 2 · loglik,

where p is the number of model parameters. The loglik is the
maximized log-likelihood l(β̂) and β̂ is the maximum-likelihood
estimate of the parameter-vector β = (β0, β1, ..., βr )T . The role of
p is to penalize models with many parameters as a high number of
parameters may lead to overfitting.r The AIC value can be used to
choose between candidate logistic regression models, where the
model with the lowest AIC value is the one expected to give the
best fit.

More about the AIC in Module 6.



Predictions

I We fit a (simple) logistic regression model to our data set, and
I get parameter estimates β̂0 and β̂1.
I We want to use this model to make a prediction when given a

new observation x0.

p̂(x0) = eβ̂0+β̂1x0

1 + eβ̂0+β̂1x0

This p̂(x0) is the estimated probability that the new observation x0
belongs to the class defined by Y = 1.

In the case of qualitative covariates, a dummy variable needs to be
introduced. This is done in a similar fashion as for linear regression.



Want to learn more (theory) about logistic regression?

In TMA4315 Generalized linear models we spent 3 weeks with
binary regression - mainly logistic regression. The focus there was
on all parts of the regression (not classification) with a
mathematical focus on estimation, inference, model fit.



Example: South African heart disease data set

In this example we use the SAhert data set from the
ElemStatLearn package. This is a retrospective sample of males in
a heart-disease high-risk region in South Africa. It consists of 462
observations on the 10 variables. All subjects are male in the age
range 15-64. There are 160 cases (individuals who have suffered
from a conorary heart disease) and 302 controls (individuals who
have not suffered from a conorary heart disease).



The response value (chd) and covariates

I chd : conorary heart disease {yes, no} coded by the numbers
{1, 0}

I sbp : systolic blood pressure
I tobacco : cumulative tobacco (kg)
I ldl : low density lipoprotein cholesterol
I adiposity : a numeric vector
I famhist : family history of heart disease. Categorical variable

with two levels: {Absent, Present}.
I typea : type-A behavior
I obesity : a numerical value
I alcohol : current alcohol consumption
I age : age at onset

The goal is to identify important risk factors. We start by loading
and looking at the data:



sbp tobacco ldl adiposity famhist typea obesity alcohol age chd

160 12.00 5.73 23.11 Present 49 25.30 97.20 52 1
144 0.01 4.41 28.61 Absent 55 28.87 2.06 63 1
118 0.08 3.48 32.28 Present 52 29.14 3.81 46 0
170 7.50 6.41 38.03 Present 51 31.99 24.26 58 1
134 13.60 3.50 27.78 Present 60 25.99 57.34 49 1
132 6.20 6.47 36.21 Present 62 30.77 14.14 45 0



In order to investigate the data further, we use the ggpairs
function from the GGally library, to make scatter plots of the
covariates. The coloring is done according to the response variable,
where green represents a case Y = 1 and red represents a control
Y = 0.
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We now fit a (multiple) logistic regression model using the glm
function and the full data set. In order to fit a logistic model, the
family argument must be set equal to ="binomial". The
summary function prints out the estimates of the coefficients, their
standard errors and z-values. As for a linear regression model, the
significant coefficients are indicated by stars where the significant
codes are included in the R outprint.



glm_heart = glm(chd~., data=heartds, family="binomial")
summary(glm_heart)

##
## Call:
## glm(formula = chd ~ ., family = "binomial", data = heartds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.7781 -0.8213 -0.4387 0.8889 2.5435
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.1507209 1.3082600 -4.701 2.58e-06 ***
## sbp 0.0065040 0.0057304 1.135 0.256374
## tobacco 0.0793764 0.0266028 2.984 0.002847 **
## ldl 0.1739239 0.0596617 2.915 0.003555 **
## adiposity 0.0185866 0.0292894 0.635 0.525700
## famhistPresent 0.9253704 0.2278940 4.061 4.90e-05 ***
## typea 0.0395950 0.0123202 3.214 0.001310 **
## obesity -0.0629099 0.0442477 -1.422 0.155095
## alcohol 0.0001217 0.0044832 0.027 0.978350
## age 0.0452253 0.0121298 3.728 0.000193 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 472.14 on 452 degrees of freedom
## AIC: 492.14
##
## Number of Fisher Scoring iterations: 5



Estimated coeffs exp(estimated coeffs)

(Intercept) -6.151 0.002
sbp 0.007 1.007
tobacco 0.079 1.083
ldl 0.174 1.190
adiposity 0.019 1.019
famhistPresent 0.925 2.523
typea 0.040 1.040
obesity -0.063 0.939
alcohol 0.000 1.000
age 0.045 1.046

How did we find the coefficients and what does the second column
mean?



