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Random variables and probability distributions
To be able to do statistics, a good understanding of random variables and probability distributions is vital.

Background

Do you read Norwegian and want to brush up on these topics (theory, not R)? Then go to the thematic pages
from TMA4240/TMA4245 Statistics and read about:


https://www.math.ntnu.no/emner/TMA4268/2019v/1Intro/Rbeginner.html
https://www.math.ntnu.no/emner/TMA4268/2019v/1Intro/Rbeginner.html
https://www.math.ntnu.no/emner/TMA4268/2019v/1Intro/Rintermediate-sol.html
https://www.math.ntnu.no/emner/TMA4268/2019v/1Intro/Rintermediate-sol.html
https://www.math.ntnu.no/emner/TMA4268/2019v/1Intro/Rintermediate-sol.html
https://www.math.ntnu.no/emner/TMA4268/2019v/1Intro/Rintermediate-sol.html

e Random variables and probability distributions
e Important discrete distributions
e Important continuous distributions

We will also make a function to do a z-test (so, just a bit of inference) and to calculate a p-value.

Probability distributions in R

Tools for working with probability distributions are included in the default environment in R, and we will
now look at the binomial (discrete) distribution and the normal, chi-squared, t and Fisher F' (continuous
distribution). The multivariate normal distribution will be covered in the interatice lecture of Module 2 of
TMA4268 (and is also a large part of TMA4267).

For each of these distributions, there exists functions that calculates the pdf (probability density or mass
function, often denoted f in previous courses), the cumulative distribution function (often denoted F), the
inverse cumulative distribution function (often denoted F~') and drawing random numbers form the given
distribution. For the normal distribution these functions are called:

Function Meaning

dnorm density (pdf)

pnorm cumulative distribution function (cdf)
qnorm inverse cumulative distribution (quantile function)
rnorm draw random variable from normal distribution

NA

Remember to check the help pages of the functions you want to use, to see what is used as input for each
function. We will now look at each of these functions.

Probability density or mass function f(z)

Binomial distibution

If we study a discrete distibution — like the binomial distribution — the probability mass function gives the
probability of observing z, f(z) = P(X = z).
Exercise: What are the requirements that a random variable X follows a binomial distribution? What are

the parameters of the distribution?

Solution: X follows a binomial distribution if its probability mass function is given by P(X = z) =
(Z)p"”(l —p)"® for x =0, 1, ..., n, where the parameter n is a positive integer and the parameter p is a
number between 0 and 1. Typically, X is the number of successes in a Bernoulli process consisting of n trials
where the probability of success in each trial is p.

To plot the pdf of the binomial we may construct a barplot. We do this now using the ggplot2 package.

library(ggplot2)
n =10
p=0.2

probs = dbinom(0:10, n, p)
df = data.frame(x = 0:10, y = probs)
p <- ggplot(data = df, aes(x = x, y = y)) + geom_bar(stat = "identity") +


https://wiki.math.ntnu.no/tma4245/tema/begreper/variable
https://wiki.math.ntnu.no/tma4245/tema/begreper/discrete
https://wiki.math.ntnu.no/tma4245/tema/begreper/continuous
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Exercise: Do the same, but with p = 0.5. Which value for p do you think will be best if you need to
approximate the binomial with a normal distribution?

Solution: The approximation is best for p = 0.5. Then the probability mass function is symmetric, as is the
nomral probability density function. The approximation gets worse the closer p is to 0 or 1.

Normal distribution

For the continuous distributions — like the normal distributions — the probability density function gives the
probability of observing a value between a and b when we integrate the pdf from a to b: P(a < X <b) =

f; f(x)dx. Remember: f(x) does not give the point probability of x - the point probability is 0. Why?

We can plot the pdf for the normal distribution:

x = seq(from = -5, to = 5, length = 100)

y = dnorm(x = x, mean = 0, sd = 1)

df = data.frame(x = x, y = y)

p = ggplot(data = df, aes(x = x, y = y)) + geom_line() + ggtitle("Standard normal pdf") +
theme_minimal ()

%
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Exercise: Find f(1.4) looking at the figure and using the dnorm. How can you interpret this value?

Solution: dnorm(1.4) gives 0.1497275. For a small §, P(1.4—6 < Z < 1.4+ 0) ~ 2-0.15- ¢ for a standard
normally distributed Z.

We can also plot the distribution using random generated values for the distribution. The function rnorm()
draws random values from the given distribution. Below we draw n=10000 values and make a histogram.

