
Compulsory exercise 1 with short solutions
TMA4268 Statistical Learning V2018

Martina Hall, Martina.Hall@ntnu.no and Mette Langaas
18 May, 2018

Problem 1 - Core concepts in statistical learning

We consider a regression problem, where the true underlying curve is f(x) = −x + x2 + x3 and we are
considering x ∈ [−3, 3].

This non-linear curve is only observed with added noise (either a random phenomenon, or unobservable
variables influence the observations), that is, we observe y = f(x) + ε. In our example the error is sampled
from ε ∼ N(0, 22).

In real life we are presented with a data set of pairs (xi, yi), i = 1, . . . , n, and asked to provide a prediction at
a value x. We will use the method of K nearest neighbour regression to do this here.

We have a training set of n = 61 observations (xi, yi), i = 1, . . . , n. The KNN regression method provides a
prediction at a value x by finding the closes K points and calculating the average of the observed y values at
these points.

In addition we have a test set of n = 61 observations (at the same grid points as for the training set), but
now with new observed values y.

We have considered K = 1, . . . , 25 in the KNN method. Our experiment has been repeated M = 1000 times
(that is, M versions of training and test set).

a) Training and test MSE

In the Figure 2 (above) you see the result of applying the KNN method with K = 1, 2, 10, 25 to our training
data, repeated for M different training sets (blue lines). The black lines show the true underlying curve.

• Comment briefly on what you see.
• Does a high or low value of K give the most flexible fit?

Answers:

Here K = 1 gives predicted values that on average (over the training sets) are not far from the true curve,
but the large variability. Increasing the number of neighbours to K = 2 gives less variance in the preditions,
and still on average are not far from the true curve. Increasing the number of neighbours further to K = 10,
the variance is even more reduced, but the valued on the edge of our training set (at =-3 and x=3) are not
well estimated, and K = 25 gives little flexibility to the curve and doesn’t fit well, especially on the edges of
the data set. Hence, a low value of K gives the most flexible fit.

In Figure 3 (below) you see mean-squared errors (mean of squared differences between observed and fitted
values) for the training set and for the test set (right panel for one training and one test set, and left panel
for M).

• Comment on what you see.
• What do you think is the “best” choice for K?

1

mailto:Martina.Hall@ntnu.no

Figure 1: Figure 1

2

Figure 2: Figure 2

3

Answers:

We see that larger values of K give larger variations in the MSE for both the test and the train set than
for the smaller choices of K. For the training set, the MSE increases linearly with K, i.e. worse fit, but for
the test set, there seems to be a small decrease at K = 5 before it increases again. Based on this, we would
choose K = 5 as the best choice for K.

Remark: in real life we do not know the true curve, and need to use the test data to decide on model flexibility
(choosing K).

b) Bias-variance trade-off

Now we leave the real world situation, and assume we know the truth (this is to focus on bias-variance
trade-off). You will not observe these curves in real life - but the understanding of the bias-variance trade-off
is a core skill in this course!

In the Figure 4 (below) you see a plot of estimated squared bias, estimated variance, true irreducible error
and the sum of these (labelled total) and averaged over all values of x

The the squared bias and the variance is calculated based on the predicted values and the “true” values
(without the added noise) at each x.

• Explain how that is done. Hint: this is what the M repeated training data sets are used for.
• Focus on Figure 4. As the flexibility of the model increases (K decreases), what happens with

– the squared bias,

– the variance, and

– the irreducible error?
• What would you recommend is the optimal value of K? Is this in agreement with what you found in a)?

Answers:

• How this is done? The bias and variance of ˆf(x0) - when the true value is f(x0) is defined by

Bias(f̂(x0)) = E[f̂(x0)− f(x0)]

Var(f̂(x0)) = E[f̂(x0)2]− E[f̂(x0)]2

Using the M resamples of the test data, we estimate the mean of f̂(x0) by the average over the M
predicted values at x0, Ave(f̂(x0)), and the variance by the emipircal variance 1

M−1
∑M
i=1(f̂(x0) −

Ave(f̂(x0)))2.

E
[(
Y − f̂ (x0)

)2
]

= E(ε)︸︷︷︸
Irredusible error

+Var
(
f̂ (x0)

)
︸ ︷︷ ︸

Variance

+
[
E
(
f̂ (x0)

)
− E (Y)

]2

︸ ︷︷ ︸
Squared bias

• From Figure 4, we se that as K increases the squared bias increases rapidly, the variance is slightly
reduced, but the irreducible error stays constant. Looking at the total MSE (squared bias plus variance)
we see that the optimal K-value lies somewhere between 3 and 5.

• Extra: We observe that the “optimal” K varies for different x0s. For x0 = −2 the best K is between 5
and 10. For x0 = 0 most values of K is ok, and for x0 = 1 the best is around K = 10. For x0 = 2.5 K
needs to be below 15. The reason for showing this is to see some of the x0 values in our interval [−3, 3]
that is given equal weight in deciding the optimal K.

4

Figure 3: Figure 3

5

Figure 4: Figure 4

Extra: We have chosen to also plot curves at four values of x - Figure 5 (below). Based on these four curves,
that would you recommend is the optimal value of K? Is this in agreement with what you found previously
(averaged over x)?

For completeness the R code used is given in the end of this file (listed here with M=100 but M=1000 was
used). You do not need to run the code, this is just if you have questions about how this was done.

Problem 2 - Linear regression

The Framingham Heart Study is a study of the etiology (i.e. underlying causes) of cardiovascular disease,
with participants from the community of Framingham in Massachusetts, USA. For more more information
about the Framingham Heart Study visit https://www.framinghamheartstudy.org/. The dataset used in here
is subset of a teaching version of the Framingham data, used with permission from the Framingham Heart
Study.