Multinomial logistic regression

The logistic regression model can be generalized for a response
variable with more than two classes. Assume we have a response
variable with K possible classes and r covariates. The probability
that Y belongs to class k, given an observation vector
x = (x1, x2, . . . , xr )T is (usually) modelled by:

ln Pr(Y = k|x)
Pr(Y = K |x) = β0k + β1kx1 + · · ·+ βrkxr .

The multinomial logistic regression model is implemented in the
glmnet package in R.

We will not discuss this further since LDA is more popular (than
logistic regression) in the multi-class setting. And, as we shall see
soon - they are not that different.



Confusion - sensitivity, specificity

In a two class problem - assume the classes are labelled “-” (non
disease) and “+” (disease). In a population setting we define the
following event and associated number of observations.

Predicted - Predicted + Total
True - True Negative TN False Positive FP N
True + False Negative FN True Positive TP P
Total N* P*



Sensitivity is the proportion of correctly classified positive
observations: #True Positive

#Condition Positive = TP
P .

Specificity is the proportion of correctly classified negative
observations: #True Negative

#Condition Negative = TN
N .

We would like that a classification rule (or a diagnostic test) have
both a high sensitivity and a high specificity.



Other useful quantities:

Name Definition Synonyms
False positive rate FP/N Type I error, 1-specificity
True positive rate TP/P 1-Type II error, power, sensitivity, recall
Positive predictive value (PPV) TP/P* Precision, 1-false discovery proportion
Negative predictive value (NPV) TN/N*

(These two tables are tables 4.6 and 4.7 in our ISL-textbook.)



Example Continued: South African heart disease

We want to evaluate our multiple logistic model for the SAheart
data set. In order to investigate the training error and the test error,
we divide the original data set, randomly, into two samples of equal
size.

set.seed(20)
train_ID = sample(1:nrow(heartds), nrow(heartds)/2)
train_SA = heartds[train_ID, ]
test_SA = heartds[-train_ID, ]



We now fit a logistic regression model, using the training set only:

##
## Call:
## glm(formula = chd ~ ., family = "binomial", data = train_SA)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.9715 -0.7993 -0.4098 0.8780 2.2163
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -7.425033 1.919850 -3.868 0.00011 ***
## sbp 0.013101 0.008822 1.485 0.13755
## tobacco 0.088854 0.037542 2.367 0.01794 *
## ldl 0.160858 0.082623 1.947 0.05155 .
## adiposity 0.010770 0.038713 0.278 0.78086
## famhistPresent 1.039578 0.335824 3.096 0.00196 **
## typea 0.042366 0.018254 2.321 0.02029 *
## obesity -0.044412 0.058290 -0.762 0.44611
## alcohol -0.004820 0.006672 -0.722 0.47000
## age 0.045777 0.016873 2.713 0.00667 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 301.69 on 230 degrees of freedom
## Residual deviance: 232.54 on 221 degrees of freedom
## AIC: 252.54
##
## Number of Fisher Scoring iterations: 5



By comparing this outprint with the corresponding outprint above,
we see that the estimated coefficients slightly differ. This is because
a different data set has been used to fit the model. We previously
used the full data set.
We want to estimate the probability of a chd event for the
observations in the test set. To do this we can insert the estimated
coefficient into the logistic equation, remembering that famhist is
a categorical covariate, modeled by a dummy variable:

xfamhist =
{
1, if Present,
0, if Absent.

The estimated probability of Y = 1 if famhist = "Present",
given a vector X of covariate observations is:

p̂(X) = e−7.43+0.01xsbp+0.09xtobacco+0.16xldh+0.01xadiposity+1.04·1+0.04xtypea−0.04xobesity−0.005xalcohol+0.05xage

1 + e−7.43+0.01xsbp+0.09xtobacco+0.16xldh+0.01xadiposity+1.04·1+0.04xtypea−0.04xobesity−0.005xalcohol+0.05xage
.

Whereas, if famhist = "Absent" the estimated probability is:

p̂(X) = e−7.43+0.01xsbp+0.09xtobacco+0.16xldh+0.01xadiposity+1.04·0+0.04xtypea−0.04xobesity−0.005xalcohol+0.05xage

1 + e−7.43+0.01xsbp+0.09xtobacco+0.16xldh+0.01xadiposity+1.04·0+0.04xtypea−0.04xobesity−0.005xalcohol+0.05xage
.



