
TMA4268 Statistical Learning V2018
Module 8: TREE-BASED METHODS

Mette Langaas, Thea Roksvåg, Julia Debik, Department of
Mathematical Sciences, NTNU

week 10, 2018 (version 06.03.2018)

- CLASS NOTE VERSION -

2nd lecture M8 : 07.03.2018

Introduction

What will you learn?

I Decision tree - idea and example
I Regression trees

I what is a tree
I how to grow a tree

I Classification trees - any changes to the above
I Pruning a tree
I Bagging

I Variable importance plots
I Random forests
I Boosting

H

±

!
2

ozone.tree = tree(ozone~temp+wind, data=myozone)

plot(ozone.tree,type="uniform")

text(ozone.tree)

|temp < 82.5

wind < 7.15

temp < 77.5

wind < 10.6

temp < 88.5
61.0

18.3 31.1 74.5 92.9

48.7

tep >, 82.5Jy is
→

regression

teup
£) Y=f×)+e< 82.5

/ 4
Ozone temp

, wcna

ftp.bnaospu.rs
leaves9

isrjafolaoyat
\

Regions
Rr

, ...)Rz

A greedy approach is taken (aka top-down) - called recursive binary

splitting.

Recursive binary splitting

We start at the top of the tree and divide the predictor space into
two regions, R1 and R2 by making a decision rule for one of the
predictors x1, x2, ..., xp. If we define the two regions by
R1(j , s) = {x |xj < s} and R2(j , s) = {x |xj Ø s}, it means that we
need to find the (predictor) j and (splitting point) s that minimize

ÿ

i :xi œR1(j,s)
(yi ≠ ŷR1)2 +

ÿ

i :xi œR2(j,s)
(yi ≠ ŷR2)2,

where ŷR1 and ŷR2 are the mean responses for the training
observations in R1(j , s) and R2(j , s) respectively. This way we get
the two first branches in our decision tree.

s ,j

00

60 70 80 90

5
10

15
20

temp

w
in
d

61.0

18.3 31.1

74.5 92.9

48.7
Ozone
(0.833,24.9]
(24.9,48.7]
(48.7,72.6]
(72.6,96.4]
(96.4,120]
(120,144]
(144,168]

Partition into

6 regions

Rr
, ...)R6

: 3

§ R

2) The splitting criterion: We can not use RSS as a splitting
criterion for a qualitative variable. Instead we can use some measure

of impurity of the node.

Gini index:

G =
Kÿ

k=1
p̂jk(1 ≠ p̂jk),

Cross entropy:

D = ≠
Kÿ

k=1
p̂jk logp̂jk

Here p̂jk is the proportion of training observation in region j that are
from class k.

When making a split in our classification tree, we want to minimize
the Gini index or the cross-entropy.

1) The prediction:

I In the regression case we use the mean value of the responses
in Rj as a prediction for an observation that falls into region Rj .

I For the classification case however, we have two possibilities:
I Majority vote: Predict that the observation belongs to the most

commonly occurring class of the training observations in Rj .
I Estimate the probability that an observation xi belongs to a

class k, p̂jk(xi), and then classify according to a threshold value.
This estimated probability is the proportion of class k

observations in region Rj with Nj observations:

p̂jk = 1
Nj

ÿ

i :xi œRj

I(yi = k).

|GCS.15: 0

bskullf: 0

risk: 0

age < 67.5

consc: 0

age < 67

age < 63.5

risk: 0

GCS.13: 0 vomit: 0

0
0 1

0
0 1

0 1 1 1

1

Length of branches are now proportional to the decrease in impurity.