6

https://www.framinghamheartstudy.org/

Figure 5: Figure 5

7

We will focus on modelling systolic blood pressure using data from n = 2600 persons. For each person in the
data set we have measurements of the seven variables

• SYSBP systolic blood pressure,
• SEX 1=male, 2=female,
• AGE age in years at examination,
• CURSMOKE current cigarette smoking at examination: 0=not current smoker, 1= current smoker,
• BMI body mass index,
• TOTCHOL serum total cholesterol, and
• BPMEDS use of anti-hypertensive medication at examination: 0=not currently using, 1=currently using.

A multiple normal linear regression model was fitted to the data set with -1/sqrt(SYSBP) as response and
all the other variables as covariates.
library(ggplot2)
#data = read.table("https://www.math.ntnu.no/emner/TMA4268/2018v/data/SYSBPreg3uid.txt")
data = read.table("~/WWWemner/TMA4268/2018v/data/SYSBPreg3uid.txt")
dim(data)
colnames(data)
modelA=lm(-1/sqrt(SYSBP) ~ .,data = data)
summary(modelA)

[1] 2600 7
[1] "SYSBP" "SEX" "AGE" "CURSMOKE" "BMI" "TOTCHOL"
[7] "BPMEDS"
##
Call:
lm(formula = -1/sqrt(SYSBP) ~ ., data = data)
##
Residuals:
Min 1Q Median 3Q Max
-0.0207366 -0.0039157 -0.0000304 0.0038293 0.0189747
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.103e-01 1.383e-03 -79.745 < 2e-16 ***
SEX -2.989e-04 2.390e-04 -1.251 0.211176
AGE 2.378e-04 1.434e-05 16.586 < 2e-16 ***
CURSMOKE -2.504e-04 2.527e-04 -0.991 0.321723
BMI 3.087e-04 2.955e-05 10.447 < 2e-16 ***
TOTCHOL 9.288e-06 2.602e-06 3.569 0.000365 ***
BPMEDS 5.469e-03 3.265e-04 16.748 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.005819 on 2593 degrees of freedom
Multiple R-squared: 0.2494, Adjusted R-squared: 0.2476
F-statistic: 143.6 on 6 and 2593 DF, p-value: < 2.2e-16

a) Understanding model output

We name the model fitted above modelA.

• Write down the equation for the fitted modelA.
• Explain (with words and formula) what the following in the summary-output means.

8

• Estimate - in particular interpretation of Intercept
• Std.Error
• t value
• Pr(>|t|)
• Residual standard error
• F-statistic

Answers:

• Model A:

−1/
√
SYSBP = β0 + β1SEX + β2AGE + β3CURSMOKE + β4BMI + β5TOTCHOL + β6BPMEDS + ε

with the fitted version

̂1/
√
SYSBP = −0.110−0.0003SEX+0.0002AGE−0.0003CURSMOKE+0.0003BMI+0.00001TOTCHOL+0.0055BPMEDS

• The Estimate is the estimated regression coefficients, and are given by β̂ = (XTX)−1XTY. The
interpretation of β̂j is that when all other covariates are kept constant and the covariate xj is increased
to from xj to xj + 1 then the response increases by β̂j . Example, holding all other variables constant,
an increase of BMI from 25 to 26 will increase the response −1/

√
SYSBP by 0.00031. Similarily, for the

binary variables, the coefficient estimates represents the change in the response when changing levels
of the variable with one unit. For a female, the response will hence be reduced by 0.0003 compared
to a male (with the same values of all the other covariate). For all variables, negative value of the
estimates give reduced response when increasing the corresponding variable, while positive estimates
give increased response when increasing the corresponding variable. The intercept, β0 can be found by
setting all other coefficients to zero. This involves also setting the covariate SEX to 0 - which has no
meaning since SEX is coded as 1 for male and 2 for female.

• The Std.Error ŜD(β̂j) of the estimated coefficients is given by the square root of the diagonal entries
of (XTX)−1σ̂2, where σ̂ = RSS/(n− p− 1). Here n = 2600 and p = 6.

• The t value is the t-statistic t = β̂j−βj
ŜD(β̂j) , when we assume that βj = 0.

• The Pr(>|t|) is the two-sided p-value for the null hypothesis βj = 0. The p-value is calculated as the
probability of observing a test staistics equal to |t| or larger in absolute value, assuming that the null
hypothesis is true. A p-value less than 0.05 is considered statistically significant at a 5% significance
level.

• The residual standard error is the estimate of the standard deviation of ε, and is given by RSS/(n−p−1)
where RSS=

∑n
i=1(yi − ŷi)2.

• The F-statistic is used test the hypothesis that all regression coefficients are zero,

H0 :β1 = β2 = · · · = βp = 0 vs
H1 :at least one β is 6= 0

and is computed by

F = (TSS −RSS)/p
RSS/(n− p− 1)

9

where TSS =
∑n
i=1(yi − ȳ)2, RSS =

∑n
i=1(yi − ŷi)2, n is the number of observations and p is the

number of covariates (and p+ 1 the number of estimated regression parameters). If the p-value is less
than 0.05, we reject the hypothesis that there are no coefficients with effect on the outcome in the model.

b) Model fit

• What is the proportion of variability explained by the fitted modelA? Comment.
• Use diagnostic plots of “fitted values vs. standardized residuals”" and “QQ-plot of standardized residuals”

(see code below) to assess the model fit.
• Now fit a model, call this modelB, with SYSBP as response, and the same covariates as for modelA.

