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Before we start

Learning material

I James et al (2013): An Introduction to Statistical Learning.
Chapter 9.

I Classnotes 19.03.2018

Some of the figures in this presentation are taken from (or are
inspired by) “An Introduction to Statistical Learning, with
applications in R” (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.



Motivation

Suppose that you are interested in the distribution of two tree types:
redwood and pines. You have three di�erent study areas in which
these trees grow. Your study areas are visualized in the three figures
below with orange points indicating the position of a redwood tree
and green points indicating the position of a pine tree in a forest.



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

Forest 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 3

Assume you want to build one continuous fence to separate the two
tree types in each of the three study areas. Where should you
build the fence?



Forest 1 illustrates the problem of finding an optimal separating
hyperplane for a dataset. In this module you are going to learn a
method for finding optimal hyperplanes called Maximal Margin
hyperplanes.
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You are also going to learn how you can find an optimal separating
hyperplane when your data cannot be perfectly separated by a
straight line, as in Forest 2. This leads to a classifier called a
Support Vector Classifier or a Soft Margin Classifier.
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The Support vector classifier can be generalised to an approach that
produces non-linear decision boundaries. This is called the Support
Vector Machine (SVM) and is useful when the data is distributed
as illustrated in Forest 3.
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Maximal Margin Classifier

Hyperplane

A hyperplane in p-dimensions is defined as

—0 + —1X1 + —2X2 + ... + —pXp = —0 + xT — = 0.

and is a p ≠ 1 dimensional subspace.

I If a point X = (X1, X2, ..., Xp)T satisfies the above equation, it
lies on the hyperplane.

I If —0 = 0 the hyperplane goes through the origin (origo).
I The vector —1, . . . , —p (not including —0) is called the normal

vector and points in the direction orthogonal to the hyperplane.

fCXyXz,..,Xp)_



Example of hyperplane
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If a point X = (X1, X2, ..., Xp)T satisfies

I —0 + —1X1 + —2X2 + ... + —pXp = —0 + xT — > 0 it lies on one
side of the hyperplane, while if it satisfes

I —0 + —1X1 + —2X2 + ... + —pXp = —0 + xT — < 0 it lies on the
opposite side of the hyperplane.

I For normalized —s (
qp

i=1 —2
j = 1) the value of —0 + xT — gives

the distance from the hyperplane.



Assumptions

Assume that we have n training observations with p predictors

x1 =

Q

ca
x11
...

x1p

R

db , ..., xn =

Q

ca
xn1
...

xnp

R

db

and that the responses y fall into two classes y1, ..., yn œ {≠1, 1}.
Further, assume that it is possible to separate the training
observations perfectly according to their class.

not { 0,13

dlu

( will see SOON  why)
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The three lines displayed in the figure are three possible separating
hyperplanes for this dataset which contains two predictors x1 and x2
(p = 2). The hyperplanes have the property that

—0 + —1xi1 + —2xi2 + ... + —pxip = —0 + xT
i — > 0

if yi = 1 (green points) and

—0 + —1xi1 + —2xi2 + ... + —pxip = —0 + xT
i — < 0

if yi = ≠1 (orange points).



This means that for all observations (all are correctly classified)

yi(—0 + xT
i —) > 0

The hyperplane leads to a natural classifier:

We can assign a class to a new observation depending on which side
of the hyperplane it is located. We denote the new observation
xú = (xú

1 , ..., xú
n ) and classify it as yú = 1 if

f (xú) = —0 + —1xú
1 + —2xú

2 + ... + —pxú
p > 0

and as yú = ≠1 otherwise.

this  is  why we use

yeh- he }



The next question is which hyperplane we should choose.

In the above figure we plotted three possible hyperplanes, but there
exist infinitely many possible separating hyperplanes for this dataset.

A natural choice is the maximal margin hyperplane. This is the
separating hyperplane that is farthest from the training observations.

(From a statistical point of view we might be afraid that we are
overfitting the data now.)



Optimization problem

I The maximal margin hyperplane is found by computing the
perpendicular distance from each training observation to a
given separating hyperplane.

I The smallest such distance is the minimal distance from the
observations to the hyperplane, also known as the margin. (See
illustration below.)

