
TMA4268 Statistical Learning V2018
Module 8: TREE-BASED METHODS

Mette Langaas, Thea Roksvåg, Julia Debik, Department of Mathematical Sciences, NTNU
week 10, 2018 (version 15.05.2018)

Contents
Learning material for this module: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Introduction 2
What will you learn? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Running example: Detection of Minor Head Injury . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Main idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Constructing a decision tree 5
Regression tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Recursive binary splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Regression tree: ozone example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Tree performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
R: function tree in library tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Classification trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Pruning 14
Cost complexity pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Building a regression (classification) tree: Algorithm 8.1 . . . . . . . . . . . . . . . . . . . . . . . . 16

From trees to forests 19
What is next? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Leo Breiman - the inventor of CART, bagging and random forests . . . . . . . . . . . . . . . . . . 19

Bagging 20
Independent data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Bootstrapping (from Module 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Bootstrap samples and trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Out-of-bag error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Prediction by majority vote vs. by averaging the probabilities . . . . . . . . . . . . . . . . . . . . . 23
When should we use bagging? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Variable importance plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Random Forest 27
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Boosting 36

Example: Boston data set 37

Summing up 46

Recommended exercises 46

1



R packages 48

References and further reading 48

Last changes: (15.05: text typos corrected. 28.04: added formula for deviance under cross-entropy.) # Before
we start

Learning material for this module:

• James et al (2013): An Introduction to Statistical Learning. Chapter 8.

• Classnotes 05.03.2018
• Classnotes 07.03.2018

Some of the figures in this presentation are taken (or are inspired) from “An Introduction to Statistical
Learning, with applications in R” (Springer, 2013) with permission from the authors: G. James, D. Witten,
T. Hastie and R. Tibshirani.

Topics

• Introduction
• Regression tree
• Classification tree
• Pruning
• Bagging
• Random forest
• Boosting
• Summing up
• Recommended exercises
• Packages to install before knitting this R Markdown file
• References

Introduction

What will you learn?

• Decision tree - idea and example
• Regression trees

– what is a tree
– how to grow a tree

• Classification trees - any changes to the above
• Pruning a tree
• Bagging

– Variable importance plots
• Random forests
• Boosting
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Running example: Detection of Minor Head Injury

Remark: this data is artificial.

Assume that you work as a statistician at a hospital, and the head of department asks you to develop a

simple method for detecting whether a patient is at risk for having a minor head injury.

The method should be easy to

• interpret for the medical personell that are not skilled in statistics, and
• the method should be fast, such that the medical personell quickly can identify a patient that needs

treatment.

• The variable clinically.important.brain.injury will be the response of our model: It has value 1 if a
person has an acute brain injury, and 0 otherwise.

• In this dataset, 250 (19%) of the patients have a clinically important brain injury.
• 10 variables are as explanatory variables. These variables describe the state of the patient:

– Is he/she vomiting?
– Is the Glasgow Coma Scale measure after 2 hours 15?
– Has he/she an open scull fracture?
– Has he/she had a loss of consciousness?
– and so on.

These are questions the medical staff ask themselves when diagnosing the patient. Our job as a statistician is
to systemize these questions in a good way so we can use them to estimate the probability of a brain injury.

This can be done by using tree-based methods.

The dataset includes data about 1321 patients and is a modified and smaller version of the (simulated) dataset
headInjury from the DAAG library. We have made age instead of age.65 giving us the “exact” age of the
patient.

## amnesia bskullf GCSdecr GCS.13 GCS.15 risk consc oskullf vomit
## 3 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 1 0 0 0
## 11 0 0 0 0 0 0 0 0 0
## 12 1 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 0
## 16 0 0 0 0 0 0 0 0 0
## clinically.important.brain.injury age
## 3 0 44
## 9 0 67
## 11 0 62
## 12 0 1
## 14 0 55
## 16 0 63

Main idea

The main idea behind tree-based methods is to

• derive a set of decision rules for segmenting the predictor space into a number of regions.
• In order to make a prediction for a new observation, we classify the observation into one of these regions

by applying the decision rules.
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• Then we typically use the mean or a majority vote of the training observations in this region as the
prediction.

Below is a clasification tree made from a training set of 850 randomly drawn observations.

|GCS.15: 0

bskullf: 0

risk: 0

age < 67.5

consc: 0

age < 67

age < 63.5

risk: 0

GCS.13: 0 vomit: 0

0

0 1

0 0 1

0 1 1 1

1

## node), split, n, deviance, yval, (yprob)
## * denotes terminal node
##
## 1) root 850 816.00 0 ( 0.8141 0.1859 )
## 2) GCS.15: 0 717 530.00 0 ( 0.8787 0.1213 )
## 4) bskullf: 0 664 407.00 0 ( 0.9081 0.0919 )
## 8) risk: 0 503 222.00 0 ( 0.9423 0.0577 )
## 16) age < 67.5 455 145.00 0 ( 0.9626 0.0374 ) *
## 17) age > 67.5 48 54.00 0 ( 0.7500 0.2500 )
## 34) consc: 0 42 37.80 0 ( 0.8333 0.1667 ) *
## 35) consc: 1 6 5.41 1 ( 0.1667 0.8333 ) *
## 9) risk: 1 161 161.00 0 ( 0.8012 0.1988 ) *
## 5) bskullf: 1 53 73.50 0 ( 0.5094 0.4906 )
## 10) age < 67 46 62.40 0 ( 0.5870 0.4130 ) *
## 11) age > 67 7 0.00 1 ( 0.0000 1.0000 ) *
## 3) GCS.15: 1 133 184.00 1 ( 0.4662 0.5338 )
## 6) age < 63.5 94 128.00 0 ( 0.5745 0.4255 )
## 12) risk: 0 62 72.80 0 ( 0.7258 0.2742 )
## 24) GCS.13: 0 55 55.00 0 ( 0.8000 0.2000 ) *
## 25) GCS.13: 1 7 5.74 1 ( 0.1429 0.8571 ) *
## 13) risk: 1 32 38.00 1 ( 0.2812 0.7188 )
## 26) vomit: 0 22 29.80 1 ( 0.4091 0.5909 ) *
## 27) vomit: 1 10 0.00 1 ( 0.0000 1.0000 ) *
## 7) age > 63.5 39 39.60 1 ( 0.2051 0.7949 ) *

4



By using simple decision rules related to the most important explanatory variables the medical staff can now
assess the probability of a brain injury.

For example if the Glasgow Coma Scale of the patient is 15 (GCS.15.2hours=1 ) and the patient is older than
63 year then we should predict a minor injury according to the fitted tree, and the probability of that is
estimated to be 0.7949 (node 7 in printout).