Would you prefer to use modelA or modelB when the aim is to make inference about the systolic blood
pressure?

residuls vs fitted
ggplot(modelA, aes(.fitted, .resid)) + geom_point(pch = 21) +

geom_hline(yintercept = 0, linetype = "dashed") +
geom_smooth(se = FALSE, col = "red", size = 0.5, method = "loess") +
labs(x = "Fitted values", y = "Residuals", title = "Fitted values vs. residuals", subtitle = deparse(modelA$call))

qq-plot of residuals
ggplot(modelA, aes(sample = .stdresid)) +

stat_qq(pch = 19) +
geom_abline(intercept = 0, slope = 1, linetype = "dotted") +
labs(x = "Theoretical quantiles", y = "Standardized residuals", title = "Normal Q-Q", subtitle = deparse(modelA$call))

normality test
library(nortest)
ad.test(rstudent(modelA))

Answers:

• The R2 statistic gives the proportion of variance explained by the model. In this model, the proportion
of variability in Y = −1/

√
SYSBP explained by the data X is 0.2494. Since the range of R2 is from 0

to 1, where for 1 all the variance in the response is explained by the regression model, we observe a
fairly low number and we would have prefered it higher. However, these are medical data with low
signal-to-noise ratio.

• Looking at the diagnostic plots, the model fit looks good. The fitted values vs residuals plot is nice
with semingly random spread and the QQ-plot looks nice as the plotted values follows the normal line.
In addition, the Anderson-Darling normality test does not reject the hypothesis of normality.

• For model B, we no longer model −1/
√
SYSBP, but rather SYSBP. This makes interpreation easier.

However, looking at the diagnostic plots, we see that the QQ-plot looks suspicious at the tails, and the
Anderson-Darling test rejects the null hypothesis of normal distribution.

modelB = lm(SYSBP ~ .,data = data)
summary(modelB)

library(ggplot2)
residuls vs fitted
ggplot(modelB, aes(.fitted, .resid)) + geom_point(pch = 21) +

geom_hline(yintercept = 0, linetype = "dashed") +
geom_smooth(se = FALSE, col = "red", size = 0.5, method = "loess") +
labs(x = "Fitted values", y = "Residuals", title = "Fitted values vs. residuals", subtitle = deparse(modelB$call))

10

−50

0

50

120 140 160 180

Fitted values

R
es

id
ua

ls
lm(formula = SYSBP ~ ., data = data)
Fitted values vs. residuals

qq-plot of residuals
ggplot(modelB, aes(sample = .stdresid)) +

stat_qq(pch = 19) +
geom_abline(intercept = 0, slope = 1, linetype = "dotted") +
labs(x = "Theoretical quantiles", y = "Standardized residuals", title = "Normal Q-Q", subtitle = deparse(modelB$call))

11

−2

0

2

4

−2 0 2

Theoretical quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(formula = SYSBP ~ ., data = data)
Normal Q−Q

normality test
library(nortest)
ad.test(rstudent(modelB))

##
Call:
lm(formula = SYSBP ~ ., data = data)
##
Residuals:
Min 1Q Median 3Q Max
-59.800 -13.471 -1.982 11.063 88.959
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 56.505170 4.668798 12.103 < 2e-16 ***
SEX -0.429973 0.807048 -0.533 0.59424
AGE 0.795810 0.048413 16.438 < 2e-16 ***
CURSMOKE -0.518742 0.853190 -0.608 0.54324
BMI 1.010550 0.099770 10.129 < 2e-16 ***
TOTCHOL 0.028786 0.008787 3.276 0.00107 **
BPMEDS 19.203706 1.102547 17.418 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 19.65 on 2593 degrees of freedom
Multiple R-squared: 0.2508, Adjusted R-squared: 0.249
F-statistic: 144.6 on 6 and 2593 DF, p-value: < 2.2e-16

12

##
##
Anderson-Darling normality test
##
data: rstudent(modelB)
A = 13.2, p-value < 2.2e-16

c) Confidence interval and hypothesis test

We use modelA and focus on addressing the association between BMI and the response.

• What is the estimate β̂BMI (numerically)?
• Explain how to interpret the estimated coefficient β̂BMI.
• Construct a 99% confidence interval for βBMI (write out the formula and calculate the interval numeri-

cally). Explain what this interval tells you.
• From this confidence interval, is it possible for you know anything about the value of the p-value for

the test H0 : βBMI = 0 vs. H1 : βBMI 6= 0? Explain.

Answers:

• β̂ = (XTX)−1XTY . From the summary output we find that β̂BMI = 0.0003. This is the average
increase in −1/sqrt(SY SBP) for a unit increase in BMI. Hence, keeping all other covariates fixed -
having a BMI of 24 instead of 23, the value of −1/sqrt(SY SBP) will on average increase with 0.0003.

• For linear regression where the distribution of the estimated coefficients are assumed to follow a
t-distribution, we have that the (1− α)100%-confidence interval is given by

β̂ ± tα/2,dfSD(β̂)

For β̂BMI the 99% confidence interval is hence given by

[β̂BMI − t0.005,n−p−1SD(β̂BMI), β̂BMI + t0.005,n−p−1SD(β̂BMI)]

This means that before we have collected the data this interval has a 99% chance of covering the true
value of βBMI . After the interval is made - now this is [0.00023, 0.00038] the the true value is either
within the interval or not. But, colleting new data and making 99% CIs, then 99% of these will on
average cover the true βBMI .

• Since the interval does not cover 0, we know that the p-value is less than 0.01.
n = dim(data)[1]
p = dim(data)[2]-1
betahat=modelA$coefficients[5]
sdbetahat=summary(modelA)$coeff[5,2]
UCI = betahat + qt(0.005, df = n-p-1, lower.tail = F)*sdbetahat
LCI = betahat - qt(0.005, df = n-p-1, lower.tail = F)*sdbetahat
c(LCI, UCI)

BMI BMI
0.0002325459 0.0003848866

13

d) Prediction

Consider a 56 year old man who is smoking. He is 1.75 meters tall and his weight is 89 kilograms. His serum
total cholesterol is 200 mg/dl and he is not using anti-hypertensive medication.
names(data)
new=data.frame(SEX=1,AGE=56,CURSMOKE=1,BMI=89/1.75^2,TOTCHOL=200,BPMEDS=0)

[1] "SYSBP" "SEX" "AGE" "CURSMOKE" "BMI" "TOTCHOL"
[7] "BPMEDS"

• What is your best guess for his -1/sqrt(SYSBP)? To get a best guess for his SYSBP you may take the
inverse function of -1/sqrt (this would be a first order Taylor expansion).

