— CrAss Nsie Uersion) —

TMAA4268 Statistical Learning V2018

Module 8: TREE-BASED METHODS

Mette Langaas, Thea Roksvag, Julia Debik, Department of
Mathematical Sciences, NTNU

Lod lecthne HK G .83 2018
week 10, 2018 (version 06.03.2018)

Introduction

What will you learn?

» Decision tree - idea and example
» Regression trees

A » what is a tree
\L » how to grow a tree
» Classification trees - any changes to the above

> Pruning a tree
» Bagging
» Variable importance plots

LQ_ » Random forests
> Boosting

ozone.tree = tree(ozone~temp+wind, data=myozone)
plot(ozone.tree,type="uniform")
text (ozone.tree) " g
J s ep> 825
N ~

(temp £ 82.5) (eQmesiion

ke

25 ST VR {'en»() Wi
wind £ 7.15 (‘ w@ﬁ—\ bma,a Yyl
T 3
zua
temp £ 77.5 temp x 88.5 A A
61.0 48.7 We, = ave(
’h’d&/\ﬁ&‘")
Qq’\cf\l)
Ru,. .
-y Ky

18.3 31.1 74.5 92.9

A greedy approach is taken (aka top-down) - called recursive binary
splitting.

Recursive binary splitting >, d

We start at the top of the tree and divide the predictor space into
two regions, R; and R, by making a decision rule for one of the
predictors xi, X2, ..., xp. |f we define the two regions by

Ri(j,s) = {x|xj < s} and Ry(j,s) = {x|x; > s}, it means that we
need to find the (predictor) j and (splitting point) s that minimize

S @G+ ¥ vi-mk

I':X,'ER1(j7S) I':X,'ERQ(j,S)

where yr, and yr, are the mean responses for the training
observations in Ry(j,s) and Rx(j, s) respectively. This way we get
the two first branches in our decision tree.

wind

20

15

10

487
18.3 31.1
L
i [X]
< | 745 ‘929
61.0 I
[]
[[[[
60 70 80 90

temp

Ozone

(0.833,24.9]
(24.9,48.7]
(48.7,72.6]
(72.6,96.4]
(96.4,120]
(120,144]
(144,168]

e o o o

Pactitcon 1Mk

% Ve oes
QA) ,--)25
.-(\

(5.3

R

2) The splitting criterion: We can not use RSS as a splitting
criterion for a qualitative variable. Instead we can use some measure
of impurity of the node.

Gini index:

K
G=> pu(l—pi),

k=1
Cross entropy:
K
D=~ bilogh
k=1

Here pji is the proportion of training observation in region j that are
from class k.

When making a split in our classification tree, we want to minimize
the Gini index or the cross-entropy.

1) The prediction:

> In the regression case we use the mean value of the responses
in R; as a prediction for an observation that falls into region R;.
» For the classification case however, we have two possibilities:

» (Majority vote: Predict that the observation belongs to the most
commonly occurring class of the training observations in R;.

» Estimate the probability that an observation x; belongs to a
class k, pjk(x;), and then classify according to a threshold value.
This estimated probability is the proportion of class k
observations in region R; with /V; observations:

R 1
Pjk = WJ Z I(yi = k).

ixi€ER;

GCS,15:0

20w e uph
k> 1 \ecue)
6¢ M}‘ZJ\A‘U_DVL
degwul,
bskullf: 0 L
loss
risk: 0 age
age 4 67.5 ‘ 0
0
congc: 0
0
0 1

Length of branches are now proportional to the decrease in impurity.

tree.HIClassG=tree(clinically.important.brain.injury~. ,hea
subset=train,split="gini")

plot(tree.HIClassG)

text (tree.HIClassG,pretty=1)

GCS,15: 0

8 W=ve,

bskyllf: 0 age 4 63.5

Tree performance

To test the predictive performance of our regression tree, we can
randomly divide our observations into a test and a training set (here
1/3 test).

set.seed(200)

ozone.trainID = sample(1l:111, 75)
ozone.train = ozonel[ozone.trainID,]
ozone.test = ozone[-ozone.trainlD,]

ozone.full = tree(ozone~temperature+wind,
data=ozone.train)

ozone.pred = predict(ozone.full, inewdata=ozone.test)

ozone.MSE = mean((ozone.pred-ozone.test$ozone) 2)
ozone.MSE

[1] 297.452

Pruning

Imagine that we have a data set with many predictors, and that we
fit a large tree. Then, the number of observations from the training
set that falls into some of the regions R; may be small, and we may
be concerned that we have overfitted the training data.