• The advantage of such decisions trees is that they are easier to interpret than many of the classification
(and regression) methods that we have studied so far

• and they provide an easy way to visualize the data for non-statisticians.

Glossary

• Classification and regression trees are usually drawn upside down, where the top node is called the root.
• The terminal nodes or leaf nodes are the nodes at the bottom, with no splitting criteria. These represent

the final predicted class (for classification trees) or predicted response value (for regression trees) and
are written symbolically as Rj for j = 1, 2, ..., J .

• Internal nodes are all nodes between the root and the terminal nodes. These nodes correspond to the
partitions of the predictor space.

• Branches: segment of the tree connecting the nodes.

We will consider only binary splits on one variable, but multiway splits and linear combination of variabes
are possible - but not so common.

Constructing a decision tree

You can construct decision trees for both classification and regression problems. How do we construct a
regression tree?

Regression tree

Assume that we have a dataset consisting of n pairs (xi, Yi), i = 1, . . . , n, and each predictor is xi =
(xi1, xi2, ..., xip).

Two steps:

1. Divide the predictor space into non-overlapping regions R1, R2, . . . , RJ .
2. For every observation that falls into region Rj we make the same prediction - which is the mean of the

responses for the training observations that fall into Rj .

How to divide the predictor space R1, R2, . . . , RJ?

Could try to minimize the RSS on the training set given by

RSS =
J∑
j=1

∑
i∈Rj

(yi − ŷRj
)2,

where ŷRj is the mean response for the training observations in region j. The mean ŷRj is also the predicted
value for a new observations that falls into region j.
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To do this we need to consider every partition of the predictor space, and compute the RSS for each partition.
This is computationally unfeasible (so no exhaustive search over possible trees).

Ripley (1996, p 216): Two types of optimality. a) Optimality of the partitioning of the predictor space : only
feasible for small dimensions. b) Given partitioning of predictor space, how to represent this by a tree in the
best possible way (=minimal expected number of tests) is a NP-complete problem.

A greedy approach is taken (aka top-down) - called recursive binary splitting.

Recursive binary splitting

We start at the top of the tree and divide the predictor space into two regions, R1 and R2 by making a
decision rule for one of the predictors x1, x2, ..., xp. If we define the two regions by R1(j, s) = {x|xj < s} and
R2(j, s) = {x|xj ≥ s}, it means that we need to find the (predictor) j and (splitting point) s that minimize

∑
i:xi∈R1(j,s)

(yi − ŷR1)2 +
∑

i:xi∈R2(j,s)

(yi − ŷR2)2,

where ŷR1 and ŷR2 are the mean responses for the training observations in R1(j, s) and R2(j, s) respectively.
This way we get the two first branches in our decision tree.

• We repeat the process to make branches further down in the tree.
• For every iteration we let each single split depend on only one of the predictors, giving us two new

branches.
• This is done successively and in each step we choose the split that gives the best split at that particular

step, i.e the split that gives the smallest RSS.
• We don’t consider splits that further down the tree might give a tree with a lower overall RSS.

We continue splitting the predictor space until we reach some stopping criterion. For example we stop when
no region contains more than 5 observations or when the reduction in the RSS is smaller than a specified
limit.

Regression tree: ozone example

Consider the ozone data set from the ElemStatLearn library. The data set consists of 111 observations on
the following variables:

• ozone : the concentration of ozone in ppb
• radiation: the solar radiation (langleys)
• temperature : the daily maximum temperature in degrees F
• wind : wind speed in mph

Suppose we want to get an estimate of the ozone concentration based on the measurement of wind speed and
the daily maximum temperature.

ozone radiation temperature wind
41 190 67 7.4
36 118 72 8.0
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ozone radiation temperature wind
12 149 74 12.6
18 313 62 11.5
23 299 65 8.6
19 99 59 13.8

We can fit a regression tree to the data, with ozone as our response variable and temperature and wind as
predictors (not including radiation to make this easier to see). This gives us the following regression tree -
what do you see?

ozone.tree = tree(ozone~temp+wind, data=myozone)
plot(ozone.tree,type="uniform")
text(ozone.tree)

|
temp < 82.5

wind < 7.15

temp < 77.5

wind < 10.6

temp < 88.5
61.0

18.3 31.1 74.5 92.9

48.7

We see that temperature is the most important predictor for predicting the ozone concentration. Given a
temperature below 82.5◦ F, and a low wind speed, the ozone level is high. For a low temperature and a high
wind speed, the ozone level is lower. The highest ozone level is with a high temperature in combination with
a wind speed below 10.6.

Now, we focus on the regions Rj , j = 1, . . . , J . What is J here?

Below we see the partition of the ozone data set from the ozone.tree, where the ozone levels have been
color-coded, where a darker color corresponds to a higher ozone concentration.

We recognize the numbers from the leaf nodes on the figure. Each rectangle corresponds to one leaf node.
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Each number corresponding to a leaf node have been found by taking an average of all observations in
the corresponding region (rectangle). Each line corresponds to an internal node, a binary partition of the
predictor space.

par(pty="s")
o.class = cut(myozone$ozone, breaks= 7)
col.oz = brewer.pal(9, "BuGn")
palette(col.oz[3:9])
par(mar=c(5.1, 4.1, 2.1, 8.1), xpd=TRUE)
plot(wind~temp, col=o.class, data=myozone, pch=20)
partition.tree(ozone.tree, add=TRUE)
legend('topright', inset=c(-0.4,0.2),

title="Ozone", legend = levels(o.class),
col=col.oz[3:9], pch=20, box.col=NA)

60 70 80 90

5
10

15
20

temp

w
in

d

61.0

18.3 31.1

74.5 92.9

48.7
Ozone

(0.833,24.9]
(24.9,48.7]
(48.7,72.6]
(72.6,96.4]
(96.4,120]
(120,144]
(144,168]

8



|
temp < 82.5

wind < 7.15

temp < 77.5

wind < 10.6

temp < 88.5
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18.3 31.1 74.5 92.9
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• Explain the connection between the tree and the region plot.
• Why is recursive binary splitting classified as a greedy algorithm?
• Discuss the advantages and disadvantages of letting each single split depend on only one of the predictors.