• Construct a 90% prediction interval for his systolic blood pressure SYSBP. Comment. Hint: first contruct
values on the scale of the response -1/sqrt(SYSBP) and then transform the upper and lower limits of
the prediction interval.

• Do you find this prediction interval useful? Comment.

Answers:

Find best guess by prediction, and 90% prediction interval.
pred = predict(modelA, newdata = new)
pred
f.inv = function(x) 1/x^2
sys = f.inv(pred)
#pred. interval
f.ci = predict(modelA, newdata = new, level = 0.9, interval = "prediction")
f.ci
sys.ci = f.inv(f.ci)
sys.ci

1
-0.08667246
fit lwr upr
1 -0.08667246 -0.09625664 -0.07708829
fit lwr upr
1 133.1183 107.9291 168.2764

This prediction interval is very large and doesn’t really tell us much. A person with our characteristics
on average has a 90% chance of having a systolic blood pressure between 108 and 168, and looking at
the table given in http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/KnowYourNumbers/
Understanding-Blood-Pressure-Readings_UCM_301764_Article.jsp#.WnLqWOYo_AI, we sse that this
interval covers almost all the levels from normal to high blood pressure. It seems our model is better for
inference than prediction.

Problem 3 - Classification

In this problem, we use a wine dataset of chemical measurement of two variables, Color_intensity and
Alcalinity_of_ash, on 130 wines from two cultivars in a region in Italy.

The data set is a subset of a data set from https://archive.ics.uci.edu/ml/datasets/Wine, see that page for
information of the source of the data.

14

http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/KnowYourNumbers/Understanding-Blood-Pressure-Readings_UCM_301764_Article.jsp#.WnLqWOYo_AI
http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/KnowYourNumbers/Understanding-Blood-Pressure-Readings_UCM_301764_Article.jsp#.WnLqWOYo_AI
https://archive.ics.uci.edu/ml/datasets/Wine

Below you find code to read the data, plot the data and to divide the data into a training set and a test set.
To get your own unique division please change the seed (where it says set.seed(4268) you change 4268 to
your favorite number).
library(ggplot2)
library(GGally)
library(class)
library(MASS)
library(pROC)
#wine=read.csv("https://www.math.ntnu.no/emner/TMA4268/2018v/data/Comp1Wine.csv",sep=" ")
wine = read.csv("~/WWWemner/TMA4268/2018v/data/Comp1Wine.csv",sep=" ")
wine$class=as.factor(wine$class-1)
colnames(wine)=c("y","x1","x2")
ggpairs(wine, ggplot2::aes(color=y))

Cor : −0.433

0: −0.211

1: −0.0859

y x1 x2

y
x1

x2

0.02.55.07.510.012.50.02.55.07.510.012.510 15 20 25 30 2.5 5.0 7.5

0

20

40

60

10

15

20

25

30

2.5

5.0

7.5

n=dim(wine)[1]
set.seed(4268) #to get the same order if you rerun - but you change this to your favorite number
ord = sample(1:n) #shuffle
test = wine[ord[1:(n/2)],]
train = wine[ord[((n/2)+1):n],]

In our data the two classes are named y and coded Y = 0 and Y = 1, and we name x1=
Alcalinity_of_ash=x1 and x2=Color_intensity=x2.

15

a) Logistic regression

We assume a logistic regression model for observation i, i = 1, . . . , n:

Pr(Yi = 1|X = xi) = pi = eβ0+β1xi1+β2xi2

1 + eβ0+β1xi1+β2xi2

• Use this expression to show that logit(pi) = log(pi
1−pi) is a linear function.

• Fit a logistic regression model on y~x1+x2 to the training set.
• Give an interpretation of β̂1 and β̂2.
• We use the rule to classify to class 1 for an observation with covariates x if P̂r(Y = 1 | x) > 0.5. Write

down the formula for the class boundary between the classes. What type of boundary is this?
• Make a plot with the training observations and the class boundary. Hint: in ggplot points are added

with geom_point and a line with geom_abline(slope=b, intercept=a) where a and b comes from
your class boundary, and title with ggtitle.

• Use the summary output to manually derive the predicted probability P̂r(Y = 1 | x1 = 17, x2 = 3).
What is the interpretation of this value?

• Compute predicted probabilites for all observations in the test set.
• Make the confusion table for the test set when using 0.5 as cutoff for the probabilities. Calculate the

sensitivity and specificity on the test set. How would you evaluate the performance of this classification?

Answers:

•

log
(pi

1− pi
)

= log
(eβ0+β1x1+β2x2

1+eβ0+β1x1+β2x2

1− eβ0+β1x1+β2x2
1+eβ0+β1x1+β2x2

)
= log

(eβ0+β1x1+β2x2

1+eβ0+β1x1+β2x2

1
1+eβ0+β1x1+β2x2

)
= log(eβ0+β1x1+β2x2) = β0 + β1x1 + β2x2

fit = glm(y~x1+x2, data = train, family = "binomial")
summary(fit)

##
Call:
glm(formula = y ~ x1 + x2, family = "binomial", data = train)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.46217 -0.17536 0.09309 0.28590 2.49572
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.3143 5.3382 1.370 0.170626
x1 0.1332 0.2194 0.607 0.543800
x2 -2.3361 0.6472 -3.609 0.000307 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 89.354 on 64 degrees of freedom
Residual deviance: 30.027 on 62 degrees of freedom
AIC: 36.027

16

##
Number of Fisher Scoring iterations: 6

• β̂1 is the estimated coefficient for x1 with a value 0.1332. This means that the odds of begin a wine
of class 2 is multiplied by exp(β̂1) = 1.14 if x1 increases by one unit. Further, β̂2 is the estimated
coefficient for x2 with value -2.34, which is interpreted as the odds of begin a wine of class 2 is multiplied
by exp(β̂2) = 0.097 if x2 increases by one unit.