= 10000
rnorm(n = n, mean = 0, sd = 1)
ggplot(data.frame(x = x), aes(x)) + geom_histogram() + theme_minimal()
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Try using smaller values of n and see what happends. Explain.

We can easily check the sample mean, variance and standard deviation of our drawn values by

mean (x)
var (x)
sd(x)

Exercise: Check your drawn values to see that the mean and variance agree with what you specified. (No
solution provided.)

Chi-squared distribution

In our introductory course in statistics we learned that if X is a standard normal variable then X? is
chi-squared distributed with 1 degree of freedom.

Exercise: What is the expected value and variance of a y2-distribution with 1 degree of freedom? Look at
the data drawn from the standard normal distribution above, and calulate the sample mean and variance
of x72. Does your result coincide with the known expected value and variance for this distribution? What
happens to your result if you increase or decrease n?

Solution: A variable that has the chi-squared distribution with v degrees of freedom has expected value v
and variance 2v, so with v = 1, the expected value is 1 and the variance 2. If n is increased, sample mean
and variance should get closer to 1 and 2, respectively (sample mean and variance are consistent estimators
of distribution mean and variance).

We may also draw values directly from the chi-squared distribution.

n = 10000
x = rchisq(n = n, df = 1)



p = ggplot(data.frame(x = x), aes(x)) + geom_histogram() + ggtitle("Chi~2 distribution") +
theme_minimal ()
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t-distribution

Let X; be independent normal variables with mean p and variance o2, and X = %2?21 X; and S? =
(X - X)2. Further let )

_ X

—S/\/n

Exercise: What is the connection between S2 and the chi-square distribution? What is the connection
between T and the t-distribution?

T

Solution: (n — 1)S?/0? is chi-squared distributed with n — 1 degrees of freedom. T is t-distributed with
n — 1 degrees of freedom.

We can plot the pdf for the t-distribution with n — 1 degrees of freedom, and add the standard normal for
reference. Is the red curve the ¢ or normal curve? How can you see that?

library(ggplot2)

n = 10

x = seq(from = -5, to = 5, length = 100)

pdft = dt(x = x, df = n - 1)

pdfn = dnorm(x)

df = data.frame(x = x, pdft = pdft, pdfn = pdfn)

p = ggplot(data = df, aes(x = x)) + geom_line(aes(x = x, y = pdft)) +



geom_line(aes(x = x, y = pdfn), colour = "red") + theme_minimal()
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The Fisher distribution

The final distribution is the Fisher distribution which is defined as a ratio between scaled chi-squared random
variables. Let V ~ x?(v) and W ~ x?(w) then the ratio

V/v
~ Fvw
W/w ’

follows a Fisher distribution with v and w degrees of freedom. We will use this distribution when working
with ratios of variance estimates.

Exercise: Plot the pdf for the Fisher distribution with v = 5 and w = 10 degrees of freedom. Hint df.

Solutions: Do as in previous plots of pdfs. The R function for the pdf of an F-distribution is df. Be careful
that you don’t name any data.frame df!

Se code and plot below.

library(ggplot2)
v=>5
w = 10

x = seq(from = 0, to = 5, length = 100)

pdff = df(x = x, dfl = v, df2 = w)

dframe = data.frame(x = x, pdff = pdff)

p = ggplot(data = dframe, aes(x = x, y = pdff)) + geom_line() + theme_minimal()
p
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Cumulative distribution function F(z)

The cumulative distribution function (cdf) is the probability that your observation is less or equal to x,

J* fa(t)dt for continuous distributions

(@) K<) {Zt<m f(t) for discrete distributions

The following plot shows the cdf of a standard normal distribution.
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Below, we find the cdf of the critical values, P(Z > z,/2) = /2 and P(Z < z1_4/2) = a/2 for a standard
normal distribution. Instead of integrating, we can use the distribution function pnorm()

x = seq(from = -5, to = 5, length = 100)

y = dnorm(x = x, mean = 0, sd = 1)

z =1.96

gplot(x, y, geom = c("point", "line"), main = "Standard normal distribution",

xlab = "x", ylab = "density(x)") + geom_vline(xintercept = c(-z,
z)) + theme_minimal ()
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alpha_lower = pnorm(q = -z, mean = 0, sd = 1, lower.tail = TRUE)
alpha_upper = 1 - pnorm(q = z, mean = 0, sd = 1, lower.tail = TRUE)
c(alpha_lower, alpha_upper)

## [1] 0.0249979 0.0249979

Note that for the upper tail, we could have written alpha_upper = pnorm(q = q, mean = 0, sd = 1,
lower.tail = FALSE). The logical option lower.tail indicate if you want to calculate the upper, P(X > z),
or the lower, P(X < z), tail. The default is TRUE, meaning that if you don’t include this option as input it
will automatically calculate the lower tail.