Tree performance

To test the predictive performance of our regression tree, we can randomly divide our observations into a test
and a training set (here 1/3 test).
set.seed(200)
ozone.trainID = sample(1:111, 75)
ozone.train = ozone[ozone.trainID, ]
ozone.test = ozone[-ozone.trainID,]

ozone.full = tree(ozone~temperature+wind,
data=ozone.train)

ozone.pred = predict(ozone.full, newdata=ozone.test)
ozone.MSE = mean((ozone.pred-ozone.test$ozone)^2)
ozone.MSE

## [1] 297.452

R: function tree in library tree

by Brian D. Ripley: Fit a Classification or Regression Tree

Description: A tree is grown by binary recursive partitioning using the response in the specified formula and
choosing splits from the terms of the right-hand-side.

tree(formula, data, weights, subset, na.action = na.pass, control = tree.control(nobs, . . . ), method =
“recursive.partition”, split = c(“deviance”, “gini”), model = FALSE, x = FALSE, y = TRUE, wts = TRUE,
. . . )
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• Details: A tree is grown by binary recursive partitioning using the response in the specified formula
and choosing splits from the terms of the right-hand-side. Numeric variables are divided into X < a
and X > a; the levels of an unordered factor are divided into two non-empty groups. The split which
maximizes the reduction in impurity is chosen, the data set split and the process repeated. Splitting
continues until the terminal nodes are too small or too few to be split.

• Tree growth is limited to a depth of 31 by the use of integers to label nodes.
• Factor predictor variables can have up to 32 levels. This limit is imposed for ease of labelling, but since

their use in a classification tree with three or more levels in a response involves a search over 2ˆ(k-1) - 1
groupings for k levels, the practical limit is much less.

Classification trees

remember the minor head injury example?

Let K be the number of classes for the response.

Building a decision tree in this setting is similar to building a regression tree for a quantitative response, but
there are two main differences: the prediction and the splitting criterion

1) The prediction:

• In the regression case we use the mean value of the responses in Rj as a prediction for an observation
that falls into region Rj .

• For the classification case however, we have two possibilities:
– Majority vote: Predict that the observation belongs to the most commonly occurring class of the

training observations in Rj .

– Estimate the probability that an observation xi belongs to a class k, p̂jk(xi), and then classify
according to a threshold value. This estimated probability is the proportion of class k observations
in region Rj with Nj observations:

p̂jk = 1
Nj

∑
i:xi∈Rj

I(yi = k) = njk
Nj

.

2) The splitting criterion: We can not use RSS as a splitting criterion for a qualitative variable. Instead
we can use some measure of impurity of the node.

Gini index:

G =
K∑
k=1

p̂jk(1− p̂jk),

Cross entropy:

D = −
K∑
k=1

p̂jklogp̂jk

Here p̂jk is the proportion of training observation in region j that are from class k. Remark: the deviance is
a scaled version of the cross entropy. −2

∑K
k=1 njklogp̂jk where p̂jk = njk

Nj

When making a split in our classification tree, we want to minimize the Gini index or the cross-entropy.
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⊕: Why these splitting criteria? Measure of impurity? How? See classnotes.
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Minor head injury - continued

tree.HIClass=tree(clinically.important.brain.injury~.,
data=headInjury2,
subset=train,split="deviance")

summary(tree.HIClass)

##
## Classification tree:
## tree(formula = clinically.important.brain.injury ~ ., data = headInjury2,
## subset = train, split = "deviance")
## Variables actually used in tree construction:
## [1] "GCS.15" "bskullf" "risk" "age" "consc" "GCS.13" "vomit"
## Number of terminal nodes: 11
## Residual mean deviance: 0.645 = 541 / 839
## Misclassification error rate: 0.124 = 105 / 850

Deviance=−2
∑
j

∑
k njklog(p̂jk) for all nodes j and classes k. (Formula on page 255 of Venables and Ripley

(2002).)
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plot(tree.HIClass,type="proportional")
text(tree.HIClass,pretty=1)

|GCS.15: 0

bskullf: 0

risk: 0

age < 67.5

consc: 0

age < 67

age < 63.5

risk: 0

GCS.13: 0 vomit: 0

0
0 1

0

0 1

0 1 1 1

1

Length of branches are now proportional to the decrease in impurity.

Minor head injury - with Gini index

tree.HIClassG=tree(clinically.important.brain.injury~.,headInjury2,
subset=train,split="gini")

summary(tree.HIClassG)

##
## Classification tree:
## tree(formula = clinically.important.brain.injury ~ ., data = headInjury2,
## subset = train, split = "gini")
## Variables actually used in tree construction:
## [1] "GCS.15" "bskullf" "age" "risk" "GCS.13" "vomit" "amnesia"
## [8] "consc" "oskullf"
## Number of terminal nodes: 78
## Residual mean deviance: 0.488 = 377 / 772
## Misclassification error rate: 0.108 = 92 / 850

tree.HIClassG=tree(clinically.important.brain.injury~.,headInjury2,
subset=train,split="gini")

plot(tree.HIClassG)
text(tree.HIClassG,pretty=1)
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We also use the classification tree to predict the status of the patients in the test set (the one grown with
deviance)
tree.pred=predict(tree.HIClass,headInjury2[test,],type="class")
misclass=table(tree.pred,headInjury2[test,]$clinically.important.brain.injury)
print(misclass)

##
## tree.pred 0 1
## 0 361 50
## 1 18 42

The table shows how often the classification tree provides a correct prediction of the status of the patient.
For example the number in row 1, column 2 is the number of times the tree predicts “0” when the real answer
is “1”. The misclassification rate is given by
1-sum(diag(misclass))/(sum(misclass))

## [1] 0.144374

And for the Gini-grown tree
tree.predG=predict(tree.HIClassG,headInjury2[test,],type="class")
misclassG=table(tree.predG,headInjury2[test,]$clinically.important.brain.injury)
print(misclassG)
1-sum(diag(misclassG))/(sum(misclassG))

##
## tree.predG 0 1
## 0 357 52
## 1 22 40
## [1] 0.157113

13



Questions:

• The classification tree has two terminal nodes with factor “1” originating from the same branch. Why do we get this
“unnecessary” split?

• What if we have x1 and x2 and the true class boundary (two classes) is linear in x1, x2 space. How can we do that with
our binary recursive splits?

• What about a rectangular boundary (figure above)?
• Study the above confusion matrices. One type of mistake is more severe than the other. Discuss if it is possible to change

the algorithm in order to decrease the number of severe mistakes.

Pruning
Imagine that we have a data set with many predictors, and that we fit a large tree. Then, the number of observations from the
training set that falls into some of the regions Rj may be small, and we may be concerned that we have overfitted the training
data.

Pruning is a technique for solving this problem.

By pruning the tree we reduce the size or depth of the decision tree. When we reduce the number of terminal nodes and regions
R1, ..., RJ , each region will probably contain more observations. This way we reduce the probability of overfitting, and we may
get better predictions for test data.

If we have a large dataset with many explanatory variables and terminal nodes, we can also prune the tree if we want to create a
simpler tree and increase the interpretability of the model.

In the classification tree (grown with deviance) we saw that we got several unnecessary splits. This is also something that can be
avoided by pruning.

In the classification tree (grown with Gini index) there were 78 leaves - maybe we want a more easy interpretable tree?

But, there are many possible pruned versions of our full tree. Can we investigate all of these?