The predict function does these calculations for us. When
specifying type="response" the function returns the probabilities
for Y = 1.

probs_SA = predict(glm_SA, newdata=test_SA, type="response")

From these probabilities we can obtain classifications, by specifying
a threshold value. We have here chosen a threshold value of 0.5. By
using the ifelse function we specify that all probabilities larger
than 0.5 are to be classified as 1, while the remaining probabilities
are to be classified as 0.



pred_SA = ifelse(probs_SA > 0.5, 1, 0)

predictions_SA = data.frame(probs_SA, pred_SA, test_SA[,10])
colnames(predictions_SA) = c("Estim. prob. of Y=1","Predicted class","True class")
kable(head(predictions_SA))

Estim. prob. of Y=1 Predicted class True class

2 0.3547764 0 1
4 0.7732669 1 1
5 0.6889170 1 1
6 0.6404794 1 0
10 0.6507839 1 1
11 0.7241305 1 1



We can now use the confusion matrix to count the number of
misclassifications. The below confusion matrix is calculated using
the test set and comparing the predicted classes with the true
classes.

table(pred_SA, SAheart[-train_ID,10])

##
## pred_SA 0 1
## 0 130 37
## 1 24 40

The logistic model has correctly classified 130+40 times, and
misclassified 24+37 times. The misclassification test error rate is
thus:

Test error = 24 + 37
231 ≈ 0.264



The training error can be calculated in a similar fashion, but now we
use the fitted model to make prediction for the training set.

SA_train_prob = glm_SA$fitted.values
SA_train_pred = ifelse(SA_train_prob>0.5, 1, 0)
conf_train = table(SA_train_pred, SAheart[train_ID, 10])
misclas_train = (231-sum(diag(conf_train)))/231
misclas_train

## [1] 0.2510823

The train misclassification error rate is ≈ 25.1%.



ROC curves
The receiver operating characteristics (ROC) curve gives a graphical
display of the sensitivity against specificity, as the threshold value
(cut-off on probability of success or disease) is moved over the range
of all possible values. An ideal classifier will give a ROC curve which
hugs the top left corner, while a straight line represents a classifier
with a random guess of the outcome.

The AUC score is the area under the AUC curve. It ranges between
the values 0 and 1, where a higher value indicates a better classifier.
The AUC score is useful for comparing the performance of different
classifiers, as all possible threshold values are taken into account.



Example Continued: South African heart disease

In order to see how our model performs for different threshold
values, we can plot a ROC curve:

AUC = 0.7762
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To check where in the plot we find the default cut-off on 0.5, we
need to calculate sensitivity and specificity for this cut-off:

res=table(pred_SA, SAheart[-train_ID,10])
sens=res[2,2]/sum(res[2,])
spec=res[1,1]/sum(res[1,])
sens
spec

## [1] 0.625
## [1] 0.7784431

Observe that the value 0.625 (on y-axis) and 0.7784431 (on x-axis)
is on our ROC curve.

The ROC-curve is made up of all possible cut-offs and their
associated sensitivity and specificity.



Which classification method is the best?

Advantages of discriminant analysis

I Discriminant analysis is more stable than logistic regression
when the classes are well-separated.

I Discriminant analysis is more stable than logistic regression if
the number of observations n is small and the distribution of
the predictors X is approximately (multivariate) normal.



Linearity

Assume a binary classification problem with one covariate. Recall
that logistic regression can be written:

log
( p(x)
1− p(x)

)
= β0 + β1x .

For LDA we have that p0(x) is the probability that the observation
x belongs to class 0, while p1(x) = 1− p0(x) is the probability that
it belongs to class 1.

Observe that this show that our class boundary is linear.

Compulsory Exercise 1, Problem 3a.



log Pr(Y = 0|X = x)
Pr(Y = 1|X = x) = log π0

π1
+ log f0(x)

f1(x)

= log π0
π1
− 1

2σ2 (x − µ0)2 + 1
2σ2 (x − µ1)2

= log π0
π1
− 1

2σ2 (x2 − 2xµ0 + µ2
0 − x2 + 2xµ1 − µ2

1)

= log π0
π1
− 1

2σ2 (µ2
0 − µ2

1) + 1
σ2 (µ0 − µ1)x

= α0 + α1x

The two methods can thus be written in the same form (linear in
parameters and in x). The difference is in how the parameters
(α0, α1, β0, β1) are estimated.



LDA vs logistic regression

I Logistic regression uses the diagnostic paradigm, and models
the posterior distribution P(Y = 1|x).

I Linear discriminant analysis models the class conditional
densities fk(x).