Pruning is a technique for solving this problem.

By pruning the tree we reduce the size or depth of the decision tree.
When we reduce the number of terminal nodes and regions

Ri1, ..., Ry, each region will probably contain more observations.
This way we reduce the probability of overfitting, and we may get
better predictions for test data.

— Veranrg u\hﬂ({d Yo hn
— auord Wwya@ 3€LA—Q

Cost complexity pruning

We can prune the tree by using a algorithm called cost complexity
pruning. We first build a large tree Ty by recursive binary splitting.
Then we try to find a subtree T C Ty that (for a given value of «)
minimizes

Ca(T) =Q(T) + | T,

where Q(T) is our cost function, | T | is the number of terminal
nodes in'tree T. The parameter « is then a parameter penalizing
the number of terminal nodes, ensuring that the tree does not get
too many branches.

We proceed by repeating the the process for the best subtree T,
and this way we get a sequence of smaller of smaller subtrees where
each tree is the best subtree of the previous tree.

For regression trees we choose Q(T) = Z'T:‘l S wer, (Vi — IRn)%
and or classification trees the entropy (deviance), Gini or
misclassification rate.

Given a value of a we get a pruned tree (but the same pruned tree
for ranges of «).

For @ =0 we get Ty and as:a increases we get smaller and smaller
trees.

Please study this note from Bo Lindqvist in MA8702 - PhD version
of Statistical Learning course for an example of how we perform
cost complexity pruning in detail.

Seried 0%- »rw\ﬂ.d\ \VQ.QA

Building acregression (classification) tree: Algorithm 8.1

1. Use recursive binary splitting to-grow a large tree on the
training data, stopping only when each terminal node has fewer
than some minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to
obtain a sequence of best subtrees, as a function of a.

3. Use K-fold cross-validation to choose @. That is, divide the
training observations into K folds. For each k =1,...,K:

» Repeat Steps 1 and 2 on all but the kth fold of the training
data.

» Evaluate the mean squared prediction (misclassification, gini,
cross-entropy) error on the data in the left-out kth fold, as a
function of a.

> Average the results for each value of «, and pick o to minimize
the average error.

o

4. Return the subtree from Step 2 that corresponds to the chosen

Combining pruning and cross-validation to find optimal tree

We continue using the classification tree.

R {o Mnov hasd n\w
o
g
c
S
®
S
:‘U__) —
(2]
K J—
g S W vgdep
o
Q
(e} oO—2O0
3 4 @70/

2 4 6 8 10 “
Terminal nodes —_—

The function cv.tree automatically does 10-fold cross-validation.
dev is here the number of misclassifications.

print(cv.head)

##
#Hit
##
##
##
##
##
##
##
##
#it
##
#Hit
##

$size

(1] 1110 7 5 4

s\,
$dev™
[1] 132 132 130 130 132 170

$k 6~ A
-Inf 0.00000 1.33333 3.50000 5.00000 12.333:

[1]

R

$method

[

"misclass"

attr(,"class")

[1]

n prune n

"tree.sequence"

We have done cross-validation on our training set of 850
observations. According to the plot, the number of misclassifications
is lowest if we use 5 terminal nodes. Next, we prune the
classification tree according to this value:

prune.HIClass=prune.misclass (tree.HIClass,best=5)
#Five node tree.