grow tree until

few obs in leaves

or not enough
desoease

in

loss

4

tree.HIClassG=tree(clinically.important.brain.injury~.,headInjury2,

subset=train,split="gini")

plot(tree.HIClassG)

text(tree.HIClassG,pretty=1)

|GCS.15: 0

bskullf: 0

age < 66.5

risk: 0

GCS.13: 0
vomit: 0age < 63.5amnesia: 0age < 38.5age < 30.5

age < 33.5age < 37.5
consc: 0age < 52.5age < 54.5age < 56.5age < 44.5age < 55.5age < 51.5age < 49.5age < 46.5

age < 50age < 40.5age < 29.5age < 43.5vomit: 0age < 16age < 7age < 12.5age < 31age < 35.5consc: 0age < 53.5age < 45.5age < 48.5age < 63.5age < 56.5amnesia: 0age < 58.5
age < 55.5

age < 34.5amnesia: 0

consc: 0
oskullf: 0risk: 0age < 81.5age < 77age < 74.5amnesia: 0
age < 73.5age < 78.5

age < 67
age < 42.5age < 47.5age < 51age < 54.5age < 58.5

age < 63.5
risk: 0

GCS.13: 0
amnesia: 0vomit: 0age < 38.5age < 23age < 56.5age < 41.5age < 52.5

vomit: 0
consc: 0age < 31age < 53

bskullf: 0vomit: 0age < 78.5age < 67.5age < 70.5age < 75.5

0000
00000000000

0000001
00000

0000000000

001
00000010

11
010010

10000
000011101

1
111011

1

78 leaves

Tree performance

To test the predictive performance of our regression tree, we can
randomly divide our observations into a test and a training set (here
1/3 test).

set.seed(200)

ozone.trainID = sample(1:111, 75)

ozone.train = ozone[ozone.trainID,]

ozone.test = ozone[-ozone.trainID,]

ozone.full = tree(ozone~temperature+wind,

data=ozone.train)

ozone.pred = predict(ozone.full, newdata=ozone.test)

ozone.MSE = mean((ozone.pred-ozone.test$ozone)^2)

ozone.MSE

[1] 297.452

Pruning

Imagine that we have a data set with many predictors, and that we
fit a large tree. Then, the number of observations from the training
set that falls into some of the regions Rj may be small, and we may
be concerned that we have overfitted the training data.

Pruning is a technique for solving this problem.

By pruning the tree we reduce the size or depth of the decision tree.
When we reduce the number of terminal nodes and regions
R1, ..., RJ , each region will probably contain more observations.
This way we reduce the probability of overfitting, and we may get
better predictions for test data.

- increase inwpretabhb
- avoid unnecessary splits

Cost complexity pruning

We can prune the tree by using a algorithm called cost complexity

pruning. We first build a large tree T0 by recursive binary splitting.
Then we try to find a subtree T µ T0 that (for a given value of –)
minimizes

C–(T) = Q(T) + –|T |,

where Q(T) is our cost function, |T | is the number of terminal
nodes in tree T . The parameter – is then a parameter penalizing
the number of terminal nodes, ensuring that the tree does not get
too many branches.

We proceed by repeating the the process for the best subtree T ,
and this way we get a sequence of smaller of smaller subtrees where
each tree is the best subtree of the previous tree.

For regression trees we choose Q(T) =
q|T |

m=1
q

xi œRm(yi ≠ ŷRm)2,
and or classification trees the entropy (deviance), Gini or
misclassification rate.

Given a value of – we get a pruned tree (but the same pruned tree
for ranges of –).

For – = 0 we get T0 and as – increases we get smaller and smaller
trees.

Please study this note from Bo Lindqvist in MA8702 - PhD version
of Statistical Learning course for an example of how we perform
cost complexity pruning in detail.

series of pruned trees
.

Building a regression (classification) tree: Algorithm 8.1

1. Use recursive binary splitting to grow a large tree on the
training data, stopping only when each terminal node has fewer
than some minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to
obtain a sequence of best subtrees, as a function of –.

3. Use K-fold cross-validation to choose –. That is, divide the
training observations into K folds. For each k = 1, . . . , K :

I Repeat Steps 1 and 2 on all but the kth fold of the training
data.