I The results are usually quite similar, but
I LDA is “more available” in the multi-class settting
I if the class conditional distributions are multivariate normal then

LDA (or QDA) is preferred
I if the class conditional distributions are far from multivariate

normal then logistic regression is preferred
I in medicine for two-class problems logistic regression is often

preferred (for interpretability) and (always) together with ROC
and AUC (for model comparsion).

and KNN?

I KNN is used when the class boundaries are non-linear.



Extensions for classifications

I Module 5: how to use cross-validation in model evaluation and
model selection

I (Module 6: model selection - but mainly regression)
I Module 7: maybe a taste of nonlinear methods
I Module 8: classification trees (binary splits for the covariates)
I Module 9: support vector machines
I Module 11: neural nets



Recommended Exercises
Theoretical exercises

Bank notes and LDA (with calculations by hand)

To distinguish between genuine and fake bank notes measurements
of length and diagonal of an image part of the bank notes have
been performed. For 1000 bank notes (500 of each of genuine and
false) this gave the following values for the mean and the covariance
matrix (using unbiased estimators), where the first value is the
length of the bank note.

Genuine bank notes:

x̄G =
[
214.97
141.52

]
and Σ̂G

[
0.1502 0.0055
0.0055 0.1998

]

Fake bank notes:

x̄F =
[
214.82
139.45

]
and Σ̂F =

[
0.1240 0.0116
0.0116 0.3112

]

1. Assume the covariance matrix for the genuine and fake bank
notes are the same. How would you estimate the common
covariance matrix?

2. Explain the assumtions made to use linear discriminant analysis
to classify a new observation to be a genuine or a fake bank
note. Write down the classification rule for a new observation
(make any assumptions you need to make).

3. Use the method in b. to determine if a bank note with length
214.0 and diagonal 140.4 is genuine or fake.

Hint: the following formula might be useful.[
a b
c d

]−1

= 1
ad − bc

[
d −b
−c a

]

Odds. Exercise 4.7.9 (ISL textbook)

This problem has to do with odds.

1. On average, what fraction of people with an odds of 0.37 of
defaulting on their credit card payment will in fact default?

2. Suppose that an individual has a 16% change of defaulting on
her credit card payment. What are the odds that she will
default?

Logistic regression. Exercise 4.7.6 (ISL textbook)

Suppose we collect data for a group of students in a statistics class
with variables x1 = hours studied, x2 = undergrad GPA, and Y =
receive an A. We fit a logistic regression and produce estimated
coefficient, β̂0 = −6, β̂1 = 0.05, β̂2 = 1.

1. Estimate the probability that a student who studies for 40 h
and has an undergrad GPA of 3.5 gets an A in the class.

2. How many hours would the student in part a) need to study to
have a 50% chance of getting an A in the class?

Sensitivity, specificity, ROC and AUC

We have a two-class problem, with classes 0=non-disease and
1=disease, and a method p(x) that produces probability of disease
for a covariate x . In a population we have investigated N individuals
and know the predicted probability of disease p(x) and true disease
status for these N.

1. We choose the rule p(x) > 0.5 to classify to disease. Define
the sensitivity and the specificity of the test.

2. Explain how you can construct a reciever operator curve (ROC)
for your setting, and why that is a useful thing to do. In
particular, why do we want to investigate different cut-offs o
the probability of disease?

3. Assume that we have a competing method q(x) that also
produces probability of disease for a covariate x . We get the
information that the AUC of the p(x)-method is 0.6 and the
AUC of the q(x)-method is 0.7. What is the definition and
interpretation of the AUC? Would you prefer the p(x) or the
q(x) method for classification?

Data analysis with R

Exercise 4.7.10 (ISL textbook)

This question should be answered using the Weekly data set, which
is part of the ISLRpackages. This data is similar in nature to the
Smarket data from this chapter’s lab, except that it contains 1,089
weekly returns for 21 years, from the beginning of 1990 to the end
of 2010.

1. Produce numerical and graphical summaries of the Weekly
data. Do there appear to be any patterns?

2. Use the full data set to perform a logistic regression with
Direction as the response and the five lag variables plus
Volumeas predictors. Use the summary function to print the
results. Do any of the predictors appear to be statistically
significant? If so, which ones?

3. Compute the confusion matrix and overall fraction of correct
predictions. Explain what the confusion matrix is telling you
about the types of mistakes made by logistic regression.

4. Now fit the logistic regression model using a training data
period from 1990 to 2008, with Lag2 as the only predictor.
Compute the confusion matrix and the overall fraction of
correct predictions for the held out data (that is, the data from
2009 and 2010).