GCS,15: 0

age 4 63.5

risk: O

GCS|13:0

0 1

We see that the new tree doesn’t have any unnecessary splits, and
we have a simple and interpretable decision tree. How is the
predictive performance of the model affected?

tree.pred.prune=predict (prune.HIClass,headInjury2[test,],t:
misclass.prune=table(tree.pred,headInjury2[test,]$clinical:
print (misclass.prune)

1-sum(diag(misclass.prune))/(sum(misclass.prune))

##

tree.pred O 1
0 361 50
1 18 42

[1] ‘0.144374

We see that the misclassification rate is as small as before indicating
that the pruned tree is as good as the original tree for the test data.

The same repeated for the Gini-grown tree - comment on what is
done.

e [GCS,15:0

o

2 |
12
c
S
g B
:‘(%
(%]
©
32 bskdilf: 0 age < 63.5
E 9 _

- risk: O

y
GCS|13:0
o] @O0 (o]

o (@]

2 C\TD age 67O
s O« 5 0

{ 0 1

T
0] 20 40 60 80

q- Terminal nodes

print (cv.headG)

$size

[1] 78 32 26 20 18 14 11 9 5 4 1

#it

$dev

[1] 132 132 132 132 132 131 130 130(i:j)130 132 170
#i#t

$k

[1] -Inf 0.000000 0.166667 0.333333 0.500000
[8] 1.500000 2.000000 3.500000 5.000000 12.333333
##

o
$method
[1] "misclass"
##

attr(,"class")
[1] "prune" "tree.sequence"

@ Questions

Discuss the bias-variance tradeoff of a regression tree when
increasing/decreasing the number of terminal nodes, i.e:

» What happens to the bias?
» What happens to the variance of a prediction if we reduce the
tree size?

From trees to forests
Advantages (+)

» Trees automatically select variables

> Tree-growing algorithms scale well to large n, growing a tree
greedily

» Trees can handle mixed features (continouos, categorical)
seamlessly, and can deal with missing data

» Small trees are easy to interpret and explain to people

» Some believe that decision trees mirror human decision-making

» Trees can be displayed graphically

Disadvantages (-)

> Large trees are not easy to interpret (’Z
» Trees do not generally have good prediction performance (high
variance)

» Trees are not very robust, a small change in the data may
cause a large change in the final estimated tree

But first,

Leo Breiman - the inventor of CART, bagging and random
forests

Quotation from Wikipedia

Leo Breiman (January 27, 1928 — July 5, 2005) was a distinguished
statistician at the University of California, Berkeley. He was the
recipient of numerous honors and awards, and was a member of the
United States National Academy of Science.

Breiman's work helped to bridge the gap between statistics and
computer science, particularly in the field of machine learning. His
most important contributions were his work on classification and
regression trees and ensembles of trees fit to bootstrap samples.
Bootstrap aggregation was given the name bagging by Breiman.
Another of Breiman's ensemble approaches is the random forest.

Bagging

Decision trees often suffer from high variance. By this we mean that
the trees are sensitive to small changes in the predictors: If we
change the observation set, we may get a very different tree.

Let's draw a new training set for our data and see what happens if
we fit our full classification tree (deviance grown).

GCS,15: 0

bskUllf: 0 age 4 63.5

rish

:@ge

risk: O |
CS|v8 t:a
6

0111
age 67301

0

onsc: 0

0

01

GCS§,15: 0

bskullf: 0 risk: 0

ge 4 66gkylif: 0
OoNngC:

1
Y
age 6605 1
risk:0| 0 1
0
00

This classification tree is constructed by using 850 observations, just
like the tree in the classification trees section, but we get two
different trees that will give different predictions for a test set.

To reduce the variance of decision trees we can apply bootstrap

aggregating (bagging), invented by Leo Breiman in 1996 (see
references).

Independent data sets

Assume we have B i.i.d. observations of a random variable X each
with the same mean and with variance 2. We calculate the mean
X = —B > F_1 Xb. The variance of the mean is

2

B
Var(X) Var(ZXb) 812 ZVar(Xb) = %.
b=1

By averaging we get reduced variance. This is the basic idea!

But, we will not draw random variables - we want to fit decision
trees: f1(x), f(x), ..., fg(x) and average those.