I Evaluate the mean squared prediction (misclassification, gini,
cross-entropy) error on the data in the left-out kth fold, as a
function of –.

I Average the results for each value of –, and pick – to minimize
the average error.

4. Return the subtree from Step 2 that corresponds to the chosen
value of –.

&

Combining pruning and cross-validation to find optimal tree

We continue using the classification tree.

2 4 6 8 10

13
0

14
0

15
0

16
0

17
0

Terminal nodes

m
is

cl
as

si
fic

at
io

ns

minor head
mgowy

) 5 term
. nodes

0
"

→

The function cv.tree automatically does 10-fold cross-validation.
dev is here the number of misclassifications.

print(cv.head)

$size

[1] 11 10 7 5 4 1

##

$dev

[1] 132 132 130 130 132 170

##

$k

[1] -Inf 0.00000 1.33333 3.50000 5.00000 12.33333

##

$method

[1] "misclass"

##

attr(,"class")

[1] "prune" "tree.sequence"

mad .

§

← a-
0

We have done cross-validation on our training set of 850
observations. According to the plot, the number of misclassifications
is lowest if we use 5 terminal nodes. Next, we prune the
classification tree according to this value:

prune.HIClass=prune.misclass(tree.HIClass,best=5)

#Five node tree.

|GCS.15: 0

age < 63.5

risk: 0

GCS.13: 0

0

0 1

1

1

We see that the new tree doesn’t have any unnecessary splits, and
we have a simple and interpretable decision tree. How is the
predictive performance of the model a�ected?

tree.pred.prune=predict(prune.HIClass,headInjury2[test,],type="class")

misclass.prune=table(tree.pred,headInjury2[test,]$clinically.important.brain.injury)

print(misclass.prune)

1-sum(diag(misclass.prune))/(sum(misclass.prune))

##

tree.pred 0 1

0 361 50

1 18 42

[1] 0.144374

We see that the misclassification rate is as small as before indicating
that the pruned tree is as good as the original tree for the test data.

The same repeated for the Gini-grown tree - comment on what is
done.

0 20 40 60 80

13
0

14
0

15
0

16
0

17
0

Terminal nodes

m
is

cl
as

si
fic

at
io

ns

|GCS.15: 0

bskullf: 0

age < 67

age < 63.5

risk: 0

GCS.13: 0

0
0 1

0 1
1

1

ks → .

I

7

print(cv.headG)

$size

[1] 78 32 26 20 18 14 11 9 7 5 4 1

##

$dev

[1] 132 132 132 132 132 131 130 130 125 130 132 170

##

$k

[1] -Inf 0.000000 0.166667 0.333333 0.500000 0.750000 1.000000

[8] 1.500000 2.000000 3.500000 5.000000 12.333333

##

$method

[1] "misclass"

##

attr(,"class")

[1] "prune" "tree.sequence"

÷

ü Questions
Discuss the bias-variance tradeo� of a regression tree when
increasing/decreasing the number of terminal nodes, i.e:

I What happens to the bias?
I What happens to the variance of a prediction if we reduce the

tree size?

From trees to forests
Advantages (+)

I Trees automatically select variables
I Tree-growing algorithms scale well to large n, growing a tree

greedily
I Trees can handle mixed features (continouos, categorical)

seamlessly, and can deal with missing data
I Small trees are easy to interpret and explain to people
I Some believe that decision trees mirror human decision making
I Trees can be displayed graphically

Disadvantages (-)

I Large trees are not easy to interpret
I Trees do not generally have good prediction performance (high

variance)
I Trees are not very robust, a small change in the data may

cause a large change in the final estimated treeio

But first,

Leo Breiman - the inventor of CART, bagging and random
forests
Quotation from Wikipedia

Leo Breiman (January 27, 1928 – July 5, 2005) was a distinguished
statistician at the University of California, Berkeley. He was the
recipient of numerous honors and awards, and was a member of the
United States National Academy of Science.