Cost complexity pruning

We can prune the tree by using a algorithm called cost complexity pruning. We first build a large tree T0 by recursive binary
splitting. Then we try to find a subtree T ⊂ T0 that (for a given value of α) minimizes

Cα(T ) = Q(T ) + α|T |,
where Q(T ) is our cost function, |T | is the number of terminal nodes in tree T . The parameter α is then a parameter penalizing
the number of terminal nodes, ensuring that the tree does not get too many branches.

We proceed by repeating the the process for the best subtree T , and this way we get a sequence of smaller of smaller subtrees
where each tree is the best subtree of the previous tree.

For regression trees we choose Q(T ) =
∑|T |

m=1

∑
xi∈Rm

(yi − ŷRm )2, and or classification trees the entropy (deviance), Gini or
misclassification rate.

Given a value of α we get a pruned tree (but the same pruned tree for ranges of α).

For α = 0 we get T0 and as α increases we get smaller and smaller trees.

Please study this note from Bo Lindqvist in MA8702 - PhD version of Statistical Learning course for an example of how we
perform cost complexity pruning in detail.
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Figure 1: Linear boundary ISL Figure 8.7
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Building a regression (classification) tree: Algorithm 8.1

1. Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer
than some minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α.
3. Use K-fold cross-validation to choose α. That is, divide the training observations into K folds. For each k = 1, . . . ,K:

• Repeat Steps 1 and 2 on all but the kth fold of the training data.
• Evaluate the mean squared prediction (misclassification, gini, cross-entropy) error on the data in the left-out kth fold, as

a function of α.
• Average the results for each value of α, and pick α to minimize the average error.

4. Return the subtree from Step 2 that corresponds to the chosen value of α.

Combining pruning and cross-validation to find optimal tree

We continue using the classification tree.
set.seed(1); cv.head=cv.tree(tree.HIClass,FUN=prune.misclass)
par(pty="s"); plot(cv.head$size,cv.head$dev,type="b",

xlab="Terminal nodes",ylab="misclassifications")
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The function cv.tree automatically does 10-fold cross-validation. dev is here the number of misclassifications.
print(cv.head)

## $size
## [1] 11 10 7 5 4 1
##
## $dev
## [1] 132 132 130 130 132 170
##
## $k
## [1] -Inf 0.00000 1.33333 3.50000 5.00000 12.33333
##
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune" "tree.sequence"

We have done cross-validation on our training set of 850 observations. According to the plot, the number of misclassifications is
lowest if we use 5 terminal nodes. Next, we prune the classification tree according to this value:
prune.HIClass=prune.misclass(tree.HIClass,best=5)
#Five node tree.

plot(prune.HIClass)
text(prune.HIClass,pretty=1)
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risk: 0

GCS.13: 0

0

0 1

1

1

We see that the new tree doesn’t have any unnecessary splits, and we have a simple and interpretable decision tree. How is the
predictive performance of the model affected?

tree.pred.prune=predict(prune.HIClass,headInjury2[test,],type="class")
misclass.prune=table(tree.pred,headInjury2[test,]$clinically.important.brain.injury)

17



print(misclass.prune)

1-sum(diag(misclass.prune))/(sum(misclass.prune))

##
## tree.pred 0 1
## 0 361 50
## 1 18 42
## [1] 0.144374

We see that the misclassification rate is as small as before indicating that the pruned tree is as good as the original tree for the
test data.

The same repeated for the Gini-grown tree - comment on what is done.
set.seed(1); cv.headG=cv.tree(tree.HIClassG,FUN=prune.misclass)
par(pty="m",mfrow=c(1,2)); plot(cv.headG$size,cv.headG$dev,type="b",

xlab="Terminal nodes",ylab="misclassifications")

prune.HIClassG=prune.misclass(tree.HIClassG,best=7)
plot(prune.HIClassG)
text(prune.HIClassG,pretty=1)
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print(cv.headG)

## $size
## [1] 78 32 26 20 18 14 11 9 7 5 4 1
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##
## $dev
## [1] 132 132 132 132 132 131 130 130 125 130 132 170
##
## $k
## [1] -Inf 0.000000 0.166667 0.333333 0.500000 0.750000 1.000000
## [8] 1.500000 2.000000 3.500000 5.000000 12.333333
##
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune" "tree.sequence"

⊕ Questions

Discuss the bias-variance tradeoff of a regression tree when increasing/decreasing the number of terminal nodes, i.e:

• What happens to the bias?
• What happens to the variance of a prediction if we reduce the tree size?

From trees to forests
Advantages (+)

• Trees automatically select variables
• Tree-growing algorithms scale well to large n, growing a tree greedily
• Trees can handle mixed features (continouos, categorical) seamlessly, and can deal with missing data
• Small trees are easy to interpret and explain to people
• Some believe that decision trees mirror human decision making
• Trees can be displayed graphically

Disadvantages (-)

• Large trees are not easy to interpret
• Trees do not generally have good prediction performance (high variance)
• Trees are not very robust, a small change in the data may cause a large change in the final estimated tree

What is next?

• Bagging: grow many trees (from bootstrapped data) and average - to get rid of the non-robustness and high variance by
averaging

• Variable importance plot - to see which variables make a difference (now that we have many trees).
• Random forest: inject more randomness (and even less variance) by just allowing a random selection of predictors to

be used for the splits at each node.
• Boosting: make one tree, then another based on the residuals from the previous, repeat. The final predictor is a weighted

sum of these trees.

But first,

Leo Breiman - the inventor of CART, bagging and random forests

Quotation from Wikipedia

Leo Breiman (January 27, 1928 – July 5, 2005) was a distinguished statistician at the University of California, Berkeley. He was
the recipient of numerous honors and awards, and was a member of the United States National Academy of Science.
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Breiman’s work helped to bridge the gap between statistics and computer science, particularly in the field of machine learning.
His most important contributions were his work on classification and regression trees and ensembles of trees fit to bootstrap
samples. Bootstrap aggregation was given the name bagging by Breiman. Another of Breiman’s ensemble approaches is the
random forest.

From Breimans obituary

BERKELEY – Leo Breiman, professor emeritus of statistics at the University of California, Berkeley.

“It is trite to say so, but Leo Breiman was indeed a Renaissance man, and we shall miss him greatly,” said Peter Bickel, professor
of statistics and chairman this summer of UC Berkeley’s statistics department.

Breiman retired in 1993, but as a Professor in the Graduate School, he continued to get substantial National Science Foundation
grants and supervised three Ph.D. students. Bickel said that some of Breiman’s best work was done after retirement.

“In particular,” said Bickel, “he developed one of the most successful state-of-the-art classification programs, ‘Random Forest.’
This method was based on a series of new ideas that he developed in papers during the last seven years, and it is extensively
used in government and industry.”