B
avg = Z

However, we do not have many independent data set - so we use
bootstrapping to construct B data sets.

Bootstrapping (from Module 5)

Problem: we want to draw samples from a population-with
distribution F.

But: we do not know'F and do not have a population to draw from,
we only have our‘one sample.

Solution: we may use our sample as an empirical estimate for the
distribution' F - by assuming that each sample point has probability
1/n for being drawn.

Therefore: we draw with replacement n observations from our
sample - and that is our first bootstrap sample.

We repeat this B times and get B bootstrap samples - that we use
as our B data sets.

Bootstrap samples and trees

For each bootstrap sample we construct a decision tree, £*2(x) with
b=1,...,B, and we then use information from all of the trees to
draw inference.

For a regression tree, we take the average of all of the predictions
and use this as the final result:

Foag(x) = Z ().

For a classification tree we record the predicted class (for a given
observation x) for each of the B trees and use the most occurring
classification (majority vote) as the final prediction - or alternatively
average posterior probabilities for each class.

Originally, Breiman (1996) suggested to prune each tree, but later
research has found that it is better to leave the trees at maximal
size (a bushy tree), to make the trees as different from each other
as possible.

The number B is chosen to be as large as “necessary”. An increase
in B will not lead to overfitting, and B is not regarded as a tuning
parameter. If a goodness of fit measure is plotted as a function of B
(soon) we see that (given that B is large enough) increasing B will
not change the goodness of fit measure.

But first, a smart way to avoid doing cross-validation.

Out=of=bag error estimation {— (_%&)"‘@ - o= 0&-2

» We use a subset of the observations in each bootstrap sample.
From Module 5 we know that the probability that an
observation is in the bootstrap sample is approximately
1 — e 1=0.632121 (approximately 2/3).

» when an observation is left out of the bootstrap sample it is
not used to build the tree, and we can use this observation as a
part of a “test set” to measure the predictive performance and
error of the fitted model, £*2(x).

An other words: Since each observation i has a probability of
approximately 2/3 to be in a bootstrap sample, and we make B
bootstrap samples, then observation i/ will be outside the bootstrap
sample in approximately B/3 of the fitted trees.

The observations left out are referred to as the out-of-bag
observations, and the measured error of the B/3 predictions is
called the out-of-bag error.

Example

We can do bagging by using the function randomForest() in the
randomForest library.

library(randomForest)

set.seed(1)

bag=randomForest(clinically.important.brain.injury-~.,
data=headInjury2,subset=train,

ntree=500, importance=TRUE)
bag$confusion
1-sum(diag(bag$confusion))/sum(bag$confusion[1:2,1:2])

F;\““*~—————————-______(3013 Saa.

lass.error
##/0 642 50 0.0722543
##(1 82 76 0.5189873
[1] 0.165294 puop| orane QGO -,

The variableecause we want to consider all 10 predictors
in each split of the tree. The variable ntree = 500 because we want
to average over 500 trees.

Predictive performance of the bagged tree on unseen test data:

yhat .bag=predict (bag,newdata=headInjury2[test,])
misclass.bag=table(yhat.bag,headInjury2[test,]$clinically.:
print (misclass.bag)

1-sum(diag(misclass.bag))/(sum(misclass.bag))

##

yhat.bag 0 1
0 351 43
1 28 49

[1] 0.150743

We note that the misclassification rate has increased slightly for the
bagged tree (as compared to our previous full and pruned tree). In
other examples an improvement is very often seen.

When should we use bagging?

Bagging can be used for predictors (regression and classification)
that are not trees, and according to Breiman (1996)

> the vital element is the instability of the prediction method
» if perturbing the learning set can cause significant changes in
the predictor constructed, then bagging can improve accuracy.

Breiman (1996) suggests that these methods should be suitable for
bagging:

» neural nets, classification and regression trees, subset selection
in linear regression

however not nearest neigbours - since
> the stability of nearest neighbour classification methods with

respect to perturbations of the data distinguishes them from
competitors such as trees and neural nets.