Breiman’s work helped to bridge the gap between statistics and
computer science, particularly in the field of machine learning. His
most important contributions were his work on classification and
regression trees and ensembles of trees fit to bootstrap samples.
Bootstrap aggregation was given the name bagging by Breiman.
Another of Breiman’s ensemble approaches is the random forest.

Bagging

Decision trees often su�er from high variance. By this we mean that
the trees are sensitive to small changes in the predictors: If we
change the observation set, we may get a very di�erent tree.

Let’s draw a new training set for our data and see what happens if
we fit our full classification tree (deviance grown).

|GCS.15: 0

bskullf: 0

risk: 0

age < 67.5

consc: 0

age < 67

age < 63.5

risk: 0

GCS.13: 0vomit: 0

0
0 1

0
0 1

0 1 1 1

1

|GCS.15: 0

bskullf: 0

age < 76.5

risk: 0

age < 66.5

risk: 0

age < 66.5bskullf: 0
consc: 0

0 0

0
0 1

0 1
1 1

1

This classification tree is constructed by using 850 observations, just
like the tree in the classification trees section, but we get two
di�erent trees that will give di�erent predictions for a test set.

To reduce the variance of decision trees we can apply bootstrap

aggregating (bagging), invented by Leo Breiman in 1996 (see
references).

Independent data sets

Assume we have B i.i.d. observations of a random variable X each
with the same mean and with variance ‡2. We calculate the mean
X̄ = 1

B
qB

b=1 Xb. The variance of the mean is

Var(X̄) = Var
1 1

B

Bÿ

b=1
Xb

2
= 1

B2

Bÿ

b=1
Var(Xb) = ‡2

B
.

By averaging we get reduced variance. This is the basic idea!

But, we will not draw random variables - we want to fit decision
trees: f̂1(x), f̂2(x), . . . , f̂B(x) and average those.

f̂avg(x) = 1
B

Bÿ

b=1
f̂b(x)

However, we do not have many independent data set - so we use
bootstrapping to construct B data sets.

Bootstrapping (from Module 5)

Problem: we want to draw samples from a population with
distribution F .

But: we do not know F and do not have a population to draw from,
we only have our one sample.

Solution: we may use our sample as an empirical estimate for the
distribution F - by assuming that each sample point has probability
1/n for being drawn.

Therefore: we draw with replacement n observations from our
sample - and that is our first bootstrap sample.

We repeat this B times and get B bootstrap samples - that we use
as our B data sets.

Bootstrap samples and trees

For each bootstrap sample we construct a decision tree, f̂
úb(x) with

b = 1, ..., B, and we then use information from all of the trees to
draw inference.

For a regression tree, we take the average of all of the predictions
and use this as the final result:

f̂bag(x) = 1
B

Bÿ

b=1
f̂

úb(x).

For a classification tree we record the predicted class (for a given
observation x) for each of the B trees and use the most occurring
classification (majority vote) as the final prediction - or alternatively
average posterior probabilities for each class.

Originally, Breiman (1996) suggested to prune each tree, but later
research has found that it is better to leave the trees at maximal
size (a bushy tree), to make the trees as di�erent from each other
as possible.

The number B is chosen to be as large as “necessary”. An increase
in B will not lead to overfitting, and B is not regarded as a tuning
parameter. If a goodness of fit measure is plotted as a function of B

(soon) we see that (given that B is large enough) increasing B will
not change the goodness of fit measure.

But first, a smart way to avoid doing cross-validation.

Out-of-bag error estimation

I We use a subset of the observations in each bootstrap sample.
From Module 5 we know that the probability that an
observation is in the bootstrap sample is approximately
1 ≠ e

≠1=0.632121 (approximately 2/3).
I when an observation is left out of the bootstrap sample it is

not used to build the tree, and we can use this observation as a
part of a “test set” to measure the predictive performance and
error of the fitted model, f

úb(x).