Breiman’s best known work is considered to be “Classification and Regression Trees,” a work in collaboration with three other
scholars that facilitates practical applications, such as the diagnosis of diseases, from a multitude of symptoms.

Bagging
Decision trees often suffer from high variance. By this we mean that the trees are sensitive to small changes in the predictors: If
we change the observation set, we may get a very different tree.

Let’s draw a new training set for our data and see what happens if we fit our full classification tree (deviance grown).

set.seed(33)
N=dim(headInjury2)[1]
train2=sample(1:N,850) #We draw a new training sample. The number of observations is the same as before.
tree.HIClass2=tree(clinically.important.brain.injury~.,

data=headInjury2,subset=train2)
par(mfrow=c(1,2))
#short=c("amnesia","bskullf","GCSdecr","GCS.13","GCS.15","risk","consc","oskullf","vomit","brain","age")
plot(tree.HIClass);text(tree.HIClass,pretty=0)
plot(tree.HIClass2);text(tree.HIClass2,pretty=0)
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This classification tree is constructed by using 850 observations, just like the tree in the classification trees section, but we get
two different trees that will give different predictions for a test set.

To reduce the variance of decision trees we can apply bootstrap aggregating (bagging), invented by Leo Breiman in 1996 (see
references).

Independent data sets

Assume we have B i.i.d. observations of a random variable X each with the same mean and with variance σ2. We calculate the
mean X̄ = 1

B

∑B

b=1 Xb. The variance of the mean is

Var(X̄) = Var
( 1
B

B∑
b=1

Xb

)
=

1
B2

B∑
b=1

Var(Xb) =
σ2

B
.

By averaging we get reduced variance. This is the basic idea!

But, we will not draw random variables - we want to fit decision trees: f̂1(x), f̂2(x), . . . , f̂B(x) and average those.

f̂avg(x) =
1
B

B∑
b=1

f̂b(x)

However, we do not have many independent data set - so we use bootstrapping to construct B data sets.

Bootstrapping (from Module 5)

Problem: we want to draw samples from a population with distribution F .

But: we do not know F and do not have a population to draw from, we only have our one sample.
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Solution: we may use our sample as an empirical estimate for the distribution F - by assuming that each sample point has
probability 1/n for being drawn.

Therefore: we draw with replacement n observations from our sample - and that is our first bootstrap sample.

We repeat this B times and get B bootstrap samples - that we use as our B data sets.

Bootstrap samples and trees

For each bootstrap sample we construct a decision tree, f̂∗b(x) with b = 1, ..., B, and we then use information from all of the
trees to draw inference.

For a regression tree, we take the average of all of the predictions and use this as the final result:

f̂bag(x) =
1
B

B∑
b=1

f̂∗b(x).

For a classification tree we record the predicted class (for a given observation x) for each of the B trees and use the most
occurring classification (majority vote) as the final prediction - or alternatively average posterior probabilities for each class.

Originally, Breiman (1996) suggested to prune each tree, but later research has found that it is better to leave the trees at
maximal size (a bushy tree), to make the trees as different from each other as possible.

The number B is chosen to be as large as “necessary”. An increase in B will not lead to overfitting, and B is not regarded as a
tuning parameter. If a goodness of fit measure is plotted as a function of B (soon) we see that (given that B is large enough)
increasing B will not change the goodness of fit measure.

But first, a smart way to avoid doing cross-validation.

Out-of-bag error estimation

• We use a subset of the observations in each bootstrap sample. From Module 5 we know that the probability that an
observation is in the bootstrap sample is approximately 1− e−1=0.632121 (approximately 2/3).

• when an observation is left out of the bootstrap sample it is not used to build the tree, and we can use this observation as
a part of a “test set” to measure the predictive performance and error of the fitted model, f∗b(x).

In other words: Since each observation i has a probability of approximately 2/3 to be in a bootstrap sample, and we make B
bootstrap samples, then observation i will be outside the bootstrap sample in approximately B/3 of the fitted trees.

The observations left out are referred to as the out-of-bag observations, and the measured error of the B/3 predictions is called
the out-of-bag error.

Example

We can do bagging by using the function randomForest() in the randomForest library.
library(randomForest)
set.seed(1)
bag=randomForest(clinically.important.brain.injury~.,

data=headInjury2,subset=train,
mtry=10,ntree=500,importance=TRUE)

bag$confusion
1-sum(diag(bag$confusion))/sum(bag$confusion[1:2,1:2])

## 0 1 class.error
## 0 642 50 0.0722543
## 1 82 76 0.5189873
## [1] 0.155294
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The variable mtry=10 because we want to consider all 10 predictors in each split of the tree. The variable
ntree = 500 because we want to average over 500 trees.

Predictive performance of the bagged tree on unseen test data:
yhat.bag=predict(bag,newdata=headInjury2[test,])
misclass.bag=table(yhat.bag,headInjury2[test,]$clinically.important.brain.injury)
print(misclass.bag)
1-sum(diag(misclass.bag))/(sum(misclass.bag))

##
## yhat.bag 0 1
## 0 351 43
## 1 28 49
## [1] 0.150743

We note that the misclassification rate has increased slightly for the bagged tree (as compared to our previous
full and pruned tree). In other examples an improvement is very often seen.

Prediction by majority vote vs. by averaging the probabilities

Consider the case when you have grown B classification tree with a binary response with classes 0 and 1.
You might wonder which approach to choose to make a final prediction: majority vote or an average of the
probabilities? Or would the prediction be the same in each case?

The difference between these two procedures can be compared to the difference between the mean value and
median of a set of numbers. If we average the probabilities and make a classification thereafter, we have the
mean value. If we sort all of our classifications, so that the classifications corresponding to one class would
be lined up after each other, followed by the classifications corresponding to the other class we obtain the
median value.

We examine this by an example:

Suppose we have B = 5 (no, B should be higher - this is only for illustration) classification tree and have
obtained the following 5 estimated probabilities: {0.4, 0.4, 0.4, 0.4, 0.9 }. If we average the probabilities, we
get 0.5, and if we use a cut-off value of 0.5, our predicted class is 1. However, if we take a majority vote,
using the same cut of value, the predicted classes will be {0, 0, 0, 0, 1 }. The predicted class, based on a
majority vote, would accordingly be 0.

The two procedures thus have their pros and cons: By averaging the predictions no information is lost. We
do not only get the final classification, but the probability for belonging to the class 0 or 1. However, this
method is not robust to outliers. By taking a majority vote, outliers have a smaller influence on the result.

When should we use bagging?

Bagging can be used for predictors (regression and classification) that are not trees, and according to Breiman
(1996)

• the vital element is the instability of the prediction method
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• if perturbing the learning set can cause significant changes in the predictor constructed, then bagging
can improve accuracy.