• The class boundary is where there is equal probability of both classes, pi = 0.5. Using the logit
functon, we find that pi

1−pi = exp(β0 + β1x1 + β2x2). With pi = 0.5, the class boundary is given by
1 = exp(β0 + β1x1 + β2x2) and hence 0 = β0 + β1x1 + β2x2, and x2 = −β0

β2
− β1

β2
x1. The class boundary

is a straight line and can easily be added to the scatter plot below.
betas = fit$coefficients
slope = -betas[2]/betas[3]
intercept = -betas[1]/betas[3]

g1 = ggplot(data=train,aes(x=x1, y=x2, colour=y)) + geom_point(pch = 1)
g1 + geom_point(data = test, pch = 3) + geom_abline(slope=slope,intercept=intercept)

2.5

5.0

7.5

10 15 20 25 30

x1

x2

y

0

1

x=c(1,17,3)
p = exp(fit$coefficients%*%x)/(1+exp(fit$coefficients%*%x))
p

[,1]
[1,] 0.9289381

For a wine with x1 of 17 and x2 of 3, there is a 93% probability that the wine is of class 1.

17

pred = predict.glm(fit, newdata = test, type = "response")
predglm = predict.glm(fit, newdata = test, type = "response")
testclass=ifelse(predglm > 0.5, 1, 0)
t = table(test$y, testclass)
t

n = length(test$y)
error = (n-sum(diag(t)))/n
error
library(caret)

Loading required package: lattice
confusionMatrix(as.factor(testclass),reference=as.factor(test$y),positive="1")

testclass
0 1
0 25 5
1 5 30
[1] 0.1538462
Confusion Matrix and Statistics
##
Reference
Prediction 0 1
0 25 5
1 5 30
##
Accuracy : 0.8462
95% CI : (0.7352, 0.9237)
No Information Rate : 0.5385
P-Value [Acc > NIR] : 1.61e-07
##
Kappa : 0.6905
Mcnemar's Test P-Value : 1
##
Sensitivity : 0.8571
Specificity : 0.8333
Pos Pred Value : 0.8571
Neg Pred Value : 0.8333
Prevalence : 0.5385
Detection Rate : 0.4615
Detection Prevalence : 0.5385
Balanced Accuracy : 0.8452
##
'Positive' Class : 1
##

• 10 misclassifications equally divided over both wines, and a error rate pf 0.15. I would say that this
classification works pretty well. The sensitivity is 30/35 = 0.86 (true class 1), and the specificity is
25/30 = 0.83 (true class 0). This is given that we define class 1 as the “positive class” - if we do
differently the sensitivity and specificity will be swapped. For a disease situation it is “easy” to choose
the disease as coded as the “postive”, but for our wine example - we may use either 0 or 1 as positive.
So, if you got sensitivity and specificity swapped - that is ok.

18

b) K-nearest neighbor classifier

To decide the class of an new observation, the KNN classifier uses the nearest neighbours in the following way,

P (Y = 1|X = x0) = 1
K

∑
i∈N′

I(yi = j).

• Explain this expression does, and what the different elements are.
• Use KNN with K = 3 to classify the wines in the test set.
• Make the confusion table for the test set when using 0.5 as cutoff. Calculate the sensitivity and

specificity on the test set. How would you evaluate the performance of this classification?
• Repeat with K = 9. Which of these two choices of K would you prefer and why? Why don’t we just

choose K as high or as low as possible?

Answers:

• Given an integer K and a test observation x0, the KNN classifier first identifies the K points in the
training data that are closest to x0, represented by N′. It then estimates the conditional probability for
class j as the fraction of points in N′ whose response values equal j.

KNN3 = knn(train = train[,-1], test = test[,-1], k = 3, cl = train$y, prob = F)
t3 = table(test$y, KNN3)
t3
apply(t3,1,sum)
n = length(test$y)
error = (n-sum(diag(t3)))/n
error
KNN3probwinning = attributes(knn(train = train[,-1], test = test[,-1], k = 3, cl = train$y, prob = TRUE))$prob
KNN3prob <- ifelse(KNN3 == "0", 1-KNN3probwinning, KNN3probwinning)
#cbind(KNN3prob,KNN3,KNN3probwinning) to check that this is correct
KNN3roc=roc(response=test$y,predictor=KNN3prob)
cbind(KNN3roc$threshold, KNN3roc$sens, KNN3roc$specificities)

KNN3
0 1
0 25 5
1 3 32
0 1
30 35
[1] 0.1230769
[,1] [,2] [,3]
[1,] -Inf 1.0000000 0.0000000
[2,] 0.1666667 0.9714286 0.4666667
[3,] 0.5000000 0.9142857 0.8333333
[4,] 0.8333333 0.6857143 0.9333333
[5,] Inf 0.0000000 1.0000000

• KNN3: This gives a rather good result with a misclassification rate of 0.12. Since we have only three
neighbours to base the classification on the only possible values for the probability of class 2 is 0, 0.33,
0.67 and 1. For a cut-off of 0.5 the sensitivity is 32/35=0.91 and the specificity is 25/30=0.83.