An other words: Since each observation i has a probability of
approximately 2/3 to be in a bootstrap sample, and we make B

bootstrap samples, then observation i will be outside the bootstrap
sample in approximately B/3 of the fitted trees.

The observations left out are referred to as the out-of-bag

observations, and the measured error of the B/3 predictions is
called the out-of-bag error.

1- (1-# "

⇐ 1- Et 0.67=3

Example

We can do bagging by using the function randomForest() in the
randomForest library.

library(randomForest)

set.seed(1)

bag=randomForest(clinically.important.brain.injury~.,

data=headInjury2,subset=train,

mtry=10,ntree=500,importance=TRUE)

bag$confusion

1-sum(diag(bag$confusion))/sum(bag$confusion[1:2,1:2])

0 1 class.error

0 642 50 0.0722543

1 82 76 0.5189873

[1] 0.155294

The variable mtry=10 because we want to consider all 10 predictors
in each split of the tree. The variable ntree = 500 because we want
to average over 500 trees.

e - oob obs
.

D-
mscl . error O0D 03

.

o

Predictive performance of the bagged tree on unseen test data:

yhat.bag=predict(bag,newdata=headInjury2[test,])

misclass.bag=table(yhat.bag,headInjury2[test,]$clinically.important.brain.injury)

print(misclass.bag)

1-sum(diag(misclass.bag))/(sum(misclass.bag))

##

yhat.bag 0 1

0 351 43

1 28 49

[1] 0.150743

We note that the misclassification rate has increased slightly for the
bagged tree (as compared to our previous full and pruned tree). In
other examples an improvement is very often seen.

-

When should we use bagging?

Bagging can be used for predictors (regression and classification)
that are not trees, and according to Breiman (1996)

I the vital element is the instability of the prediction method
I if perturbing the learning set can cause significant changes in

the predictor constructed, then bagging can improve accuracy.

Breiman (1996) suggests that these methods should be suitable for
bagging:

I neural nets, classification and regression trees, subset selection
in linear regression

however not nearest neigbours - since

I the stability of nearest neighbour classification methods with
respect to perturbations of the data distinguishes them from
competitors such as trees and neural nets.

Variable importance plots

Bagging is an example of an ensemble method, so is boosting and
random forests (to come next). For all of these methods many trees
are grown and combined, and the predictive power can be highly
improved. However, this comes at a cost of interpretability. Instead
of having one tree, the resulting model consists of B trees, where B

often is 300 or 500 (or maybe even 5000 when boosting).

Variable importance plots show the relative importance of the

predictors: the predictors are sorted according to their importance,
such that the top variables have a higher importance than the
bottom variables. There are in general two types of variable
importance plots:

I variable importance based on decrease in node impurity and
I variable importance based on randomization.

Variable importance based on node impurity

The term important relates to total decrease in the node impurity,

over splits for a predictor, and is defined di�erently for regression
trees and classification trees.

Regression trees:

I The importance of each predictor is calculated using the RSS.
I The algorithm records the total amount that the RSS is

decreased due to splits for each predictor (there may be many
spits for one predictor for each tree).

I This decrease in RSS is then averaged over the B trees. The
higher the decrease, the more important the predictor.

Method A

.

Classification trees:

I The importance of each predictor is calculated using the Gini
index.

I The importance is the mean decrease (over all B trees) in the
Gini index by splits of a predictor.

R: varImpPlot (or importance) in randomForest with type=2.

!
de

lnpwahy

Auto data example

set.seed(4268)

data(mtcars)

mtcars.rf <- randomForest(mpg ~ ., data=mtcars, ntree=1000,

keep.forest=FALSE,

importance=TRUE)

varImpPlot(mtcars.rf,type=2,pch=20)

am

gear

vs

carb

qsec

drat

cyl

hp

wt

disp

0 50 100 150 200 250

mtcars.rf

IncNodePurity

Variable importance based on randomization

Variable importance based on randomization is calculated using the
OOB sample.