Breiman (1996) suggests that these methods should be suitable for bagging:

• neural nets, classification and regression trees, subset selection in linear regression

however not nearest neigbours - since

• the stability of nearest neighbour classification methods with respect to perturbations of the data
distinguishes them from competitors such as trees and neural nets.

Variable importance plots

Bagging is an example of an ensemble method, so is boosting and random forests (to come next). For all
of these methods many trees are grown and combined, and the predictive power can be highly improved.
However, this comes at a cost of interpretability. Instead of having one tree, the resulting model consists of
B trees, where B often is 300 or 500 (or maybe even 5000 when boosting).

Variable importance plots show the relative importance of the predictors: the predictors are sorted according
to their importance, such that the top variables have a higher importance than the bottom variables. There
are in general two types of variable importance plots:

• variable importance based on decrease in node impurity and
• variable importance based on randomization.

Variable importance based on node impurity

The term important relates to total decrease in the node impurity, over splits for a predictor, and is defined
differently for regression trees and classification trees.

Regression trees:

• The importance of each predictor is calculated using the RSS.
• The algorithm records the total amount that the RSS is decreased due to splits for each predictor (there

may be many spits for one predictor for each tree).
• This decrease in RSS is then averaged over the B trees. The higher the decrease, the more important

the predictor.

Classification trees:

• The importance of each predictor is calculated using the Gini index.
• The importance is the mean decrease (over all B trees) in the Gini index by splits of a predictor.

R: varImpPlot (or importance) in randomForest with type=2.

Auto data example
set.seed(4268)
data(mtcars)
mtcars.rf <- randomForest(mpg ~ ., data=mtcars, ntree=1000,

keep.forest=FALSE,
importance=TRUE)
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varImpPlot(mtcars.rf,type=2,pch=20)
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Variable importance based on randomization

Variable importance based on randomization is calculated using the OOB sample.

• Computations are carried out for one bootstrap sample at a time.
• Each time a tree is grown the OOB sample is used to test the predictive power of the tree.
• Then for one predictor at a time, repeat the following:

– permute the OOB observations for the jth variable xj and calculate the new OOB error.
– If xj is important, permuting its observations will decrease the predictive performance.

• The difference between the two is averaged over all trees (and normalized by the standard deviation of
the differences).

R: varImpPlot (or importance) in randomForest with type=1.
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varImpPlot(mtcars.rf,type=1,pch=20)
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The two types together: do they agree?
varImpPlot(mtcars.rf,pch=20)
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Random Forest

If there is a strong predictor in the dataset, the decision trees produced by each of the bootstrap samples in
the bagging algorithm becomes very similar: Most of the trees will use the same strong predictor in the top
split.

We have seen this for our example trees for the minor head injury example, the predictor GCS.15.2hours was
chosen in the top split every time. This is probably the case for a large amount of the bagged trees as well.

This is not optimal, because we get B trees that are highly correlated. We don’t get a large reduction in
variance by averaging f̂∗b(x) when the correlation between the trees is high. In the previous section we
actually saw a (marginal) decrease in the predictive performance for the bagged tree compared to the pruned
tree and the full tree.

Random forests is a solution to this problem and a method for decorrelating the trees.
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The effect of correlation on the variance of the mean

The variance of the average of B observations of i.i.d random variables X, each with variance σ2 is σ2

B . Now,
suppose we have B observations of a random variable X which are identically distributed, each with mean µ
and variance σ2, but not independent.

That is, suppose the variables have a positive correlation ρ

Cov(Xi, Xj) = ρσ2, i 6= j.

The variance of the average is

Var(X̄) = Var
( 1
B

B∑
i=1

Xi

)
=

B∑
i=1

1
B2Var(Xi) + 2

B∑
i=2

i−1∑
j=1

1
B

1
B
Cov(Xi, Xj)

= 1
B
σ2 + 2B(B − 1)

2
1
B2 ρσ

2

= 1
B
σ2 + ρσ2 − 1

B
ρσ2

= ρσ2 + 1− ρ
B

σ2

= 1− (1−B)ρ
B

σ2

Check: ρ = 0 and ρ = 1? (Most negative values of ρ will not give a positive definite covariance matrix. The
covariance matrix is positive definite if ρ > −1/(B − 1).)

The idea behind random forests is to improve the variance reduction of bagging by reducing the correlation
between the trees.

The procedure is thus as in bagging, but with the important difference, that

• at each split we are only allowed to consider m < p of the predictors.

A new sample of m predictors is taken at each split and

• typically m ≈ √p (classificaton) and m = p/3 (regression)

The general idea is at for very correlated predictors m is chosen to be small.

The number of trees, B, is not a tuning parameter, and the best is to choose it large enough.

If B is sufficiently large (three times the number needed for the random forest to stabilize), the OOB error
estimate is equvalent to LOOCV (Efron and Hastie, 2016, p 330).

Example

We decorrelate the trees by using the randomForest() function again, but this time we set mtry=3. This
means that the algorithm only considers three of the predictors in each split. We choose 3 because we have
10 predictors in total and

√
10 ≈ 3.
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Figure 2: ISLR Figure 8.10, gene expression data set with 15 classes and 500 predictors
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set.seed(1)

rf=randomForest(clinically.important.brain.injury~.,
data=headInjury2,subset=train,
mtry=3,ntree=500,importance=TRUE)

We check the predictive performance as before:
rf$confusion
1-sum(diag(rf$confusion[1:2,1:2]))/(sum(rf$confusion[1:2,1:2]))

yhat.rf=predict(rf,newdata=headInjury2[test,])

misclass.rf=table(yhat.rf,headInjury2[test,]$clinically.important.brain.injury)
print(misclass.rf)

1-sum(diag(misclass.rf))/(sum(misclass.rf))

## 0 1 class.error
## 0 671 21 0.0303468
## 1 97 61 0.6139241
## [1] 0.138824
##
## yhat.rf 0 1
## 0 367 51
## 1 12 41
## [1] 0.133758

The misclassification rate is slightly decreased compared to the bagged tree (and to the pruned tree).

By using the varImpPlot() function we can study the importance of each predictor.
varImpPlot(rf,pch=20)
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As expected GCS.15.2hours is a strong predictor along with basal.skull.facture and age. This means that
most of the trees will have these predictors in the top split.