I We want to maximize this margin.
-

M



Figure 1: ISLR Figure 9.3
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The process of finding the maximal margin hyperplane for a dataset
with p covariates and n training observations can be formulated
through the following optimization problem:

maximize—0,—1,...,—p M

subject to
pÿ

j=1
—2

j = 1,

yi(—0 + —1xi1 + —2xi2 + ... + —pxip) Ø M ’i = 1, ..., n
where M is the width of the margin.

Observe: yi(—0 + xT —) is the (signed) distance from the ith point
to the hyperplane defined by the —s. We want to find the
hyperplane, where each observaton is at least M units away - on the
correct side, where M is as big as possible.

wymargin

yi . fcxi ) > 0

if observation

£1,1 ] f(×y xiiscorrectydassibedb-



Above three of the observations are equidistant from the hyperplane.
These are called support vectors. If one of the support vectors
changes its position, the whole hyperplane will move. This is a
property of the maximal margin hyperplane: It only depends on the
support vectors, and not on the other observations.



It can be shown, see for example Efron and Hastie (2016) Section
19.1 and Friedman, Hastie, and Tibshirani (2001) Section 4.5, that
the optimization problem can be reformulated using Lagrange
multipliers (primal and dual problem) into a quadratic convex
optimization problem that can be solved e�ciently.

However, we do of cause have to solve the optimization problem to
identify the support vectors and the unknown parameters for the
separating hyperplane.

Since we in TMA4268 Statistical learning do not require a course in
optimization - we do not go into details here.



Questions

I Explain briefly the idea behind the maximal margin classifier.
I Is there any tuning parameters that need to be chosen?
I What if our problem is not separable by a hyperplane?
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Support Vector Classifiers
For some data sets a separating hyperplane does not exist, it is
non-separable.
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Also, in some situation we what to allow for some misclassifications
to make the class boundaries more robust to future observations -
that is, we have noisy data or outliers are present.

In the special case where we have more predictors than observations
it is possible to find a separating hyperplane, but the might not be
the “best” hyperplane for us.

We now relax the maximal margin classifier to allow for a
soft-margin classifier.



Optimization problem

maximize—0,—1,...,—p ,‘1,...,‘n, M subject to
pÿ

j=1
—2

j = 1

yi(—0 + —1xi1 + —2xi2 + ... + —pxip) Ø M(1 ≠ ‘i) ’i = 1, ..., n.

‘i Ø 0,
nÿ

i=1
‘i Æ C .

I M is the width of the margin.
I ‘1, ..., ‘n are slack variables.

I If ‘i = 0 it means that observation i is on the correct side of the
margin,

I if ‘i > 0 observation i is on the wrong side of the margin, and
I if ‘i > 1 observation i is on the wrong side of the hyperplane.

I C is a tuning (regularization) parameter (chosen by
cross-validation) giving the budget for slacks. It restricts the
number of the training observations that can be on the wrong
side of the hyperplane. No more than C of the observations
can be on the wrong side.
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Figure 2: ISLR Figure 9.7: Top left=large C, smaller top right, bottom left
and bottom right. As C decreases the tolerance for observations being on
the wrong side of the margin decreases and the marin narrows.

See also Figure 19.3 in Efron and Hastie (2016).
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The hyperplane has the property that it only depends on the
observations that either lie on the margin or on the wrong side
of the margin.

These observations are called our support vectors. The
observations on the correct side of the margin do not a�ect the
support vectors. The length of distance for the support vectors to
the class boundary is proportional to the slacks.

Classification rule: We classify a test observation xú based on the
sign of f (xú) = —0 + —1xú

1 + ... + —pxú
p as before:

I If f (xú) < 0 then yú = ≠1.
I If f (xú) > 0 then yú = 1.

More on solving the optimization problem: Friedman, Hastie, and
Tibshirani (2001) Section 12.2.1 (primal and dual Lagrange problem,
quadratic convex problem).



Questions

I Should the variables be standardized before used with this
method?

I The support vector classifier only depends on the observations
that violate the margin. How does C a�ect the width of the
margin?

I Discuss how the tuning parameter C a�ects the bias-variance
trade-o� of the method.

g
yes ,

same  as fir ridge
and lasso

C large ⇒  accept many violations  ⇒ MwcUbe=dn

see previous page



Example

We will now find a support vector classifier for the second training
dataset (forest2) and use this to classify the observations in the
second test set (seeds2).

I There are 100 observations of trees: 45 pines (yi = 1) and 55
redwood trees (yi = ≠1).

I In the test set there are 20 seeds: 10 pine seeds and 10
redwood seeds.