I Computations are carried out for one bootstrap sample at a
time.

I Each time a tree is grown the OOB sample is used to test the
predictive power of the tree.

I Then for one predictor at a time, repeat the following:
I permute the OOB observations for the jth variable xj and

calculate the new OOB error.
I If xj is important, permuting its observations will decrease the

predictive performance.
I The di�erence between the two is averaged over all trees (and

normalized by the standard deviation of the di�erences).

R: varImpPlot (or importance) in randomForest with type=1.

varImpPlot(mtcars.rf,type=1,pch=20)

am

gear

drat

vs

qsec

carb

cyl

hp

wt

disp

5 10 15 20

mtcars.rf

%IncMSE

The two types together: do they agree?

varImpPlot(mtcars.rf,pch=20)

am

gear

drat

vs

qsec

carb

cyl

hp

wt

disp

5 10 15 20
%IncMSE

am

gear

vs

carb

qsec

drat

cyl

hp

wt

disp

0 50 100 200
IncNodePurity

mtcars.rf

Random Forest
If there is a strong predictor in the dataset, the decision trees
produced by each of the bootstrap samples in the bagging algorithm
becomes very similar: Most of the trees will use the same strong
predictor in the top split.

We have seen this for our example trees for the minor head injury
example, the predictor GCS.15.2hours was chosen in the top split
every time. This is probably the case for a large amount of the
bagged trees as well.

This is not optimal, because we get B trees that are highly
correlated. We don’t get a large reduction in variance by averaging
f̂

úb(x) when the correlation between the trees is high. In the
previous section we actually saw a (marginal) decrease in the
predictive performance for the bagged tree compared to the pruned
tree and the full tree.

Random forests is a solution to this problem and a method for
decorrelating the trees.

The e�ect of correlation on the variance of the mean
The variance of the average of B observations of i.i.d random
variables X , each with variance ‡2 is ‡2

B . Now, suppose we have B

observations of a random variable X which are identically distributed,
each with mean µ and variance ‡2, but not independent.

That is, suppose the variables have a positive correlation fl

Cov(Xi , Xj) = fl‡2, i ”= j .

The variance of the average is

Var(X̄) = Var
1 1

B

Bÿ

i=1
Xi

2

=
Bÿ

i=1

1
B2 Var(Xi) + 2

Bÿ

i=2

i≠1ÿ

j=1

1
B

1
B

Cov(Xi , Xj)

= 1
B

‡2 + 2B(B ≠ 1)
2

1
B2 fl‡2

= 1
B

‡2 + fl‡2 ≠ 1
B

fl‡2

= fl‡2 + 1 ≠ fl

B
‡2

= 1 ≠ (1 ≠ B)fl
B

‡2

Check: fl = 0 and fl = 1? (Most negative values of fl will not give a
positive definite covariance matrix. The covariance matrix is
positive definite if fl > ≠1/(B ≠ 1).)

The idea behind random forests is to improve the variance reduction

of bagging by reducing the correlation between the trees.

The procedure is thus as in bagging, but with the important
di�erence, that

I at each split we are only allowed to consider m < p of the
predictors.

A new sample of m predictors is taken at each split and

I typically m ¥ Ô
p (classificaton) and m = p/3 (regression)

The general idea is at for very correlated predictors m is chosen to
be small.

The number of trees, B, is not a tuning parameter, and the best is
to choose it large enough.

If B is su�ciently large (three times the number needed for the
random forest to stabilize), the OOB error estimate is equvalent to
LOOCV (Efron and Hastie, 2016, p 330).

