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Learning material for this module:

I James et al (2013): An Introduction to Statistical Learning.
Chapter 5.

I Classnotes 12.02.2018

Move to:

I Introduction
I Cross-validation and Recommended exercises on

cross-validation
I Bootstrapping and Recommended exercises on bootstrapping
I Summing up
I Further reading
I Packages to install before knitting this R Markdown file



Introduction

What will you learn?

I What is model assessment and model selection?
I Ideal solution in a data rich situation.
I Validation set - LOOCV and k-fold CV - what is the best?
I Bootstrapping - how and why.
I Summing up
I The plan for the interactive lesson on Wednesday/Friday.
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Focus: Generalization performance of learning method

I prediction capacity on independent test data
I inference and understanding

This is important both for

Model selection:

estimate the performance of di�erent models (often di�erent order
of complexity within one model class) to choose the best model.

Model assessment:

having chosen a final model, estimating its performance (prediction
error) on new data.

How well does  a learning method generalized ?
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Example from ComplsoryEx 1- Problem 1

We aim to do model selection in KNN-regression, where true curve is
f (x) = ≠x + x2 + x3 with x œ [≠3, 3]. n = 61 for the training data.

Figure 1: Regression problem: training data and true regression curve
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KNN-regression

n = 61 both for training and for test data (using same x-grid).

K small: high complexity (left) and K large: low complexity (right).

We have unlimited data & know the truth
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The bias-variance trade-o�

Figure 2: Regression problem: bias-variance traceo�

Left (high complexity): low squared-bias (red) and high variance
(green). Right (low complexity): high squared-bias (red) and low
variance (green).
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Loss functions - reminder - we will use

I Mean squared error (quadratic loss) for regression problems:

Yi = f (xi) + Ái for i = 1, . . . , n and MSE = 1
n

nÿ

i=1
(yi ≠ f̂ (xi))2

I 0/1 loss for classification problems:

P(Y = j | x0) for j = 1, . . . , K and 1
n

nÿ

i=1
I(yi ”= ŷi)

The challenge

our example was based on simulated data, so I had unlimited access
to data. Now, let us move to real data!
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Data rich situation

If we had a large amount of data we could divide our data into three
parts:

I training set: to fit the model
I validation set: to select the best model (aka model selection)
I test set: to assess how well the model fits on new independent

data (aka model assessment)

Q Why not enough with training and test?

fit model selection model assessment
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If this is the case - great - then you do not need Module 5. But,
this is very seldom the case - so we will study other solutions based
on e�cient cample resue with resampling data.

An alternative strategy for model selection (using methods
penalizing model complexity) is covered in Module 6.

First we look at crossvalidation, then at bootstrapping.

s us



Cross-validation (CV)

I the validation set approach
I leave one out cross validation (LOOCV)
I 5 and 10 fold crossvalidation (CV)
I selection bias - all elements of a model selection strategy need

to be within the CV-loop
I recommended exercises



The validation set approach

Consider the case when you have a data set consisting of n
observations.

To fit a model and to test its predictive performance you randomly
divide the data set into two parts (n/2 sample size each):

I a training set (to fit the model) and
I a validation set (to make predictions of the response variable

for the observations in the validation set)

First: focus on model selection

EtawahFairer



Regression model selection example: validation set error

Auto data set (library ISLR): predict mpg (miles pr gallon) using
polynomial function of horsepower (of engine), n = 392.
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Regression example: validation set error for many random

divisions
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Drawbacks with the validation set approach

I high variability of validation set error (which we think of as
estimate for test set error) - since this is dependent on which
observation are included in the training and validation set

I smaller sample size for model fit - since not all observations
can be in the training set

I the validation set error may tend to overestimate the test set
error for a model that is fit on the full data set (because - the
more data the lower error, and here our training set is half of
our data set).



Leave-one-out cross-validation (LOOCV)

I If the data is very limited and the division of the data into two
parts is unreasonable, leave-one-out cross-validation (LOOCV)
can be used.

I In LOOCV one observation at a time is left out and makes up
the test set.

I The remaining n ≠ 1 observations make up the training set.
I The procedure of model fitting is repeated n times, such that

each of the n observations is left out once.
I The total prediction error is the mean across these n models.