The function svm in the package e1071 is used to find the maximal
margin hyperplane. The response needs to be coded as a factor
variable, and the data set has to be stored as a dataframe.

library("e1071")
forest2=read.table(file="https://www.math.ntnu.no/emner/TMA4268/2018v/data/forest2.txt");
seeds2=read.table(file="https://www.math.ntnu.no/emner/TMA4268/2018v/data/seeds2.txt");
train2=data.frame(x=forest2[,1:2], y=as.factor(forest2[,3]))
test2=data.frame(x=seeds2[,1:2], y=as.factor(seeds2[,3]))



The svm function uses a slightly di�erent formulation from what we
wrote above.

We had in our presentation a budget for errors C , but in svm we
instead have an argument cost that allows us to specify the cost of
violating the margin.

I When cost is set to a low value, the margin will be wider than
if set to a large value.

We first try with cost=1. We set kernel=�linear� as we are
interested in a linear decision boundary. scale=TRUE scales the
predictors to have mean 0 and standard deviation 1. We choose not
to scale.

g
for the budget for

errors

so - the oppositeof budget



svmfit_linear1=svm(y ~ ., data=train2, kernel=�linear�, cost=1, scale=FALSE)
plot(svmfit_linear1,train2,col=c("lightcoral","lightgreen"))
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summary(svmfit_linear1)

##
## Call:
## svm(formula = y ~ ., data = train2, kernel = "linear", cost = 1,
## scale = FALSE)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 1
## gamma: 0.5
##
## Number of Support Vectors: 56
##
## ( 28 28 )
##
##
## Number of Classes: 2
##
## Levels:
## -1 1

svmfit_linear1$index #support vectors id in data set

## [1] 1 2 4 6 9 10 16 21 26 27 28 40 44 53 55 57 58 65 67 72 76 77 80
## [24] 81 87 91 92 98 5 8 11 13 18 19 20 23 24 25 34 36 39 41 42 47 48 59
## [47] 61 62 70 71 75 78 88 93 95 96

class boundary
(

notsuppwtvedr

:
support red -

56 vector one

class
support obs

.

vectors
black :

. other

class

supporters
o=  othvobs



Observations

I Remark that the x1 is plotted on the vertical axis, and the the
implementation of the plotting function is made in a way that
the linear boundary looks jagged.

I The crosses in the plot indicate the support vectors. With
cost = 1, we have 56 support vectors, 28 in each class.

I All other observations are shown as circles.



Next, we set cost = 100:
svmfit_linear2=svm(y ~ ., data=train2, kernel=�linear�, cost=100, scale=FALSE)
plot(svmfit_linear2,train2,col=c("lightcoral","lightgreen"))
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summary(svmfit_linear2)

##
## Call:
## svm(formula = y ~ ., data = train2, kernel = "linear", cost = 100,
## scale = FALSE)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 100
## gamma: 0.5
##
## Number of Support Vectors: 31
##
## ( 15 16 )
##
##
## Number of Classes: 2
##
## Levels:
## -1 1

higher cost  ⇒ narrower margin

now : 31 support  vector

M



With cost = 100 we have 31 support vectors, i.e the width of the
margin is decreased.
How do we find an optimal cost parameter? By using the tune()
function we can perform ten-fold cross-validation and find the
cost-parameter that gives the lowest cross-validation error:
set.seed(1)
CV_linear=tune(svm,y~.,data=train2,kernel="linear",ranges=list(cost=c(0.001,0.01,0.1,1,5,10,100)))
summary(CV_linear)

##
## Parameter tuning of �svm�:
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 0.1
##
## - best performance: 0.15
##
## - Detailed performance results:
## cost error dispersion
## 1 1e-03 0.45 0.1779513
## 2 1e-02 0.22 0.1751190
## 3 1e-01 0.15 0.1269296
## 4 1e+00 0.15 0.1269296
## 5 5e+00 0.15 0.1080123
## 6 1e+01 0.15 0.1080123
## 7 1e+02 0.15 0.1080123

g
list  of
Costs

CV10  misclassification
rate

0



According to the tune() function we should set the cost parameter
to 0.1. The function also stores the best model obtained and we can
access it as follows:

bestmod_linear=CV_linear$best.model

Next, we want to predict the class label of the seeds in the test set.
We use the predict function and make a confusion table:

ypred_linear=predict(bestmod_linear,test2)
table(predict=ypred_linear,truth=test2[,3])

## truth
## predict -1 1
## -1 9 2
## 1 1 8

¥ =  0.15also for teslobs
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In this case three of the test observations are misclassified: These
three observations are marked with a black circle in the plot, and we
observe that they lie on the border between the green and the
orange points which is reasonable: The test observations located on
the border between green and orange are hardest to predict.