KNN9= knn(train = train[,-1], test = test[,-1], k = 9, cl = train$y, prob = F)
t9 = table(test$y, KNN9)
t9
error = (n-sum(diag(t9)))/n

19

error
KNN9probwinning = attributes(knn(train = train[,-1], test = test[,-1], k = 9, cl = train$y, prob = TRUE))$prob
KNN9prob <- ifelse(KNN9 == "0", 1-KNN9probwinning, KNN9probwinning)
KNN9roc=roc(response=test$y,predictor=KNN9prob)
cbind(KNN9roc$threshold, KNN9roc$sens, KNN9roc$specificities)
table(KNN3,KNN9)

KNN9
0 1
0 25 5
1 5 30
[1] 0.1538462
[,1] [,2] [,3]
[1,] -Inf 1.0000000 0.0000000
[2,] 0.05555556 1.0000000 0.1333333
[3,] 0.16666667 0.9714286 0.3333333
[4,] 0.27777778 0.9428571 0.6666667
[5,] 0.38888889 0.8857143 0.7666667
[6,] 0.50000000 0.8571429 0.8333333
[7,] 0.61111111 0.7142857 0.9000000
[8,] 0.72222222 0.6857143 0.9000000
[9,] 0.83333333 0.6857143 0.9666667
[10,] 0.94444444 0.6000000 0.9666667
[11,] Inf 0.0000000 1.0000000
KNN9
KNN3 0 1
0 27 1
1 3 34

• KNN9 For K = 9 the misclassification rate when using 0.5 as cut-off is 0.15, so higher than for K = 3,
but similar to logistic regression. The sensitivity is The classifications made by K = 3 and K = 9 are
not that different, 27+34=61 common classifications. But, since K = 3 have the lowest misclassification
rate we might prefer that, however for K = 3 we may have strange boundary effects.

• If we choose K = 1 that might lead to a too flexible class boundary, and with K = n this might be too
inflexible.

c) LDA (& QDA)

In linear discriminant analysis, with K classes, we assign a class to a new observation based on the posterior
probability

Pr(Y = k|X = x) = πkfk(x)∑K
l=1 πlfl(x)

,

where
fk(x) = 1

(2π)p/2|Σ|1/2 e
− 1

2 (x−µk)TΣ−1(x−µk).

• Explain what is πk, µk, Σ and fk(x) in our wine problem.
• How can we estimate πk, µk and Σ? Compute estimates for these quantities based on the training set.

In a two class problem (K = 2) the decision boundary for LDA between class 0 and class 1 is where x satisfies

Pr(Y = 0|X = x) = Pr(Y = 1|X = x).

20

• Show that we can express this as

δ0(x) = δ1(x), (1)

where

δk(x) = xTΣ−1µk −
1
2µTkΣ−1µk + log πk; k ∈ {0, 1}. (2)

• Perform LDA on the training data (using R).
• We use the rule to classify to class 1 for an observation with covariates x if P̂r(Y = 1 | x) > 0.5. Write

down the formula for the class boundary between the classes.
• Make a plot with the training observations and the class boundary. Add the test observations to

the plot (different markings). Hint: in ggplot points are added with geom_points and a line with
geom_abline(slope=b, intercept=a) where a and b comes from your class boundary.

• Make the confusion table for the test set when using 0.5 as cut-off. Calculate the sensitivity and
specificity on the test set. How would you evaluate the performance of this classification?

• If you where to perform QDA instead of LDA, what would be the most important difference between
the QDA and LDA philosophy?

Answers:

• Here πk is the prior probability that a randomly chosen observation comes from the kth class. We
assume that the observations of class k comes from a multivariate normal distribution fk(x), where µk
is the mean of the kth class and Σ is the variance.

• We estimate these in the following way:

π̂k = nk/n

µ̂k = 1
nk

∑
i:yi=k

xi

Σ̂k = 1
nk − 1

∑
i:yi=k

(Xi − µ̂k)(Xi − µ̂k)T

Σ̂ =
K∑
k=1

nk − 1
n−K

· Σ̂k.

For the training dataset we have that
n=dim(train)[1]
train0 = train[which(train$y==0),2:3]
train1 = train[which(train$y==1),2:3]
print("pi0 and pi1")
pi0=dim(train0)[1]/n; pi1=dim(train1)[1]/n
c(pi0,pi1)
print("mu")
mu0=apply(train0,2,mean)
mu1=apply(train1,2,mean)
mu0
mu1
print("Sigma")
Sigma=((dim(train0)[1]-1)*var(train0)+(dim(train1)[1]-1)*var(train1))/(n-2)
Sigma

21

[1] "pi0 and pi1"
[1] 0.4461538 0.5538462
[1] "mu"
x1 x2
17.255172 5.577241
x1 x2
20.175000 2.966944
[1] "Sigma"
x1 x2
x1 7.2339559 -0.6584657
x2 -0.6584657 0.9519388

• Show δ:

Pr(Y = 0|X = x) = Pr(Y = 1|X = x) = π0f0(x)
π0f0(x) + π1f1(x) = π1f0(1)

π0f0(x) + π1f1(x)

π0f0(x) = π1f1(x) = π0f0(x) = π0
1

(2π)p/2|Σ|1/2 e
1
2 (x−µ0)TΣ−1(x−µ0) = π1

1
(2π)p/2|Σ|1/2 e

1
2 (x−µ1)TΣ−1(x−µ1)

log(π0)− 1
2(x− µ0)TΣ−1(x− µ0) = log(π1)− 1

2(x− µ1)TΣ−1(x− µ1)

log(π0)− 1
2x

TΣ−1x + xTΣ−1µ0 −
1
2µ

T
0 Σ−1µ0 = log(π1)− 1

2xTΣ−1x + xTΣ−1µ1 −
1
2µ

T
1 Σ−1µ1

log(π0) + xTΣ−1µ0 −
1
2µ

T
0 Σ−1µ0 = log(π1) + xTΣ−1µ1 −

1
2µ

T
1 Σ−1µ1 = δ0(x) = δ1(x)