MSEi = (yi ≠ ŷi)2

CVn = 1
n

nÿ

i=1
MSEi

d
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Regression example: LOOCV
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library(ISLR)

library(boot)

library(ggplot2)

set.seed(123)

n=dim(Auto)[1]

testMSEvec=NULL

start=Sys.time()

for (polydeg in 1:10)

{

glm.fit=glm(mpg~poly(horsepower,polydeg),data=Auto)

glm.cv1=cv.glm(Auto, glm.fit,K=n)

testMSEvec=c(testMSEvec,glm.cv1$delta[1])

}

stopp=Sys.time()

yrange=c(15,28)

plotdf=data.frame("testMSE"=testMSEvec,"degree"=1:10)

g0=ggplot(plotdf,aes(x=degree,y=testMSE))+geom_line()+geom_point()+scale_y_continuous(limits = yrange)+scale_x_continuous(breaks=1:10)+labs(y="LOOCV")
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Issues with leave-one-out cross-validation

I Good:
I no randomness in training/validation splits!
I little bias since nearly the whole data set used for training

(compared to half for validation set approach)
I Bad:

I expensive to implement - need to fit n di�erent models -
however nice formula for linear model LOOCV - but not
genereally so

I high variance since: two training sets only di�er by one
observation - which makes estimates from each fold are highly
correlated and this can lead to that their average can have high
variance.

Var(
nÿ

i=1
aiXi + b) =

nÿ

i=1

nÿ

j=1
aiajCov(Xi , Xj)

=
nÿ

i=1
a2

i Var(Xi) + 2
nÿ

i=2

i≠1ÿ

j=1
aiajCov(Xi , Xj).
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LOOCV for multiple linear regression

CVn = 1
n

nÿ

i=1

3yi ≠ ŷi
1 ≠ hii

42

where hi is the ith diagonal element (leverage) of the hat matrix
(XT X)≠1XT Y.

÷ i§ Cyi - F)
2

pm h 't

L t

plz
H= × ( *#5Xt

q÷F"
hm



k-fold cross-validation

simple data
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Formally

I Indices of observations - divided into k folds: C1, C2, . . . , Ck .
I nk elements in each fold, if n is a multiple of k then nk = n/k.

MSEk = 1
nk

ÿ

iœCk

(yi ≠ ŷi)2

where ŷi is the fit for observation i obtained from the data with part
k removed.

CVk = 1
n

kÿ

i=j
nkMSEk

Observe: setting k = n gives LOOCV.



Regression example: 5 and 10-fold cross-validation
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library(ISLR)

library(boot)

library(ggplot2)

set.seed(123)

n=dim(Auto)[1]

testMSEvec5=NULL

testMSEvec10=NULL

start=Sys.time()

for (polydeg in 1:10)

{

glm.fit=glm(mpg~poly(horsepower,polydeg),data=Auto)

glm.cv5=cv.glm(Auto, glm.fit,K=5)

glm.cv10=cv.glm(Auto, glm.fit,K=10)

testMSEvec5=c(testMSEvec5,glm.cv5$delta[1])

testMSEvec10=c(testMSEvec10,glm.cv10$delta[1])

}

stopp=Sys.time()

yrange=c(15,28)

plotdf=data.frame("testMSE5"=testMSEvec5,"degree"=1:10)

g0=ggplot(plotdf,aes(x=degree,y=testMSE5))+geom_line()+geom_point()+scale_y_continuous(limits = yrange)+scale_x_continuous(breaks=1:10)+labs(y="CV")+ggtitle("5 and 10 fold CV")

g0+geom_line(aes(y=testMSEvec10),colour="red")+geom_point(aes(y=testMSEvec10),colour="red")+ggtitle("5 fold (black), 10 fold (red)")
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Issues with k-fold cross-validation

1. As for the validation set, the result may vary according to how
the folds are made, but the variation is in general lower than
for the validation set approach.

2. The training set is (k-1)/k of the original data set - this will
estimated of prediction error that are biased upwards.

3. This bias is the smalles when k = n (LOOCV), but we know
that LOOCV has high variance.

4. This is way often k = 5 or k = 10 is used as a compromise
between 2 and 3.

5. Conpwktonal Issues : llssworhuith 1<=10 or 5 then h=h



k-fold cross-validation in classification

I what do we need to change from our regression set-up?##→
" a. a.

other ↳ 
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The right and the wrong way to do cross-validation

ISL book slides, page 17: model assessment.