Missing: the svm function is not (directly) outputting the equation
for the class boundary, and not the value for the width of the margin.
Want to see how to find this? Go to the recommended exercises.



Support Vector Machines
For some datasets a non-linear decicion boundary between the
classes is more suitable than a linear decision boundary. In such
cases you can use a Support Vector Machine (SVM). This is an
extension of the support vector classifier.
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Expanding the feature space

We saw in Module 7 that in regression we could fit non-linear curves
by using a polynomial basis - adding polynomials of di�erent order
as covariates. This was a linear regression in the transformed
variables, but non-linear in the original variables. Maybe we may
add many such extra features and find a nice linear boundary in that
high-dimensional space?

fcx) = pot pn .  x ,  + pzxit psxptpy .  xz  tpsxz
'

t p ,
 xzs
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Figure 3: ISLR Figure 9.9

Left: expanding feature space to include cubic polynomials (9
parameters to estimate), and also observe the margins. (Right:
radial basis function kernel - wait a bit.)
Next: replace polynomials with kernels for elegance and
computational issues.
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Inner products

We have not focused on how to solve the optimisation problem of
finding the support vector classifier hyperplane, because this is
outside the scope of this course.

However, it can be shown that the solution to the support vector
classifier problem can be expressed as

f (x) = —0 +
nÿ

i=1
–iÈx, xiÍ

where –i is some parameter and i = 1, ..., n. The term Èxi , xi ÕÍ
denotes the inner product between two observations and is defined
as:

Èxi , xi ÕÍ =
pÿ

j=1
xijxi Õj .

This means that we need to estimate n parameters instead of p
(and for our expanded feature space then p might be larger than n).
(For the interested reader: See Eq. 19.22 and 19.23 of Efron and
Hastie (2016).)
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Further, it then turns out that to estimate the parameters
—0, –1, ..., –n this can be based on the

!n
2
"

inner products Èxi , x Õ
i Í

between all pair of training observations.

Also, –i = 0 for the observations i that are not the support vectors.
Thus, we only need the inner product between the training
observations and the observations corresponding to support vectors,
and

f (x) = —0 +
ÿ

iœS
–iÈx , xiÍ,

where S contains the indices of the support points. So, we have
sparsity in the observations.

Remark: we could alternatively say that –i = 0 define the support
vectors.



Q: Find the support vectors

Figure 4: ISLR Figure 9.6

Observe: we need all observations to find the support vectors.



Kernels
The next step is now to replace the inner product Èx , xiÍ with a
function K (xi , xi Õ) referred to as the kernel:

f (x) = —0 +
ÿ

iœS
–iK (x , xi).

For the linear case (which is what we have considered so far), the
kernel is simply the inner product K (xi , x Õ

i ) =
qp

j=1 xijxi Õj .

The two arguments to the kernel are two p-vectors.

If we want a more flexible decision boundary we could instead use a
polynomial kernel. This polynomial kernel of degree d > 1 is given
by:

K (xi , x Õ
i ) = (1 +

pÿ

i=1
xijxi Õj)d .

(This kernel is not so much used in practice, but is popular for
proofs.)



Using these kernels our solution for the class boundary can be
written

f̂ (x) = —0 +
ÿ

iœS
–̂iK (x, xi)

The nice thing here is that we only need to calculate the kernels,
not the basis functions (what we in Modul 7 did as extra columns of
the design matrix).

estimate

fcx) = pot pnxnt .  - .  tppxp = pot €g&i
. 4×1

klx
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A very popular choice is the radial kernel,

K (xi , x Õ
i ) = exp(≠“

pÿ

j=1
(xij ≠ xi Õj)2),

where “ is a positive constant (a tuning parameter).

Observe the connection to a multivariate normal density. If “ is
small the decision boundaries are smoother than for larger “.

It turns out that this computes the inner product in a very high
(infinite) dimensional feature space. But, this does not give
overfitting because some of the dimensions are “squashed down”.