• LDA in R, and draw class boundary. Have added also logistic regression boundary.
ltrain=lda(y~x1+x2,data=train)
a=solve(Sigma)%*%(mu0-mu1)
c=-0.5*t(mu0)%*%solve(Sigma)%*%mu0+0.5*t(mu1)%*%solve(Sigma)%*%mu1+log(pi0)-log(pi1)
interceptL = -c/a[2]
slopeL = -a[1]/a[2]

g1 = ggplot(data=train,aes(x=x1, y=x2, colour=y)) + geom_point(pch = 1)
g1 + geom_point(data = test, pch = 3) + geom_abline(slope=slope,intercept=intercept,colour="green")+ geom_abline(slope=slopeL,intercept=interceptL,colour="darkblue")

22

2.5

5.0

7.5

10 15 20 25 30

x1

x2

y

0

1

• Formula for LDA class boundary (0.5 cut-off): δ0(x) = δ1(x), and thus δ0(x)− δ1(x) = 0.

log(π0) + xTΣ−1µ0 −
1
2µ

T
0 Σ−1µ0 − log(π1)− xTΣ−1µ1 + 1

2µ
T
1 Σ−1µ1 = 0

xTΣ−1(µ0 − µ1)− 1
2µ

T
0 Σ−1µ0 + 1

2µ
T
1 Σ−1µ1 + log(π0)− log(π1) = 0

Letting all the terms except the first be noted c, then c is found in the R printout above. The equation
is then of the form ax1 + bx2 + c = 0, so x2 = −c/b− a/bx1, as calculated above. This gave

interceptL
slopeL

[,1]
[1,] 3.183897
[1] 0.06254103

• Confusion table, with misclassification rate 5+6/65=0.17, sensitivity 30/35=0.86 and specificity
24/30=0.8.

• If we went from LDA to QDA we would allow the classes to have differen covariance matrices. This
would give nonlinear (quadratic) class boundaries. It is not clear if that would be a good choice.

ltrain=lda(y~x1+x2,data=train)
lpred=predict(object = ltrain, newdata = test)$posterior[,2]
lroc=roc(response=test$y,lpred)
testclass=ifelse(lpred > 0.5, 1, 0)
t = table(test$y, testclass)
t

23

n = length(test$y)
error = (n-sum(diag(t)))/n
error

testclass
0 1
0 24 6
1 5 30
[1] 0.1692308

d) Compare classifiers

• Compare your results from the different classification methods (logistic regression, your preferred KNN,
LDA) based on the 0.5 cut-off on posterior probability classification rule. Which method would you
prefer?

• Explain what an ROC curve is and why that is useful. Would your preference (to which method
is the best for our data) change if a different cut-off was chosen? Answer this by producing
ROC-curves for the three methods on the test set. Also calculate AUC. Hint: use function
res=roc(response=test$y,predictor) in library(pROC) where the predictor is a vector with your
predicted posterior probabilites for the test set, and then plot(res) and auc(res).

glmroc=roc(response=test$y,predictor=predglm)
plot(glmroc)# logistic solid line
print("logistic regression")
auc(glmroc)
KNN3roc=roc(response=test$y,predictor=KNN3prob) #see above for code
plot(KNN3roc,add=TRUE,lty=2) # KNN3 dashed
print("KNN3")
auc(KNN3roc)
ltrain=lda(y~x1+x2,data=train)
lpred=predict(object = ltrain, newdata = test)$posterior[,1]
lroc=roc(response=test$y,lpred)
plot(lroc,add=TRUE,lty=3) # LDA dotted

24

Specificity

S
en

si
tiv

ity

1.0 0.5 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

print("LDA")
auc(lroc)

[1] "logistic regression"
Area under the curve: 0.9333
[1] "KNN3"
Area under the curve: 0.9086
[1] "LDA"
Area under the curve: 0.9343

Best method wrt AUC: LDA, but not very different from logistic regression, while 3KNN is best wrt
misclassification rate on test set.

In the ROC-curve we plot the sensitivity and 1- spesificity against each other for all possible thresholds of the
probability for class 1. To construct the ROC-curve we would have to calculate the sensitivity and spesificity
for different values of the cutoff p(x) > cut. Using a threshold of 0.5, you say that if a new person has a
probability of 0.51 of having the disease, he is classified as diseased. Another person with a probability of
0.49 would then be classified as non-diseased. The ROC-curve and the area under the ROC-curve are useful
tools as they consider all possible thresholds for the cutoff.

The AUC is the area under the ROC-curve and gives the overall performance of the test for all possible
thresholds. An AUC value of 1 means a perfect fit for all possible thresholds, while a AUC of 0.5 corresponds
to the classifyer that performs no better than chance. Hence, a classification method p(x) giving 0.6 and
another q(x) giving 0.7, we would prefer q(x) as it has the highest AUC value - in general - unless there is a
specific reason for only wanting to consider one specific value for the cut.off.

25

R-code for Problem 1

library(FNN)
library(ggplot2)
library(ggpubr)
library(reshape2)
maxK=25
M=100 # repeated samplings, x fixed - examples were run with M=1000
x = seq(-3, 3, 0.1)
dfx=data.frame(x=x)
truefunc=function(x) return(-x+x^2+x^3)
true_y = truefunc(x)

set.seed(2) # to reproduce
error = matrix(rnorm(length(x)*M, mean=0, sd=2),nrow=M,byrow=TRUE)
testerror = matrix(rnorm(length(x)*M, mean=0, sd=2),nrow=M,byrow=TRUE)
ymat = matrix(rep(true_y,M),byrow=T,nrow=M) + error
testymat = matrix(rep(true_y,M),byrow=T,nrow=M) + testerror

ggplot(data=data.frame(x=x,y=ymat[1,]),aes(x,y))+geom_point(col="purple",size=2)+stat_function(fun=truefunc,lwd=1.1,colour="black")+ggtitle("Training data")

predarray=array(NA,dim=c(M,length(x),maxK))
for (i in 1:M)
{

for (j in 1:maxK)
{

predarray[i,,j]=knn.reg(train=dfx,test=dfx,y=c(ymat[i,]),k=j)$pred
}

}
first - just plot the fitted values - and add the true curve in black
M curves and choose k=1,2,10,30 in KNN