I We have a two-class problem and would like to use a simple
classification method, however,

I we have many possible predictors p = 5000 and not so big
sample size n = 50.

We use this strategy to produce a classifier:

1. We calculate the correlation between the class label and each
of the p predictors, and choose the d = 25 predictors that have
the highest (absolute value) correlation with the class label.
(We need to have d < n to fit the logistic regression uniquely.)

2. Then we fit our classifier (here: logistic regression) using only
the d = 25 predictors.

How can we use cross-validation to produce an estimate of the
performance of this classifier?
Q: Can we apply cross-validation only to step 2? Why or why not?

d<n_



Can we apply cross-validation only to step 2?

A: No, step 1 is part of the training procedure (the class labels are
used) and must be part of the CV to give an honest estimate of the
performance of the classifier.

I Wrong: Apply cross-validation in step 2.
I Right: Apply cross-validation to steps 1 and 2.

We will see in the Recommended Exercises that doing the wrong
thing can give a misclassification error approximately 0 - even if the
“true” rate is 50%.



Selection bias in gene extraction on the basis of microarray

gene-expression data

Article by Christophe Ambroise and Geo�rey J. McLachlan, PNAS
2002: Direct quotation from the abstract of the article follows.

I In the context of cancer diagnosis and treatment, we consider
the problem of constructing an accurate prediction rule on the
basis of a relatively small number of tumor tissue samples of
known type containing the expression data on very many
(possibly thousands) genes.

I Recently, results have been presented in the literature
suggesting that it is possible to construct a prediction rule from
only a few genes such that it has a negligible prediction error
rate.

I However, in these results the test error or the leave-one-out
cross-validated error is calculated without allowance for the
selection bias.

-

n small d p large



I There is no allowance because the rule is either tested on tissue
samples that were used in the first instance to select the genes
being used in the rule or because the cross-validation of the
rule is not external to the selection process; that is, gene
selection is not performed in training the rule at each stage of
the crossvalidation process.

I We describe how in practice the selection bias can be assessed
and corrected for by either performing a crossvalidation or
applying the bootstrap external to the selection process.

I We recommend using 10-fold rather than leave-one-out
cross-validation, and concerning the bootstrap, we suggest
using the so-called .632 bootstrap error estimate designed to
handle overfitted prediction rules.

I Using two published data sets, we demonstrate that when
correction is made for the selection bias, the cross-validated
error is no longer zero for a subset of only a few genes.



Recommended exercises on cross-validation

Problem 1: Explain how k-fold cross-validation is implemented +
draw a figure, + specify algorithmically what is done, + and in
particular how the “results” from each fold are aggregated, + relate
to one example from regression (maybe is complexity wrt
polynomials of increasing degree in multiple linear regression or K in
KNN-regression?) + relate to one example from classification
(maybe is complexity wrt polynomials of increasing degree in logistic
regression or K in KNN-classification?)

Hint: the words “loss function”, “fold”, “training”, “validation” are
central.



Problem 2: What are the advantages and disadvantages of k-fold
cross-validation relative to + the validation set approach + leave
one out cross-validation (LOOCV) + what are recommended values
for k, and why?

Hint: the words “bias”, “variance” and “computational complexity”
should be included.



Problem 3:. Selection bias and the “wrong way to do CV”.

The task here is to devise an algorithm to “prove” that the wrong
way is wrong and that the right way is right.

1. What are the steps of such an algorithm? Write down a
suggestion. Hint: how do you generate data for predictors and
class labels, how do you do the classification task, where is the
CV in the correct way and wrong way inserted into your
algorithm? Can you make a schematic drawing of the right and
the wrong way? Hint: ISL book slides, page 20+21 - but you
can do better?