Figure 2: ISLR Figure 8.10, gene expression data set with 15 classes and
500 predictors

begging

=

D=

:
B

House prices in subrrbs in Boston

o

⇐.÷7

a

=D5

%
ogtusotd

Randonfoerh

Missing
error onten

Will update
web - version

of oe8

Boosting
Boosting is an alternative approach for improving the predictions
resulting from a decision tree. We will only consider the description
of boosting regression trees (and not classification trees) in this
course.

In boosting the trees are grown sequentially so that each tree is
grown using information from the previous tree.

I First build a decision tree with d splits (and d + 1 terminal
notes).

I Next, improve the model in areas where the model didn’t
perform well. This is done by fitting a decision tree to the
residuals of the model. This procedure is called learning slowly.

I The first decision tree is then updated based on the residual
tree, but with a weight.

I The procedure is repeated until some stopping criterion is
reached. Each of the trees can be very small, with just a few
terminal nodes (or just one split).

fjorteftecb

Algorithm 8.2: Boosting for regression trees

1. Set f̂ (x) = 0 and ri = yi for all i in the training set.
2. For b = 1, 2, ..., B, repeat:

2.1 Fit a tree f̂
b with d splits (d + 1 terminal nodes) to the training

data.
2.2 Update f̂ by adding in a shrunken version of the new tree:

f̂ (x) Ω f̂ (x) + ⁄f̂
b(x).

2.3 Update the residuals,

ri Ω ri ≠ ⁄f̂
b(xi).

3. The boosted model is f̂ (x) =
qB

b=1 ⁄f̂
b(x).

Boosting has three tuning parameters which need to set, and can be
found using cross-validation.

Tuning parameters

I The number of trees to be grown, B. The value of B could be
chosen using cross-validation. A too small value of B would
imply that much information is unused (remember that
boosting is a slow learner), whereas a too large value of B may
lead to overfitting.

I ⁄: This is a shrinkage parameter and controls the rate at which
boosting learns. The role of ⁄ is to scale the new information,
when added to the existing tree. We add information from the
b-th tree to our existing tree f̂ , but scaled by the ⁄. Choosing
a small value for ⁄ ensures that the algorithm learns slowly, but
will require a larger tree ensemble. Typical values of ⁄ is 0.1 or
0.01.

I Interaction depth d : The number of splits in each tree. This
parameter controls the complexity of the boosted tree ensemble
(the level of interaction between variables that we may
estimate). By choosing d = 1 a tree stump will be fitted at
each step and this gives an additive model.

Partial dependency plots - integrating out other variables

par(mfrow=c(1,2))

plot(boost.boston,i="rm")

plot(boost.boston,i="lstat")

4 5 6 7 8

22
24

26
28

30
32

rm

f(r
m
)

5 15 25 35

20
25

30

lstat

f(l
st
at
)

rn lsk

plot(yhat.boost,boston.test,pch=20)

abline(0,1)

10 20 30 40 50

10
20

30
40

50

yhat.boost

bo
st
on
.te
st

mean((yhat-boston.test)^2)

[1] 25.0456

y

5

What is next?

I Bagging: grow many trees (from bootstrapped data) and
average - to get rid of the non-robustness and high variance by
averaging

I Variable importance plot - to see which variables make a
di�erence (now that we have many trees).

I Random forest: inject more randomness (and even less
variance) by just allowing a random selection of predictors to
be used for the splits at each node.

I Boosting: make one tree, then another based on the residuals
from the previous, repeat. The final predictor is a weighted
sum of these trees.

X What have we done In M8
?

+ Tree construction t pruning

Summing up

with a quiz on Module 8: Tree-based methods - also hosted in
Kahoot!

Recommended exercises
1. Theoretical questions:

1. Show that each bootstrap sample will contain on average
approximately 2/3 of the observations.

2. Understanding the concepts and algorithms:

1. Do Exercise 1 in our book (page 331?)

Draw an example (of your own invention) of a partition of
two-dimensional feature space that could result from recursive
binary splitting. Your example should contain at least six regions.
Draw a decision tree corresponding to this partition. Be sure to
label all aspects of your figures, including the regions R1,R2,. . . , the
cutpoints t1,t2,. . . , and so forth.