The radial kernel is convinient if we want a circular decision
boundary, and “ can be chosen by cross-validation.

g genteeach kernel

n 01 observation
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Study Figures 19.5 and 19.6 from Efron and Hastie (2016) to see
how the radial kernel can make smooth functions.

Computer Age Statistical Inference ← press
linu



Kernels and our optimization

We now merge our optimization problem (from our support vector
classifier) with our kernel representation f (x) to get the Support
Vector Machine (SVM).

maximize—0,–1,...,–n,‘1,...,‘n, M
yi(f (xi)) Ø M(1 ≠ ‘i) ’i = 1, ..., n.

‘i Ø 0,
nÿ

i=1
‘i Æ C .

where
f (x) = —0 +

ÿ

iœS
–iK (x, xi)

reparam .

\ stack

@
&

r margin

⇒I = pitffgxjklxs,
xD

,



Regularization parameter example

Heart data - predict heart disease from p = 13 predictors.

Training errors as ROC and AUC.

Figure 5: ISLR Figure 9.10
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Heart data - test error.

Figure 6: ISLR Figure 9.11



Example: forest 3

To illustrate the SVM we use the third training dataset (forest3)
and the third test set (seeds3). We use the svmfunction as before.
However, we now set kernel=�radial� as we want a non-linear
decision boundary:

see htnt  version of module



Figure 6: ISLR Figure 9.11

Heart data - test error.

Example: forest 3

To illustrate the SVM we use the third training dataset (forest3) and the third test set (seeds3). We use the
svmfunction as before. However, we now set kernel=�radial� as we want a non-linear decision boundary:

library("e1071")
forest3=read.table(file="forest3.txt");
seeds3=read.table(file="seeds3.txt")

train3=data.frame(x=forest3[,1:2], y=as.factor(forest3[,3]))
test3=data.frame(x=seeds3[,1:2], y=as.factor(seeds3[,3]))

svmfit_kernel1=svm(y ~ ., data=train3, kernel=�radial�, gamma=1, cost=10, scale=FALSE)
plot(svmfit_kernel1,train3,col=c("lightcoral","lightgreen"))
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summary(svmfit_kernel1)

##
## Call:
## svm(formula = y ~ ., data = train3, kernel = "radial", gamma = 1,
## cost = 10, scale = FALSE)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: radial
## cost: 10
## gamma: 1
##
## Number of Support Vectors: 31
##
## ( 16 15 )
##
##
## Number of Classes: 2
##
## Levels:
## -1 1

We could also try with a polynomial kernal with degree 4 as follows:
library("e1071")
forest3=read.table(file="forest3.txt");
seeds3=read.table(file="seeds3.txt")

train3=data.frame(x=forest3[,1:2], y=as.factor(forest3[,3]))
test3=data.frame(x=seeds3[,1:2], y=as.factor(seeds3[,3]))

svmfit_kernel2=svm(y ~ ., data=train3, kernel=�polynomial�, degree=4, cost=100000, scale=FALSE)
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plot(svmfit_kernel2,train3,col=c("lightcoral","lightgreen"))
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summary(svmfit_kernel2)

##
## Call:
## svm(formula = y ~ ., data = train3, kernel = "polynomial", degree = 4,
## cost = 1e+05, scale = FALSE)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: polynomial
## cost: 1e+05
## degree: 4
## gamma: 0.5
## coef.0: 0
##
## Number of Support Vectors: 40
##
## ( 21 19 )
##
##
## Number of Classes: 2
##
## Levels:
## -1 1

For this dataset a radial kernal is a natural choice: A circular decision boundary seems like a good idea. Thus,
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we proceed with kernel=�radial�, and use the tune() function to find the optimal tuning parameter C:
set.seed(1)
CV_kernel=tune(svm,y~.,data=train3,kernel="radial",gamma=1,ranges=list(cost=c(0.001,0.01,0.1,1,5,10,100)))
summary(CV_kernel)

##
## Parameter tuning of �svm�:
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 10
##
## - best performance: 0.1232143
##
## - Detailed performance results:
## cost error dispersion
## 1 1e-03 0.2732143 0.1619332
## 2 1e-02 0.2732143 0.1619332
## 3 1e-01 0.2732143 0.1619332
## 4 1e+00 0.1357143 0.1268849
## 5 5e+00 0.1357143 0.1436486
## 6 1e+01 0.1232143 0.1379232
## 7 1e+02 0.1250000 0.1248582