Variable importance plots

Bagging is an example of an ensemble method, so is boosting and
random forests (to come next). For all of these methods‘many trees
are grown and combined, and the predictive power can be highly
improved. However, this comes at a cost ofiinterpretability. Instead
of having one tree, the resulting model consists of ‘B trees, where B
often is 300 or 500 (or maybe even 5000 when boosting).

Variable importance plots show the relative importance of the
predictors: the predictors are sorted according to their importance,
such that the top variables have a higher importance than the
bottom variables. There are in general two types of variable
importance plots:

» variable importance based on decrease in node impurity and
> variable importance based on randomization.

Tahbodh A
Variable importance based on‘node impurity

The term important relates to total decrease in the node impurity,
over splits for a predictor, and is defined differently for regression
trees and classification trees.

Regression trees:

» The importance of each predictor is calculated using the RSS.

» The algorithm records the-total amount that the RSS'is
decreased due to splits for each predictor (there may be many
spits for one predictor for each tree).

» This decrease in RSS is then averaged over the B trees. The
higher the decrease, the more important the predictor.

Classification trees:

» The importance of each predictor is calculated using the ‘Gini
index.

» The importance is the mean decrease (over all B trees) in the
Gini index by splits of a predictor.

R: varImpPlot (or importance) in randomForest with type=2.

/

Nodds
\"\(7 b—«_b

Auto data example

set.seed(4268)

data(mtcars)

mtcars.rf <- randomForest(mpg ~ ., data=mtcars, ntree=1000
keep.forest=FALSE,
importance=TRUE)

varImpPlot (mtcars.rf,type=2,pch=20)

mtcars.rf

disp .

hp .
cyl .

drat .

gsec o

carb .

Vs .

gear D

T T T T T 1
0 50 100 150 200 250

IncNodePurity

Variable importance based on randomization

Variable importance based on randomization is calculated using the
OOB sample.

>

Computations are carried out for one bootstrap sample at a
time.

Each time a tree is grown the:OOB sample is used to test the
predictive power of the tree.

Then for one predictor at a time, repeat the following:

» permute the OOB observations for the jth variable x; and
calculate the new OOB error.

» If x;j is important, permuting its observations will decrease the
predictive performance.

The difference between the two is averaged over all trees (and
normalized by the standard deviation of the differences).

R: varImpPlot (or importance) in randomForest with type=1.

varImpPlot (mtcars.rf,type=1,pch=20)

disp
wt
hp
cyl
carb
gsec
Vs
drat
gear

am

mtcars.rf

10 15 20

%IncMSE

The two types together: do they agree?

varImpPlot (mtcars.rf,pch=20)

disp

hp
cyl
carb
gsec
Vs
drat
gear

am

mtcars.rf

disp
wt
hp
cyl
drat
gsec
carb
Vs
gear

am

T T
10 15
%IncMSE

20

T
0

T T T T
50 100 200
IncNodePurity

Random Forest

If there is a strong predictor in the dataset, the decision trees
produced by each of the bootstrap samples in the bagging algorithm
becomes very similar: Most of the trees will use the same strong
predictor in the top split.

We have seen this for our example trees for the minor head injury
example, the predictor GCS.15.2hours was chosen in the top split
every time. This is probably the case for a large amount of the
bagged trees as well.

This is not optimal, because we get B trees that-are highly
correlated. We don't get a large reduction in variance by averaging
#*b(x) when the correlation between the trees is high. In the
previous section we actually saw a (marginal) decrease in the
predictive performance for the bagged tree compared to the pruned
tree and the full tree.

Random forests is a solution to this problem and a method for
decorrelating the trees.

The effect of correlation on the variance of the mean

The variance of the average of B observations of i.i.d random
variables X, each with variance o2 is ‘7—32. Now, suppose we have B
observations of a random variable X which are identically distributed,
each with mean y and variance 2, but not independent.

That is, suppose the variables have a positive correlation p

Cov(Xi, X;) = po?, i#].