If the class border of the two dimensional space is linear, how can
that be done with recursive binary splitting?

1. Do Exercise 4 in the book (page 332).

Suppose that we want to build a regression tree based on the
following dataset:

i (xi1, xi2) y

1 (1,3) 2
2 (2,2) 5
3 (3,2) 3
4 (3,4) 7

Answer the following questions without using R:

2. Find the optimal splitting variable and split point for the first
binary splitting for these data according to the recursive binary
splitting algorithm. Hint: Draw a figure and look at possible
divisions.

3. Continue the tree construction for the toy data until each
terminal node in the tree corresponds to one single observation.
Let the resulting tree be denoted T0.

4. For what values of – in the cost-complexity criterion C–(T)
will the unpruned tree T0 be the optimal tree? Hint : Prune
the tree by cost complexity pruning.

5. Suppose that we want to predict the response y for a new
observation at x=(2,3). What is the predicted value when
using the tree T0 constructed above?

3. Implementation:

In this exercise you are going to implement a spam filter for e-mails
by using tree-based methods. Data from 4601 e-mails are collected
and can be uploaded from the kernlab library as follows:

library(kernlab)

data(spam)

Each e-mail is classified by type (spam or nonspam), and this will be
the response in our model. In addition there are 57 predictors in the
dataset. The predictors describe the frequency of di�erent words in
the e-mails and orthography (capitalization, spelling, punctuation
and so on).

1. Study the dataset by writing ?spam in R.
2. Create a training set and a test set for the dataset.
3. Fit a tree to the training data with type as the response and

the rest of the variables as predictors. Study the results by
using the summary() function. Also create a plot of the tree.
How many terminal nodes does it have?

4. Predict the response on the test data. What is the
misclassification rate?

5. Use the cv.tree() function to find the optimal tree size. Prune
the tree according to the optimal tree size by using the
prune.misclass() function and plot the result. Predict the
response on the test data by using the pruned tree. What is
the misclassification rate in this case?

6. Create a decision tree by using the bagging approach. Use the
function randomForest() and consider all of the predictors in
each split. Predict the response on the test data and report the
misclassification rate.

7. Apply the randomForest() function again, but this time
consider only a subset of the predictors in each split. This
corresponds to the random forest-algorithm. Study the
importance of each variable by using the function importance().
Are the results as expected based on earlier results? Again,
predict the response for the test data and report the
misclassification rate.

8. Use gbm() to construct a boosted classification tree. Predict
the response for the test data and report the misclassification
rate.

9. Compare the misclassification rates in d-h. Which method
gives the lowest misclassification rate for the test data? Are
the results as expected?

R packages

These packages needs to be install before knitting this R Markdown
file.

install.packages("gamlss.data")

install.packages("tidyverse")

install.packages("GGally")

install.packages("Matrix")

install.packages("tree")

install.packages("randomForest")

install.packages("gbm")

References and further reading
I Videoes on YouTube by the authors of ISL, Chapter 8, and

corresponding slides
I Solutions to exercises in the book, chapter 8

Breiman, Leo. 1996. “Bagging Predictors.” Machine Learning 24:
123–40.
———. 2001. “Random Forest.” Machine Learning 45: 5–32.
Efron, Bradley, and Trevor Hastie. 2016. Computer Age Statistical

Inference - Algorithms, Evidence, and Data Science. Cambridge
University Press.
Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The

Elements of Statistical Learning. Vol. 1. Springer series in statistics
New York.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert
Tibshirani. 2013. An Introduction to Statistical Learning. Vol. 112.
Springer.
Ripley, Brian D. 1996. Pattern Recognicion and Neural Networks.
Cambridge University Press.