The optimal C is 10. Next, we predict the class label of the seeds in the test set with a model with C=10,
make a confusion table and plot the results:
bestmod_kernel=CV_kernel$best.model
ypred_kernel=predict(bestmod_kernel,test3)

par(mfrow=c(1,3)); par(pty="s")
plot(NA,xlab="x1",ylab="x2",xlim=c(0,1),ylim=c(0,1));title("True class")
points(seeds3[seeds3[,3]==-1,1:2],pch=19,col="lightcoral",cex=0.9)
points(seeds3[seeds3[,3]==1,1:2],pch=19,col="darkseagreen",cex=0.9)
points(seeds3[which(ypred_kernel!=seeds3[,3]),1:2],pch=21) #Mark misclassification.

plot(NA,xlab="x1",ylab="x2",xlim=c(0,1),ylim=c(0,1));title("Predicted class")
points(seeds3[ypred_kernel==-1,1:2],pch=19,col="lightcoral",cex=0.9)
points(seeds3[ypred_kernel==1,1:2],pch=19,col="darkseagreen",cex=0.9)
points(seeds3[which(ypred_kernel!=seeds3[,3]),1:2],pch=21) #Mark misclassification.

table(predict=ypred_kernel,truth=test3[,3])

## truth
## predict -1 1
## -1 9 0
## 1 1 5

23



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2
True class

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1
x2

Predicted class

Only one seed is misclassified.

Extensions

More than two classes

What if we have k classes?

• OVA: one-versus-all. Fit k di�erent two-class SVMs fk(x) where one class is compared to all other
classes. Classify a test observation to the class where fk(xú) is largest.

• OVO: For multiclass-classification with k levels, k>2, libsvm uses the ‘one-against-one’-approach, in
which k(k-1)/2 binary classifiers are trained; the appropriate class is found by a voting scheme (the
class that wins the most pairwise competitions are chosen).

Comparisons

Focus is comparing the support vector classifier and logistic regression

It is possible to write the optimization problem for the support vector classifier as a “loss”+“penalty”:

minimize—

Y
]

[

nÿ

i=1
max(0, 1 ≠ yif(xi)) + ⁄

pÿ

j=1
—2

j

Z
^

\

• the loss is called hinge loss - observe the max and 0 to explain why only support vectors contribute

• the penalty is a ridge penalty

• large ⁄ gives —s small and more violations=high bias, but low variance

• small ⁄ gives —s large and less violations=low bias, but high variance
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Extensions

More than two classes
What if we have k classes?

I OVA: one-versus-all. Fit k di�erent two-class SVMs fk(x)
where one class is compared to all other classes. Classify a test
observation to the class where fk(xú) is largest.

I OVO: For multiclass-classification with k levels, k>2, libsvm
uses the ‘one-against-one’-approach, in which k(k-1)/2 binary
classifiers are trained; the appropriate class is found by a voting
scheme (the class that wins the most pairwise competitions are
chosen).
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Comparisons
Focus is comparing the support vector classifier and logistic
regression

It is possible to write the optimization problem for the support
vector classifier as a “loss”+“penalty”:

minimize—

Y
]

[

nÿ

i=1
max(0, 1 ≠ yi f (xi)) + ⁄

pÿ

j=1
—2

j

Z
^

\

I the loss is called hinge loss - observe the max and 0 to explain
why only support vectors contribute

I the penalty is a ridge penalty
I large ⁄ gives —s small and more violations=high bias, but low

variance
I small ⁄ gives —s large and less violations=low bias, but high

variance
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Figure 7: ISLR Figure 9.12: hinge loss - loss 0 for observations on the
correct sideof the margin



Hinge loss:
max(0, 1 ≠ yi f (xi))

For comparison a logistic regression (with ridge penalty) would be
(binomial deviance with -1,1 coding of y)

log(1 + exp(≠yi f (xi)))

It can be shown that in logistic regression all observations
contribute weighted by pi(1 ≠ pi) (where pi is probability for class
1), that fade smoothly with distance to the decision boundary

It is possible to extend the logistic regression to include non-linear
terms, and ridge penalty,



When to use SVM?

I If classes are nearly separable SVM will perform better than
logistic regression. (LDA will also perform better than logistic
regression.)

I and if not, then a ridge penalty version of logistic regression are
very similar to SVM, and logistic regression will also give you
probabilities for each class.