The variance of the average is

Var(X) Var(Z Xi)

B i—1
11

:ZEVar +2ZZ——COV Xi, X;)

i=1 i=2 j=1
1, B(B-1) 1 5
il oAT)~
BU + 5 sza
1, 1

Check: p=0and p =17 (Most negative values of p will not give a
positive definite covariance matrix. The covariance matrix is
positive definite if p > —1/(B —1).)

The idea behind random forests is to improve the variance reduction
of bagging by reducing the correlation between the trees.

The procedure is thus as in‘bagging, but with the important
difference, that

> at each split we are only allowed to considerim < p of the
predictors.

A new sample of m predictors is taken at each split and
» typically m = /p (classificaton) and'm = p/3 (regression)

The general idea is at for very correlated predictors m is chosen to
be small.

The number of trees, B, is not a tuning parameter, and the best is
to choose it large enough.

If B is sufficiently large (three times the number needed for the
random forest to stabilize), the OOB error estimate is equvalent to
LOOCV (Efron and Hastie, 2016, p 330).

m=p by
0 | m=p/2
© — m=p
S
0
c ¥]
.9 ©
T
:jé’ 0 =206
[}
& o
O oS]
k%)
2
N
o
I I I I I I
0 100 200 300 400 500

S

Number of Trees

Figure 2: ISLR Figure 8.10, gene expression data set with 15 classes and
500 predictors

ull Chess =

22:24

& math.ntnu.no

Example: Boston data set

First - to get aquinted with the data set we run through trees, bagging and random forests - before arriving at boosting. See also

the ISLR book, Section 8.3.4.

library (MASS)
library(tree)

set.seed(1)

C 3% 84%mm)

J‘Qmme,enuw N Sborlos (A Bl A

train = sample(l:nrow(Boston), nrow(Boston)/2)

colnames (Boston)

head(Boston)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

e o

o U W N

AN U W N

[8] "dis" "rad"
crim zn indus chas
0.00632 18 2.31 0
0.02731 0 7.07 0
0.02729 0 7.07 0
0.03237 0 2.18 0
0.06905 0 2.18 0
0.02985 0 2.18 0
lstat medv
4.98 24.0
9.14 21.6
4.03 34.7
2.94 33.4
5.33 36.2
5.21 28.7

L TR T T T, PR

"indus"

"tax
nox
0.538
0.469
0.469
0.458
0.458
0.458

rm
6.575
6.421
7.185
6.998
7.147
6.430

"chas'
"ptratio"

age
65.2
78.9
61.1
45.8
54.2
58.7

TV v de mom el o de e de e Sy

nox

4.0900
4.9671
4.9671
6.0622
6.0622
6.0622

"black"
dis rad

W w w NN

tax ptratio

296
242
242
222
222
222

15.3
17.8
17.8
18.7
18.7
18.7

age

(e ponse

396.90
396.90
392.83
394.63
396.90
394.12

M de M
Uoleu

l$:$

ull Chess = 22:22 ¢ 3 85% mm)

& math.ntnu.no

Before we start set.seed(1)
TR5E s boston=randomForest, data=Boston,subset=train @ mportance=TRUE)

Introduction
yhat.rf = predict(rf.boston,newdata=Boston[-train,])
Constructing a decision tree mean((yhat.rf-boston.test)’2)
) importance(rf.boston)
Pruning varImpPlot (rf.boston)
From trees to forests
Bagging rf.boston M= of he gk
Random Forest
Boosting ?d QG- .
Example: Boston data set
Summing up Istat) rm o
Recommended exercises nox 2 dis o
i o i o
Bibackapss dis crim
, crim o indus o
References and further reading
ptratio o nox o}
) E"RYS) r\b
age o ptratio o
indus o age o Sren o der s’o)r
tax o tax o
black o black | ©
rad o rad o W LM L,\(dm
chas |o© chas |0 welo - yeer o)
zn o} zn e}
o%— S
T T T T T T T T T T T T T I
5 10 20 30 0 2000 4000 6000
%IncMSE IncNodePurity

[1] 11.4802

$IncMSE IncNodePurity
crim 12.54777 1094.6538
zn 1.37549 64.4006
indus 9.30426 1086.0910
chas 2.51877 76.3680

H#H# nAaw 172 Q2ARA1 100 7270

ull Chess =

< AR

www.math.ntnu.no/emner/TMA4268/2018v/notes/...