Iris example

Variable importance plot for bagging:
# stolen from https://gist.github.com/ramhiser/6dec3067f087627a7a85
library(dplyr)
library(ggplot2)
#library(ggpubr)
rf_out <- randomForest(Species ~ ., data=iris, mtry=4)
rf_out$confusion

# Extracts variable importance (Mean Decrease in Gini Index)
# Sorts by variable importance and relevels factors to match ordering
var_importance <- data_frame(variable=setdiff(colnames(iris), "Species"),

importance=as.vector(importance(rf_out)))
var_importance <- arrange(var_importance, desc(importance))
var_importance$variable <- factor(var_importance$variable, levels=var_importance$variable)
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p <- ggplot(var_importance, aes(x=variable, weight=importance, fill=variable))
p <- p + geom_bar() + ggtitle("Variable Importance from Random Forest Fit")
p <- p + xlab("Demographic Attribute") + ylab("Variable Importance (Mean Decrease in Gini Index)")
p <- p + scale_fill_discrete(name="Variable Name")
p=p + theme(axis.text.x=element_blank(),

axis.text.y=element_text(size=12),
axis.title=element_text(size=16),
plot.title=element_text(size=18),
legend.title=element_text(size=16),
legend.text=element_text(size=12))
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Petal.Width
Petal.Length
Sepal.Width
Sepal.Length

Variable Importance from Random Forest Fit

## setosa versicolor virginica class.error
## setosa 50 0 0 0.00
## versicolor 0 47 3 0.06
## virginica 0 4 46 0.08
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Iris example

Variable importance plot for random forest:
# stolen from https://gist.github.com/ramhiser/6dec3067f087627a7a85

rf_out=randomForest(Species~.,data=iris)
rf_out$confusion
var_importance <- data_frame(variable=setdiff(colnames(iris), "Species"),

importance=as.vector(importance(rf_out)))
var_importance <- arrange(var_importance, desc(importance))
var_importance$variable <- factor(var_importance$variable, levels=var_importance$variable)

pp <- ggplot(var_importance, aes(x=variable, weight=importance, fill=variable))
pp <- pp + geom_bar() + ggtitle("Variable Importance from Random Forest Fit")
pp <- pp + xlab("Demographic Attribute") + ylab("Variable Importance (Mean Decrease in Gini Index)")
pp <- pp + scale_fill_discrete(name="Variable Name")
pp=pp + theme(axis.text.x=element_blank(),

axis.text.y=element_text(size=12),
axis.title=element_text(size=16),
plot.title=element_text(size=18),
legend.title=element_text(size=16),
legend.text=element_text(size=12))

pp
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Variable Importance from Random Forest Fit

## setosa versicolor virginica class.error
## setosa 50 0 0 0.00
## versicolor 0 47 3 0.06
## virginica 0 4 46 0.08

Boosting

Boosting is an alternative approach for improving the predictions resulting from a decision tree. We will only
consider the description of boosting regression trees (and not classification trees) in this course.

In boosting the trees are grown sequentially so that each tree is grown using information from the previous
tree.

• First build a decision tree with d splits (and d+ 1 terminal notes).
• Next, improve the model in areas where the model didn’t perform well. This is done by fitting a decision

tree to the residuals of the model. This procedure is called learning slowly.

36



• The first decision tree is then updated based on the residual tree, but with a weight.
• The procedure is repeated until some stopping criterion is reached. Each of the trees can be very small,

with just a few terminal nodes (or just one split).

Algorithm 8.2: Boosting for regression trees

1. Set f̂(x) = 0 and ri = yi for all i in the training set.
2. For b = 1, 2, ..., B, repeat:

a) Fit a tree f̂ b with d splits (d+ 1 terminal nodes) to the training data.

b) Update f̂ by adding in a shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂ b(x).

c) Update the residuals,
ri ← ri − λf̂ b(xi).

3. The boosted model is f̂(x) =
∑B
b=1 λf̂

b(x).

Boosting has three tuning parameters which need to set, and can be found using cross-validation.

Tuning parameters

• The number of trees to be grown, B. The value of B could be chosen using cross-validation. A too small
value of B would imply that much information is unused (remember that boosting is a slow learner),
whereas a too large value of B may lead to overfitting.

• λ: This is a shrinkage parameter and controls the rate at which boosting learns. The role of λ is to
scale the new information, when added to the existing tree. We add information from the b-th tree to
our existing tree f̂ , but scaled by the λ. Choosing a small value for λ ensures that the algorithm learns
slowly, but will require a larger tree ensemble. Typical values of λ is 0.1 or 0.01.

• Interaction depth d: The number of splits in each tree. This parameter controls the complexity of the
boosted tree ensemble (the level of interaction between variables that we may estimate). By choosing
d = 1 a tree stump will be fitted at each step and this gives an additive model.

Example: Boston data set

First - to get to know the data set we run through trees, bagging and random forests - before arriving at
boosting. See also the ISLR book, Section 8.3.4.

Data

library(MASS)
library(tree)
set.seed(1)
train = sample(1:nrow(Boston), nrow(Boston)/2)
colnames(Boston)
head(Boston)
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## [1] "crim" "zn" "indus" "chas" "nox" "rm" "age"
## [8] "dis" "rad" "tax" "ptratio" "black" "lstat" "medv"
## crim zn indus chas nox rm age dis rad tax ptratio black
## 1 0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90
## 2 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90
## 3 0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83
## 4 0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63
## 5 0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90
## 6 0.02985 0 2.18 0 0.458 6.430 58.7 6.0622 3 222 18.7 394.12
## lstat medv
## 1 4.98 24.0
## 2 9.14 21.6
## 3 4.03 34.7
## 4 2.94 33.4
## 5 5.33 36.2
## 6 5.21 28.7

Regression tree

tree.boston=tree(medv~.,Boston,subset=train)
summary(tree.boston); plot(tree.boston)
text(tree.boston,pretty=0)

|lstat < 9.715

rm < 7.437

rm < 6.7815
dis < 2.6221

rm < 6.4755

lstat < 21.49

lstat < 14.48

37.4 22.5 26.8

32.1
46.4

21.0 17.2
11.1

##
## Regression tree:
## tree(formula = medv ~ ., data = Boston, subset = train)
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## Variables actually used in tree construction:
## [1] "lstat" "rm" "dis"
## Number of terminal nodes: 8
## Residual mean deviance: 12.6 = 3100 / 245
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -14.1000 -2.0400 -0.0536 0.0000 1.9600 12.6000

Need to prune?

cv.boston=cv.tree(tree.boston)
plot(cv.boston$size,cv.boston$dev,type='b')

1 2 3 4 5 6 7 8

50
00

10
00

0
15

00
0

20
00

0

cv.boston$size

cv
.b

os
to

n$
de

v

Most complex tree selected.