5. Repeat d) using LDA.
6. Repeat d) using QDA.
7. Repeat d) using KNN with K = 1.
8. Which of these methods appear to provide the best results on

this data?
9. Experiment with different combinations of predictors, including

possible transformations and interaction, for each of the
methods. Report the variables, method, and associated
confusion matrix that appears to provide the best results on
the held out data. Note that you should also experiment with
values for K in the KNN classifier.

Exercise 4.7.11 (ISL textbook)

In this problem, you will develop a model to predict whether a given
car gets high or low gas mileage based on the Auto data set.

1. Create a binary variable, mpg01, that contains a 1 if mpg
contains a value above its median, and a 0 if mpg contains a
value below its median. You can compute the median using the
median() function. Note that you may find it helpful to use
the data.frame() function to create a single data set
containing both mpg01and the other Auto variables.

2. Explore the data graphically in order to investigate the
association between mpg01 and the other features. Which of
the other features seems most likely to be useful in predicting
mpg01? Scatter plots and boxplots may be useful tools to
answer this question. Describe your findings.

3. Split the data into a training set and a test set.
4. Perform LDA on the training data in order to predict mpg01

using the variables that seemed most associated with mpg01 in
b. What is the test error of the model obtained?

5. Repeat d) using LDA.
6. Repeat d) using logistic regression.
7. Repeat d) using KNN with different values of K . Which value

of K seems to perform the best on this data?

Sensitivity, specificity, ROC and AUC

1. Install the DAAG package and load the frogs data set. This
data set consists of 212 observations of the following variables:

I pres.abs: a binary variable (0/1) indicating the
presence/absence of frogs at a particular location.

I northing : reference point
I easting : reference point
I altitude : altitude in meters
I distance : distance to nearest extant population, in meters
I NoOfPools : number of potential breeding pools
I NoOfSites : Number of potential breeding sites within a radius

of 2 km
I avrain : mean rainfall during Spring
I meanmin : mean minimum temperature during Spring
I meanmax : mean maximum temperature during Spring

pre s.abs nor thing eas ting alt itude dis tance NoO fPools NoO fSites avr ain mea nmin mea nmax

2 1 115 1047 1500 500 232 3 155.00 3.57 14.00
3 1 110 1042 1520 250 66 5 157.67 3.47 13.80
4 1 112 1040 1540 250 32 5 159.67 3.40 13.60
5 1 109 1033 1590 250 9 5 165.00 3.20 13.17
6 1 109 1032 1590 250 67 5 165.00 3.20 13.17
7 1 106 1018 1600 500 12 4 167.33 3.13 13.07

2. Fit a logistic model to the frogs data set, where pres.abs is
the response variable and distance, NoOfPools and meanmin
are covariates. Call this model glmfit.

3. Compute the confusion matrix for glmfit.

2. What type of error can you find from this confusion matrix?
3. Plot an ROC curve for glmfit. What is the AUC score?

Hint: use function
glmres=roc(response=frogs$pres.abs,predictor=glmfit$fitted)
in library(pROC) where the predictor is a vector with your
predicted posterior probabilites for the test set, and then
plot(glmres) and auc(glmres).

3. Repeat i-iii in b. but now with an LDA model with the same
covariates. Call the fitted LDA model lfit.

Hint: LDA can be fitted with function lda in library(class) and
predicted values found using
lpred=predict(object=lfit)$posterior[,1]. Then use
lres=roc(response=frogs$pres.abs,predictor=lpred).

4. We have used the same data set to fit the models and to
calculate the ROC and AUC. It that a sensible strategy?



Further reading

I More on logistic regression from TMA4315 Generalized linear
models H2017: TMA4315M3: Binary regression

I Videoes on YouTube by the authors of ISL, Chapter 4

https://www.math.ntnu.no/emner/TMA4315/2017h/3BinReg.html
https://www.youtube.com/playlist?list=PL5-da3qGB5IC4vaDba5ClatUmFppXLAhE


R packages to install before knitting this R Markdown file
# packages to install before knitting this R Markdown file
# to knit the Rmd
install.packages("knitr")
install.packages("rmarkdown")
# nice tables in Rmd
install.packages("kableExtra")
# cool layout for the Rmd
install.packages("prettydoc") # alternative to github
#plotting
install.packages("ggplot2") # cool plotting
install.packages("ggpubr") # for many ggplots
install.packages("GGally") # for ggpairs
#datasets
install.packages("ElemStatLearn")
install.packages("ISLR")
#data manipulations
install.packages("dplyr")
install.packages("reshape")
# classificaton
install.packages("class")
install.packages("pROC")
# div statistics
install.packages("MASS")
install.packages("mvtnorm")