2. One possible version of this is presented in the R-code below.
Go through the code and explain what is done in each step,
then run the code and observe if the results are in agreement
with what you expected. Make changes to the R-code if you
want to test out di�erent strategies.

library(boot)

# GENERATE DATA
# reproducible
set.seed(4268)

n=50 #number of observations
p=5000 #number of predictors
d=25 #top correlated predictors chosen
kfold=10

#generating predictor data
xs=matrix(rnorm(n*p,0,4),ncol=p,nrow=n) #simple way to to uncorrelated predictors
dim(xs) # n times p
# generate class labels independent of predictors - so if all classifies as class 1 we expect 50% errors in general
ys=c(rep(0,n/2),rep(1,n/2)) #now really 50% of each
table(ys)

# WRONG CV - using cv.glm
# here select the most correlated predictors outside the CV
corrs=apply(xs,2,cor,y=ys)

hist(corrs)

selected=order(corrs^2,decreasing = TRUE)[1:d] #top d correlated selected
data=data.frame(ys,xs[,selected])

#apply(xs[,selected],2,cor,y=ys) yes, ave the most correlated
# then cv around the fitting of the classifier - use logistic regression and built in cv.glm function
logfit=glm(ys~.,family="binomial",data=data)

cost <- function(r, pi = 0) mean(abs(r-pi) > 0.5)

cvres=cv.glm(data=data,cost=cost,glmfit=logfit,K=kfold)

cvres$delta

# observe - near 0 misclassification rate

# WRONG without using cv.glm - should be similar (just added to see the similarity to the RIGHT version)
reorder=sample(1:n,replace=FALSE)

validclass=NULL

for (i in 1:kfold)

{

neach=n/kfold

trainids=setdiff(1:n,(((i-1)*neach+1):(i*neach)))

traindata=data.frame(xs[reorder[trainids],],ys[reorder[trainids]])

validdata=data.frame(xs[reorder[-trainids],],ys[reorder[-trainids]])

colnames(traindata)=colnames(validdata)=c(paste("X",1:p),"y")

data=traindata[,c(selected,p+1)]

trainlogfit=glm(y~.,family="binomial",data=data)

pred=plogis(predict.glm(trainlogfit,newdata=validdata[,selected]))

print(pred)

validclass=c(validclass,ifelse(pred > 0.5, 1, 0))

}

table(ys[reorder],validclass)

1-sum(diag(table(ys[reorder],validclass)))/n

# CORRECT CV
reorder=sample(1:n,replace=FALSE)

validclass=NULL

for (i in 1:kfold)

{

neach=n/kfold

trainids=setdiff(1:n,(((i-1)*neach+1):(i*neach)))

traindata=data.frame(xs[reorder[trainids],],ys[reorder[trainids]])

validdata=data.frame(xs[reorder[-trainids],],ys[reorder[-trainids]])

colnames(traindata)=colnames(validdata)=c(paste("X",1:p),"y")

foldcorrs= apply(traindata[,1:p],2,cor,y=traindata[,p+1])

selected=order(foldcorrs^2,decreasing = TRUE)[1:d] #top d correlated selected
data=traindata[,c(selected,p+1)]

trainlogfit=glm(y~.,family="binomial",data=data)

pred=plogis(predict.glm(trainlogfit,newdata=validdata[,selected]))

validclass=c(validclass,ifelse(pred > 0.5, 1, 0))

}

table(ys[reorder],validclass)

1-sum(diag(table(ys[reorder],validclass)))/n



Problem 4: Trying out di�erent versions of cross-validation with R.
We will use a simulated data set (so that in the end the truth can be
reviled and you can see how well you have done). To see di�erences
we will look at a large data set and a small data set (in the number
of observations), and focus on regression and on classification.



The Bootstrap

I flexible and powerful statistical tool that can be used to
quantify uncertainty associated with an estimator or statistical
learning method

I we will look at getting an estimate for the standard error of a
sample median and of a regression coe�cient

I in Module 8 - bootstrapping is the core of the ensemble
method referred to at bagging=bootstrap aggregation,

I in TMA4300 Computation statistics - more on the bootstrap.



The inventor: Bradley Efron in 1979 - see interview.

The name? To pull oneself up by one’s bootstraps from “The
Surprising Adventures of Baron Munchausen” by Rudolph Erich
Raspe:

The Baron had fallen to the bottom of a deep lake. Just when it
looked like all was lost, he thought to pick himself up by his own
bootstraps.
Idea: Use the data itself to get more information about a
statistic (an estimator).

ff
← bootstrap

6



Example: the standard deviation of the sample median?

Assume that we observe a random sample X1, X2, . . . , Xn from an
unknown probability distribution F . We are interesting in saying
something about the population median, and to do that we calculate
the sample median X̃ . But, how accurate is X̃ as an estimator?