Pruning

Just to show pruning (even if most complex tree was selected).
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prune.boston=prune.tree(tree.boston,best=5)
plot(prune.boston)
text(prune.boston,pretty=0)

|lstat < 9.715

rm < 7.437

rm < 6.7815

lstat < 21.49

25.5 32.1
46.4

19.2 11.1

Test error for full tree

yhat=predict(tree.boston,newdata=Boston[-train,])
boston.test=Boston[-train,"medv"]
plot(yhat,boston.test, pch=20)
abline(0,1)
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## [1] 25.0456

Bagging

library(randomForest)
set.seed(1)
bag.boston=randomForest(medv~.,data=Boston,subset=train,mtry=13,importance=TRUE)
bag.boston

##
## Call:
## randomForest(formula = medv ~ ., data = Boston, mtry = 13, importance = TRUE, subset = train)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 13
##
## Mean of squared residuals: 11.0251
## % Var explained: 86.65

Plotting predicted test values vs true values.
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yhat.bag = predict(bag.boston,newdata=Boston[-train,])
plot(yhat.bag, boston.test,pch=20)
abline(0,1)
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mean((yhat.bag-boston.test)^2)

## [1] 13.4735

Error rate on test set for bagging

Random forest

set.seed(1)
rf.boston=randomForest(medv~.,data=Boston,subset=train,mtry=6,importance=TRUE)
yhat.rf = predict(rf.boston,newdata=Boston[-train,])
mean((yhat.rf-boston.test)^2)
importance(rf.boston)
varImpPlot(rf.boston)
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rf.boston

## [1] 11.4802
## %IncMSE IncNodePurity
## crim 12.54777 1094.6538
## zn 1.37549 64.4006
## indus 9.30426 1086.0910
## chas 2.51877 76.3680
## nox 12.83561 1008.7370
## rm 31.64615 6705.0264
## age 9.97024 575.1370
## dis 12.77443 1351.0198
## rad 3.91185 93.7820
## tax 7.62404 453.1947
## ptratio 12.00819 919.0676
## black 7.37602 358.9693
## lstat 27.66690 6927.9848
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Finally, boosting Boston

library(gbm)
set.seed(1)
boost.boston=gbm(medv~.,data=Boston[train,],

distribution="gaussian",
n.trees=5000,interaction.depth=4)

summary(boost.boston,plotit=FALSE)

## var rel.inf
## lstat lstat 45.9627334
## rm rm 31.2238187
## dis dis 6.8087398
## crim crim 4.0743784
## nox nox 2.5605001
## ptratio ptratio 2.2748652
## black black 1.7971159
## age age 1.6488532
## tax tax 1.3595005
## indus indus 1.2705924
## chas chas 0.8014323
## rad rad 0.2026619
## zn zn 0.0148083

Partial dependency plots - integrating out other variables
par(mfrow=c(1,2))
plot(boost.boston,i="rm")
plot(boost.boston,i="lstat")
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Prediction on test set

First for model with λ = 0.001 (default), then with λ = 0.2: MSE on test set. We could have done
cross-validation to find the beste λ over a grid.
yhat.boost=predict(boost.boston,newdata=Boston[-train,],n.trees=5000)
mean((yhat.boost-boston.test)^2)
boost.boston=gbm(medv~.,data=Boston[train,],distribution="gaussian",

n.trees=5000,interaction.depth=4,shrinkage=0.2,verbose=F)
yhat.boost=predict(boost.boston,newdata=Boston[-train,],n.trees=5000)
mean((yhat.boost-boston.test)^2)

## [1] 11.8443
## [1] 11.5111

plot(yhat.boost,boston.test,pch=20)
abline(0,1)
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## [1] 11.5111

Summing up

was done with a Kahoot! quiz.

Recommended exercises

1. Theoretical questions:

a) Show that each bootstrap sample will contain on average approximately 2/3 of the observations.

2. Understanding the concepts and algorithms:

a) Do Exercise 1 in our book (page 332)
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Draw an example (of your own invention) of a partition of two-dimensional feature space that could result
from recursive binary splitting. Your example should contain at least six regions. Draw a decision tree
corresponding to this partition. Be sure to label all aspects of your figures, including the regions R1,R2,. . . ,
the cutpoints t1,t2,. . . , and so forth.

If the class border of the two dimensional space is linear, how can that be done with recursive binary splitting?

b) Do Exercise 4 in the book (page 332).

Suppose that we want to build a regression tree based on the following dataset:

i (xi1, xi2) y

1 (1,3) 2
2 (2,2) 5
3 (3,2) 3
4 (3,4) 7

Answer the following questions without using R:

c) Find the optimal splitting variable and split point for the first binary splitting for these data according
to the recursive binary splitting algorithm. Hint: Draw a figure and look at possible divisions.

d) Continue the tree construction for the toy data until each terminal node in the tree corresponds to one
single observation. Let the resulting tree be denoted T0.

e) For what values of α in the cost-complexity criterion Cα(T ) will the unpruned tree T0 be the optimal
tree? Hint : Prune the tree by cost complexity pruning.

f) Suppose that we want to predict the response y for a new observation at x=(2,3). What is the predicted
value when using the tree T0 constructed above?

3. Implementation:

In this exercise you are going to implement a spam filter for e-mails by using tree-based methods. Data from
4601 e-mails are collected and can be uploaded from the kernlab library as follows:
library(kernlab)

data(spam)

Each e-mail is classified by type (spam or nonspam), and this will be the response in our model. In addition
there are 57 predictors in the dataset. The predictors describe the frequency of different words in the e-mails
and orthography (capitalization, spelling, punctuation and so on).

a) Study the dataset by writing ?spam in R.

b) Create a training set and a test set for the dataset.

c) Fit a tree to the training data with type as the response and the rest of the variables as predictors.
Study the results by using the summary() function. Also create a plot of the tree. How many terminal
nodes does it have?

d) Predict the response on the test data. What is the misclassification rate?

e) Use the cv.tree() function to find the optimal tree size. Prune the tree according to the optimal tree
size by using the prune.misclass() function and plot the result. Predict the response on the test data
by using the pruned tree. What is the misclassification rate in this case?
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f) Create a decision tree by using the bagging approach. Use the function randomForest() and consider all
of the predictors in each split. Predict the response on the test data and report the misclassification
rate.

g) Apply the randomForest() function again, but this time consider only a subset of the predictors in each
split. This corresponds to the random forest-algorithm. Study the importance of each variable by using
the function importance(). Are the results as expected based on earlier results? Again, predict the
response for the test data and report the misclassification rate.

h) Use gbm() to construct a boosted classification tree. Predict the response for the test data and report
the misclassification rate.

i) Compare the misclassification rates in d-h. Which method gives the lowest misclassification rate for the
test data? Are the results as expected?

R packages

These packages needs to be install before knitting this R Markdown file.
install.packages("gamlss.data")
install.packages("tidyverse")
install.packages("GGally")
install.packages("Matrix")
install.packages("tree")
install.packages("randomForest")
install.packages("gbm")
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• Solutions to exercises in the book, chapter 8
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