I If class boundaries are non-linear then SVM is more popular,
but kernel versions of logistic regression is possible, but more
computationally expensive.



I We use methods from computer science, not probability models
- but looks for a separating hyperplane in (an extended) feature
space in the classification setting.

I SVM is a widely successful and a “must have tool”
I Interpretation of SVM: all features are included and maybe not

so easy to interpret.
I Not so easy to get class probabilites from SVM (what is done

is actually to fit a logistic regression after fitting SVM).



Recommended exercises
1. Understanding the algorithms:

I Exercise 1, 2 and 3 in the book.

2. Data analysis

I Go back and read in the forest1 data (is located in the same
place as forest2) and run the svm with a very high value for
cost. The forest1 is a separable problem.

I Linear version of SVM: Making nicer plots for SVM from Lab
video. Go through the code and see what is happening (and
see the video if you want more explanation).

# code taken from video by Trevor Hastie linked above

library(e1071)
# fake data

set.seed(10111)
x=matrix(rnorm(40),20,2)
y=rep(c(-1,1),c(10,10))
x[y==1,]=x[y==1,]+1
plot(x,col=y+3,pch=19)

#calling svm

dat=data.frame(x,y=as.factor(y))
svmfit=svm(y~.,data=dat, kernel="linear",cost=10,scale=FALSE)
print(svmfit)

##
## Call:
## svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10,
## scale = FALSE)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 10
## gamma: 0.5
##
## Number of Support Vectors: 6

# grid for plotting

make.grid=function(x,n=75)
{

grange=apply(x,2,range)
x1=seq(from=grange[1,1],to=grange[2,1],length=n)
x2=seq(from=grange[1,2],to=grange[2,2],length=n)
expand.grid(X1=x1,X2=x2)

}
xgrid=make.grid(x)
ygrid=predict(svmfit,xgrid)
plot(xgrid, col=c("red","blue")[as.numeric(ygrid)],pch=20,cex=.2)
points(x,col=y+3,pch=19)
points(x[svmfit$index,],pch=5,cex=2)

# more info on results - class boundary

beta=drop(t(svmfit$coefs)%*%x[svmfit$index,])
beta0=svmfit$rho
plot(xgrid, col=c("red","blue")[as.numeric(ygrid)],pch=20,cex=.2)
points(x,col=y+3,pch=19)
points(x[svmfit$index,],pch=5,cex=2)
abline(beta0/beta[2],-beta[1]/beta[2]) #class boundary

abline((beta0-1)/beta[2],-beta[1]/beta[2]) #class boundary

abline((beta0+1)/beta[2],-beta[1]/beta[2]) #class boundary

I SVM for non-linear class boundary using simulated data set
from Friedman, Hastie, and Tibshirani (2001) where the truth
is known (mixtures of normals probably).

load(url("https://web.stanford.edu/~hastie/ElemStatLearn/datasets/ESL.mixture.rda"))
names(ESL.mixture)

## [1] "x" "y" "xnew" "prob" "marginal" "px1"
## [7] "px2" "means"

rm(x,y)
attach(ESL.mixture)

plot(x,col=y+1)

dat=data.frame(y=factor(y),x)
fit=svm(factor(y)~.,data=dat,scale=FALSE,kernel="radial",cost=5)

xgrid=expand.grid(X1=px1,X2=px2)
ygrid=predict(fit,xgrid)
plot(xgrid,col=as.numeric(ygrid),pch=20,cex=.2)
points(x,col=y+1,pch=19)

# decision boundary

func=predict(fit,xgrid,decision.values=TRUE)
func=attributes(func)$decision
contour(px1,px2,matrix(func,69,99),level=0,add=TRUE) #svm boundary

contour(px1,px2,matrix(prob,69,99),level=0.5,add=TRUE,col="blue",lwd=2) #truth
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• SVM for non-linear class boundary using simulated data set from Friedman, Hastie, and Tibshirani
(2001) where the truth is known (mixtures of normals probably).

load(url("https://web.stanford.edu/~hastie/ElemStatLearn/datasets/ESL.mixture.rda"))
names(ESL.mixture)

## [1] "x" "y" "xnew" "prob" "marginal" "px1"
## [7] "px2" "means"
rm(x,y)
attach(ESL.mixture)

plot(x,col=y+1)
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R packages

These packages needs to be install before knitting this R Markdown file.
install.packages("e1071")
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