Before we start
Introduction
Constructing a decision tree
Pruning
From trees to forests
Bagging
Random Forest
Boosting

Example: Boston data set
Summing up
Recommended exercises
R packages

References and further reading

22:23

& math.ntnu.no

www.math.ntnu.no/emner/TMA4268/2018v/8Trees/...

rm o
Istat o

nox
dis

crim

© o o o

ptratio
age o
indus o
tax o
black o
rad o
chas |©

zn o

T T T T T T
5 10 20 30

%IncMSE

[1] 11.4802

$IncMSE IncNodePurity
crim 12.54777 1094.6538
zn 1.37549 64.4006
indus 9.30426 1086.0910
chas 2.51877 76.3680
nox 12.83561 1008.7370
rm 31.64615 6705.0264
age 9.97024 575.1370
dis 12.77443 1351.0198
rad 3.91185 93.7820
tax 7.62404 453.1947
ptratio 12.00819 919.0676
black 7.37602 358.9693
lstat 27.66690 6927.9848

Istat
rm
dis
crim
indus

nox

ptratio

age
tax
black
rad
chas

zn

R: Housing Values in Suburbs of Boston

(e]

T T T T T T

o

2000 4000 6000
IncNodePurity

C 3 84%mm)
h + o

TMA4268 Statistical Learning V2018

Boosting
Boosting is an alternative approach for improving the predictions
resulting from a decision tree. We will only consider the description
of boosting regression trees (and not classification trees) in this
course.

In boosting the trees are grown sequentially so that each tree is
rown using-information from the previous tree.
& & P [kSOM 9-{49&4

» First build a decision tree withd splits (and d = 1 terminal
notes).

> Next, improve the model in areas where the model didn't
perform well. This is done by fitting a decision tree to the
residuals of the model. This procedure is called [learning slowly.

» The first decision tree is then updated based on the residual
tree, but with a weight.

> The procedure is repeated until some stopping criterion is
reached. Each of the trees can be very small, with just a few
terminal nodes (or just one split).

Algorithm 8.2: Boosting for regression trees

1. Set £(x) = 0 and'r; = y; for all i in the training set.
2. Forib=1,2, ..., B, repeat:

2.1 Fit a tree' f2 with d splits (d + 1 terminal nodes) to the training
data.
2.2 Update f by adding in arshrunken version of the new tree:

?(x) — ?(x) +)\)A’b(x).
2.3 Update the residuals,
ri<— r — /\)%b(X,').

3. The boosted model is f(x) = Y5 AF?(x).

Boosting has three tuning parameters which need to set, and can be
found using cross-validation.

Tuning parameters

» The number of trees to be grown, B. The value of B could be
chosen using cross-validation. A too small value of B would
imply that much information is unused (remember that
boosting is a slow learner), whereas a-too large value of B may
lead to overfitting.

» A: This is a shrinkage parameter and controls the rate at which
boosting learns. The role of \ is to scale the new information,
when added to the existing tree. We add information from the
b-th tree to our existing tree f. but scaled by the A. Choosing
a small value for A ensures that the algorithm learns slowly, but
will require a larger tree ensemble. Typical values of A is 0.1 or
0.01.