rearranging to get data frame that is useful
thislwd=1.3
stackmat=NULL
for (i in 1:M) stackmat=rbind(stackmat,cbind(x,rep(i,length(x)),predarray[i,,]))
colnames(stackmat)=c("x","rep",paste("K",1:maxK,sep=""))
sdf=as.data.frame(stackmat)
yrange=range(apply(sdf,2,range)[,3:(maxK+2)])
making the four selected plots
p1=ggplot(data=sdf,aes(x=x,y=K1,group=rep,colour=rep))+scale_y_continuous(limits=yrange)+geom_line()
p1=p1+stat_function(fun=truefunc,lwd=thislwd,colour="black")+ggtitle("K1")
p2=ggplot(data=sdf,aes(x=x,y=K2,group=rep,colour=rep))+scale_y_continuous(limits=yrange)+geom_line()
p2=p2+stat_function(fun=truefunc,lwd=thislwd,colour="black")+ggtitle("K2")
p10=ggplot(data=sdf,aes(x=x,y=K10,group=rep,colour=rep))+scale_y_continuous(limits=yrange)+geom_line()
p10=p10+stat_function(fun=truefunc,lwd=thislwd,colour="black")+ggtitle("K10")
p25=ggplot(data=sdf,aes(x=x,y=K25,group=rep,colour=rep))+scale_y_continuous(limits=yrange)+geom_line()
p25=p25+stat_function(fun=truefunc,lwd=thislwd,colour="black")+ggtitle("K30")
ggarrange(p1,p2,p10,p25)

calculating trainMSE and testMSE
trainMSE=matrix(ncol=maxK,nrow=M)
for (i in 1:M) trainMSE[i,]=apply((predarray[i,,]-ymat[i,])^2,2,mean)
testMSE=matrix(ncol=maxK,nrow=M)
for (i in 1:M) testMSE[i,]=apply((predarray[i,,]-testymat[i,])^2,2,mean)
#rearranging to get data frame that is useful
stackmat=NULL
for (i in 1:M) stackmat=rbind(stackmat,cbind(rep(i,maxK),1:maxK,trainMSE[i,],testMSE[i,]))
colnames(stackmat)=c("rep","K","trainMSE","testMSE")
sdf=as.data.frame(stackmat)
yrange=range(sdf[,3:4])
plotting traning and test MSE
p1=ggplot(data=sdf[1:maxK,],aes(x=K,y=trainMSE))+scale_y_continuous(limits=yrange)+geom_line()
pall= ggplot(data=sdf,aes(x=K,group=rep,y=trainMSE,colour=rep))+scale_y_continuous(limits=yrange)+geom_line()
testp1=ggplot(data=sdf[1:maxK,],aes(x=K,y=testMSE))+scale_y_continuous(limits=yrange)+geom_line()
testpall= ggplot(data=sdf,aes(x=K,group=rep,y=testMSE,colour=rep))+scale_y_continuous(limits=yrange)+geom_line()
ggarrange(p1,pall,testp1,testpall)

26

calculating bias^2 and variance
meanmat=matrix(ncol=length(x),nrow=maxK)
varmat=matrix(ncol=length(x),nrow=maxK)
for (j in 1:maxK)
{

meanmat[j,]=apply(predarray[,,j],2,mean) # we now take the mean over the M simulations - to mimic E and Var at each x value and each KNN model
varmat[j,]=apply(predarray[,,j],2,var)

}
bias2mat=(meanmat-matrix(rep(true_y,maxK),byrow=TRUE,nrow=maxK))^2 #here the truth is finally used!

preparing to plot
df=data.frame(rep(x,each=maxK),rep(1:maxK,length(x)),c(bias2mat),c(varmat),rep(4,prod(dim(varmat)))) #irr is just 4
colnames(df)=c("x","K","bias2","variance","irreducible error") #suitable for plotting
df$total=df$bias2+df$variance+df$`irreducible error`
hdf=melt(df,id=c("x","K"))
averaged over all x - to compare to train and test MSE
hdfmean=

hdf %>%
group_by(K,variable) %>%
summarise (mean_value=mean(value))

ggplot(data=hdfmean[hdfmean[,1]<31,],aes(x=K,y=mean_value,colour=variable))+geom_line()+ggtitle("averaged over all x")

extra: what about different values of x?
hdfatxa=hdf[hdf$x==-2,]
hdfatxb=hdf[hdf$x==0,]
hdfatxc=hdf[hdf$x==1,]
hdfatxd=hdf[hdf$x==2.5,]
pa=ggplot(data=hdfatxa,aes(x=K,y=value,colour=variable))+geom_line()+ggtitle("x0=-2")
pb=ggplot(data=hdfatxb,aes(x=K,y=value,colour=variable))+geom_line()+ggtitle("x0=0")
pc=ggplot(data=hdfatxc,aes(x=K,y=value,colour=variable))+geom_line()+ggtitle("x0=1")
pd=ggplot(data=hdfatxd,aes(x=K,y=value,colour=variable))+geom_line()+ggtitle("x0=2.5")
ggarrange(pa,pb,pc,pd)

27

	Problem 1 - Core concepts in statistical learning
	a) Training and test MSE
	Answers:
	Answers:

	b) Bias-variance trade-off
	Answers:

	Problem 2 - Linear regression
	a) Understanding model output
	Answers:

	b) Model fit
	Answers:

	c) Confidence interval and hypothesis test
	Answers:

	d) Prediction
	Answers:

	Problem 3 - Classification
	a) Logistic regression
	Answers:

	b) K-nearest neighbor classifier
	Answers:

	c) LDA (& QDA)
	Answers:

	d) Compare classifiers

	R-code for Problem 1