The bootstrap was introduced as a computer-based method to
estimate the standard deviation of an estimator, for example our
estimator X̃ .

But, before we look at the bootstrap method, first we assume that
we know F and can sample from F , and use simulations to answer
our question.

Iain ter



set.seed(123)

n=101

B=1000

estimator=rep(NA,B)

for (b in 1:B)

{

xs=rnorm(n)

estimator[b]=median(xs)

}

sd(estimator)

# approximation for large samples
# (sd of median of standard normal)
1.253*1/sqrt(n)

## [1] 0.1259035

## [1] 0.1246782
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ggplot(data=data.frame(x=estimator),aes(x=x))+
geom_density()
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Moving from simulation to bootstrapping

The bootstrap method is using the observed data to estimate the
empirical distribution F̂ , that is each observed value of x is given
probability 1/n.

A bootstrap sample X ú
1 , X ú

2 , . . . , X ú
n is a random sample drawn from

F̂ .

A simple way to obtain the bootstrap sample is to draw with
replacement from X1, X2, . . . , Xn.

This means that our bootstrap sample consists of n members of
X1, X2, . . . , Xn - some appearing 0 times, some 1, some 2, etc.
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set.seed(123)

n=101

original=rnorm(n)

median(original)

boot1=sample(x=original,size=n,replace=TRUE)

table(table(boot1))

n-sum(table(table(boot1)))

median(boot1)

## [1] 0.05300423

##

## 1 2 3 4 5

## 42 16 6 1 1

## [1] 35

## [1] -0.1388914

.

←  original data ( assume known )
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The bootstrap algorithm for estimating standard errors

1. B bootstrap samples:
2. Evaluate statistic:
3. Estimate standard error by:

IT in original sample [ Xe , .
. .yXn ]

1000
draw  a bootstrap sample = draw

01 { with replacement hom  org . data

→ median of each boot sample
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with for-loop in R

set.seed(123)

n=101

original=rnorm(n)

median(original)

B=1000

estimator=rep(NA,B)

for (b in 1:B)

{

thisboot=sample(x=original,size=n,replace=TRUE)

estimator[b]=median(thisboot)

}

sd(estimator)

## [1] 0.05300423

## [1] 0.1365856

1000 I

compare to 0.1259

from true F



ggplot(data=data.frame(x=estimator),aes(x=x))+
geom_density()
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using built in boot function from library boot

library(boot)

set.seed(123)

n=101

original=rnorm(n)

median(original)

summary(original)

## [1] 0.05300423

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -2.30917 -0.50232 0.05300 0.08248 0.68864 2.18733



boot.median=function(data,index) return(median(data[index]))

B=1000

boot(original,boot.median,R=B)

##

## ORDINARY NONPARAMETRIC BOOTSTRAP

##

##

## Call:

## boot(data = original, statistic = boot.median, R = B)

##

##

## Bootstrap Statistics :

## original bias std. error

## t1* 0.05300423 -0.01413291 0.136591

TCCA ,A,2 ,
]

, ... )
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With or without replacement?

In bootstrapping we sample with replacement from our observations.

What if we instead sample without replacement?

Sampling

without
replacement →
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Example: multiple linear regression

We assume, for observation i :

Yi = —0 + —1xi1 + —2xi2 + ... + —pxip + Ái ,

where i = 1, 2, ..., n. The model can be written in matrix form:

Y = X— + Á.

The least squares estimator: —̂ = (XT X)≠1XT Y has
Cov(—) = ‡2(XT X)≠1.

We will in the recommended exercises look at how to use
bootstrapping to estimate the covariance of the estimator. Why is
that “needed” if we already know the mathematical formula for the
standard deviation?

We will not do this here - but our bootstrap samples can also be
used to make confidence intervals for the regression coe�cients or
prediction intervals for new observations. This means that we do
not have to rely on assuming that the error terms are normally
distributed!

^

do  not have to  assume
" anything

"



Bagging

Bagging is a special case of ensemble methods.
In Module 8 we will look at bagging, which is built on bootstrapping
the the fact that it is possible to reduce the variance of a prediction
by taking the average of many model fits.