> Interaction depth d: The number of splits in each tree. This
parameter controls the complexity of the boosted tree ensemble
(the level of interaction between variables that we may
estimate). By choosing d = 1 a tree stump will be fitted at
each step and this gives an additive model.

ull Chess =

Finally, boosting Boston

library (gbm)

set.seed(1)

boost.boston=gbm(medv~.,data=Boston[train,],

summary (boost.boston,plotit=FALSE)

##
##
##
##
##
##
##
##
##
##
##
##
##
##

22:32
& math.ntnu.no

distribution="gaussian",

n.trees=5000,interaction.depth=4)

var
lstat lstat
rm rm
dis dis
crim crim
nox nox
ptratio ptratio

black black
age age
tax tax
indus indus
chas chas
rad rad

zn zn

45.
31.
.8087398
.0743784
.5605001
.2748652
7971159
.6488532
.3595005
.2705924
.8014323
.2026619
.0148083

(o)}

C o O R R R NND

rel.inf
9627334
2238187

¢ 3 82%mm)

Partial dependency plots - integrating out other variables

par (mfrow=c(1,2))
plot(boost.boston,i="rm")
plot (boost.boston,i="1lstat")

o |
» S
o |
®
o _| w0 _|
-~ 9 = 9
€ Il
= «
= =
Q -
o |
S &
o
N
("" [QM..

all Chess = 22:33 ¢ 3 82%)
& math.ntnu.no

rm Istat

Prediction on test set

First for model with 4 = 0.001 (default), then withid = 0.2: MSE on test set. We could have done cross-validation to find the
beste A over a grid.

yhat .boost=predict (boost.boston,newdata=Boston[-train,],n.trees=5000)

mean ((yhat.boost-boston.test)”2)

boost.boston=gbm(medv~.,data=Boston[train,],distribution="gaussian",
n.trees=5000,interaction.depth=4,shrinkage=0.2,verbose=F)

yhat.boost=predict (boost.boston,newdata=Boston[-train,],n.trees=5000)

mean((yhat.boost-boston.test)"2)

[1] 11.8443
[1] 11.5111

plot(yhat.boost,boston.test,pch=20)
abline(0,1)

plot(yhat.boost,boston.test,pch=20)
abline(0,1)

o
[Te)

boston.test <
30 40

20

10

yhat.boost w

W hjha& hee we Qoca_ LF\H&?

» Bagging: grow many trees (from bootstrapped data) and
average - to get rid of the non-robustness and high variance by
averaging

> Variable importance plot - to see which variables make a
difference (now that we have many trees).

» Random forest: inject more randomness (and even less
variance) by just allowing a.random selection of predictors to
be used for the splits at each node.

> Boosting: make one tree, then another based on the residuals
from the previous, repeat. The final predictor is a weighted
sum of these trees.

+ Tree consteuchon =« Vfu-"-*\"j

Summing up

with a quiz on Module 8: Tree-based methods - also hosted in
Kahoot!

Recommended exercises
1. Theoretical questions:

1. Show that each bootstrap sample will contain on average
approximately 2/3 of the observations.

2. Understanding the concepts and algorithms:

1. Do Exercise 1 in our book (page 3317)

Draw an example (of your own invention) of a partition of
two-dimensional feature space that could result from recursive
binary splitting. Your example should contain at least six regions.
Draw a decision tree corresponding to this partition. Be sure to
label all aspects of your figures, including the regions R1,R2,.. ., the
cutpoints t1,t2,..., and so forth.

If the class border of the two dimensional space is linear, how can
that be done with recursive binary splitting?

R packages

These packages needs to be install before knitting this R Markdown
file.

install.packages("gamlss.data")
install.packages("tidyverse")
install.packages("GGally")
install.packages("Matrix")
install.packages("tree")
install.packages("randomForest")
install.packages("gbm")

References and further reading

» Videoes on YouTube by the authors of ISL, Chapter 8, and
corresponding slides
» Solutions to exercises in the book, chapter 8

Breiman, Leo. 1996. “Bagging Predictors.” Machine Learning 24:
123-40.

. 2001. “Random Forest.” Machine Learning 45: 5-32.

Efron, Bradley, and Trevor Hastie. 2016. Computer Age Statistical
Inference - Algorithms, Evidence, and Data Science. Cambridge
University Press.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The
Elements of Statistical Learning. Vol. 1. Springer series in statistics
New York.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert
Tibshirani. 2013. An Introduction to Statistical Learning. Vol. 112.
Springer.

RPinlayvy Rviarmn N 100A DAat++narm Parcracrnirciarn ~nA MNarival MNatiaAvl «

