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REGRESSION TREE AND PRUNING:
AN EXAMPLE

Bo Lindqvist

Notation is as on page 308 in Elements of Statistical Learning. See also page
309 in An Introduction to Statistical Learning.

Figure 1 shows a regression tree T0 grown from a given training set of data
{(xi, yi) : i = 1, . . . , N} where the predictors are x = (x1, x2). The tree corre-
sponds to the partition shown to the right. By convention the terminal nodes
Rj are numbered from top to bottom in the tree, in the order that the splits
are made.

Figure 1: The full tree T0 to the left, and the corresponding partition of the
space of predictors (x1, x2) to the right.

Let |T | mean the number of terminal nodes for a given tree T . Then define, as
in (9.16) of Elements,

Cα(T ) =

|T |∑
m=1

∑
xi∈Rm

(yi − ĉm)2 + α|T |

For simplicity, write

Q(T ) =

|T |∑
m=1

∑
xi∈Rm

(yi − ĉm)2

The task is to find, for each α ≥ 0, the subtree of T0 that minimizes Cα(T ).
This is done by successive pruning as described below.



The pruning process starts from the bottom of the tree, with the highest num-
bered terminal events R3 and R4. Pruning at the node corresponding to these
two terminal nodes leads to the upper tree T1 in Figure 2. The new terminal
node R34 now corresponds to the union of the sets R3 and R4 to the right in
Figure 1.

Next, the tree T2 is produced by collapsing R2 and R34 to R234, corresponding
to R2 ∪R3 ∪R4 (see middle tree of Figure 2).

Finally, the tree T3 (bottom of Figure 2) is the trivial one where all the Ri
are collapsed into one set R1234. This means that the same value of Y will be
predicted for all values of the predictor x.

Figure 2: The trees Ti for i = 1, 2, 3 (from upper to bottom).

If we have the actual training data, it is straightforward to calculate the Q(Ti)
for the given trees. (How?)

Suppose the results are:

Q(T0) = 3.75

Q(T1) = 4.00

Q(T2) = 4.10

Q(T3) = 5.00

(Why are the Q(Ti) increasing with i?)



Taking Q(T0) as the starting point, calculate for each Ti, (i = 1, 2, 3) the
increase in Q(·) per decrease in number of terminal events:

T1 :
Q(T1)−Q(T0)

|T0| − |T1|
=

4.00− 3.75

4− 3
= 0.25

T2 :
Q(T2)−Q(T0)

|T0| − |T2|
=

4.10− 3.75

4− 2
= 0.175

T3 :
Q(T3)−Q(T0)

|T0| − |T3|
=

5.00− 3.75

4− 1
= 0.417

The minimum is hence for T2. The sequence of trees so far is hence T0 → T2.
The algorithm continues by comparing the succeding trees Ti to the last found
tree, which here was T2. Since we have only one more tree, T3, there is no
choice here, but we still calculate

T3 :
Q(T3)−Q(T2)

|T2| − |T3|
=

5.00− 4.10

2− 1
= 0.90

The full sequence of trees obtained is hence:

T0 → T2 → T3

The theory of CART says that each of these trees equal T (α) for a certain range
of α. It is in our example not difficult to verify that we have

T (α) =


T0 ; 0 ≤ α < 0.175
T2 ; 0.175 ≤ α < 0.90
T3 ; 0.90 ≤ α

Cross-validation

In practice the optimal α is determined by cross-validation as follows.

First, divide the training set into K folds.

For each k = 1, . . . ,K:

1. Grow the tree T−k0 in the same manner as T0 was grown, using all but
the kth fold of data.

2. Find the T−k(α) for each each α in the same manner as describe in this
note.

3. Calculate

qk(α) =
∑

i∈kth fold

(yi − predicted value from xi using T−k(α))2

Then the cross-validated error measure for a given value of α is

CV (α) =
1

N

K∑
k=1

qk(α)