I Assume that we have B di�erent predictors X1, X2, . . . , XB.
We have built them on B di�erent bootstrap samples.

I All are predictors for some parameter µ and that all have some
unknown variance ‡2.

I We then decide that we want to use all the predictors together
- equally weighted - and make X̄ = 1

n
qn

i=1 Xi , which we often
use to predict µ.



We can therefore obtain a new model (our average of the individual
models) that has a smaller variance than each of the individual
model because

Var(X̄ ) = ‡2

n

Since this averaged predictor has smaller variance than each of the
predictors we would assum that this is a more accurate prediction.
However, the interpretation of this bagged prediction might be
harder then for the separate predictors.

Models that have poor prediction ability (as we may see can happen
with regression and classification trees) might benefit greatly from
bagging. More in Module 8.



Recommended exercises on bootstrapping

Problem 1: We will calculate the probability that a given
observation in our original sample is part of a bootstrap sample.
This is useful for us to know in Module 8.

Our sample size is n.

1. We draw one observation from our sample. What is the
probability of drawing observation xi? And of not drawing
observation xi?

2. We make n independent drawing (with replacement). What is
the probability of not drawing observation xi in any of the n
drawings? What is then the probability that xi is in our
bootstrap sample (that is, more than 0 times)?

3. When n is large (1 ≠ 1
n )n = 1

exp(1) . Use this to give a numerical
value for the probability that a specific observation xi is in our
bootstrap sample.

4. Write a short R code chunk to check your result. (Hint: An
example on how to this is on page 198 in our ISLR book.)



Problem 2: Explain with words and an algorithm how you would
proceed to use bootstrapping to estimate the standard deviation of
one of the regression parameters in multiple linear regression.
Comment on which assumptions you make for your regression
model.

Problem 3: Implement your algorithm from 2 both using for-loop
and using the boot function. Hint: see page 195 of our ISLR book.
Use our SLID data set and provide standard errors for the coe�cient
for age. Compare with the theoretical value (XT X)≠1‡̂2 that you
find in the output from the regression model.

library(car)

library(boot)

SLID = na.omit(SLID)

n = dim(SLID)[1]

SLID.lm = glm(wages~., data = SLID)

summary(SLID.lm)$coeff[3,2]



Summing up

→ Use 5 or 10 fold cross . validator far  model

selection and model assessment

→ use bootstrap to find SD ( estimator ) .



Plan for interactive lecture (Wednesday 10.15-12.00 and

Friday 12.15-14.00)

1. Enter - participate in interactive lecture IL (with lecturer) or
supervision of CompEx1 (TAs). If supervision only - allocated
table - or participate in IL and take breaks to ask for
supervision of CompEx1.

2. If IL - answer: name+study programme+year+“I found
CompEx1 ok or di�cult” Then groups are formed (by
lecuturer) as homogeneous as possible (so, not random).

3. 10.15/12.15: Presentation round in groups: name+study
programme+year+previous background in statistics+level of
expertise in R+favorite hobby!

4. 10.20/12.20: Introduction to problems on cross-validation -
work with problems 1-3 (4): Recommended exercises on
cross-validation

5. 10.50/12.50: Summing up problems 1-2 (3) by lecturer.
6. 11.00/13.00: Break - with fruits.



7. Maybe new groups, maybe not (we evaluate if some of the
groups do not work well). If changes, need new presentation
round.

8. 11.15/13.15: Introduction to problems on bootstrapping - work
with problems 1-3: Recommended exercises on bootstrapping

9. 11.40/13.40: Summing up problems 1-2 (3) by lecturer.
10. 11.45/13.45: Team Kahoot! (in ghostmode on Friday - to beat

the Wednesday people).
11. 12.00/14.00: The end:-)



Further reading

I Videoes on YouTube by the authors of ISL, Chapter 5, and
corresponding slides



R packages to install before knitting this R Markdown file

# packages to install before knitting this R Markdown file
# to knit the Rmd
install.packages("knitr")
install.packages("rmarkdown")
# cool layout for the Rmd
install.packages("prettydoc") # alternative to github
#plotting
install.packages("ggplot2") # cool plotting
install.packages("ggpubr") # for many ggplots
#datasets
install.packages("ElemStatLearn")
install.packages("ISLR")
# cross-validation and bootstrapping
install.packages("boot")
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