Exercise Find the cdf of z = —5 and = 5 from looking at the figure and using the distribution function in

R.

Solutions: pnorm(-5) and pnorm(5) give 2.866516e-07 and 0.9999997, respectively, i.e. close to 0 and 1.
This agrees with the figure of the cdf.

Let’s check that the critical values 2,/ and z;_ /2 are -1.96 and 1.96 when o = 0.05. For this, we use the
quantile function (inverse cdf).

1)
1

z_1 = gqnorm(0.025, mean = 0, sd
z_u = qnorm(0.975, mean = 0, sd
c(z_1l, z_u)

## [1] -1.959964 1.959964

Exercise Assume a student t-distribution with 1 degree of freedom, as in the figure below. Use the distribution
function to

1. Calculate the cdf of z = 1.8, F,(1.8) = [*% f,(x)da.
2. Calculate P(0 < z < 2).

10



Solution: We can use the following code:

pt(q = 1.8, df = 1)

## [1] 0.8385855
pt(q = 2, df = 1) - pt(q =1, df = 1)

## [1] 0.1024164
Student t—distribution with 1 df
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Writing a simple Z-test as a function

Let us assume that X is a random variable from a normal distribution with know variance o2 and we want
to perform a hypothesis test to test that the mean of X is not equal to 0, pu # 0, that is, a two-sided test.
X—p
a/vn
a standard normal distribution (and o2 is known). Here X = 13" | X; A t-test is implemented in R
(function t.test) but no z.test, so now we (for the sake of exercise) want to implement our own z-test.

Assume that have collected a random sample (X7, X5, ..., X,,), and that we may assume that follows

Then we need a function with the data and given (known) standard deviation as input. We assume that the
data are given in a vector named x.

Read and discuss what is done here.

myz.test <- function(x, sd) {
n <- length(x)
xbar <- mean(x)
zobs <- xbar/(sd/sqrt(n))
# if you what to print remove hashtag in next line

11



# print (paste('Zobs', zobs))

pval <- 2 * pnorm(abs(zobs), lower.tail = FALSE)

# 1f you what to print remove hashtag in next line
# print (paste('P-value',pval))
return(list(statistic = zobs, p.value = pval))

}

To use the function we first generate some data and then call the function.

testds <- rnorm(100, mean = 0.5, sd = 6)
myz.test(testds, sd = 6)

## $statistic

## [1] -0.2020529
##

## $p.value

## [1] 0.8398754

If you want to run this function for many simulated data sets and put the results from myz.test into a
matrix you may use the following simple for-loop:
mu = 0
sigma = 4
n =10 # size of each data set
B = 1000 # number of data sets to simulate
results <- matrix(NA, ncol = 2, nrow = B)
for (i in 1:B) {
testX <- rnorm(n, mean = mu, sd = sigma)
thisresult <- myz.test(testX, sigma)
results[i, ] <- c(thisresult$statistic, thisresult$p.value)
}
hist(results[, 2])

12



Histogram of results[, 2]
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Exercise: Run the code on your computer. What is done here? What does the histogram display? Hint:
what is the distribution of p-values from true null hypotheses?

Solution: The test Hy: p = 0 versus Hy: u # 0 is performed 1000 times. The histogram (above) displays
the p-values. They seem uniformly distributed, as p-values from a true simple nullhypothis should be with
continuous data.

If you want reproducible results, it is useful to set the random generator seed. That is done as set.seed(a)
where a is the seed you want to set.

Plotting pdfs

For the user who wants to do advanced graphics: Below is an example of how to draw multiple plots using
ggplot.

Exercise: What is this plot showing?

x = seq(from = -10, to = 10, length = 500)

y1l = dnorm(x, mean = 0, sd = 1)

y2 = dnorm(x, mean = 0, sd = 2)

y3 = dnorm(x, mean = 1, sd = 2)

y4 = dnorm(x, mean = -1, sd = 2)

df = data.frame(x, y1, y2, y3, y4)

ggplot(df, aes(x, y = value, color = variable)) + geom_line(aes(y = yi,
col = "y1")) + geom_line(aes(y = y2, col = "y2")) + geom_line(aes(y = y3,
col = "y3")) + geom_line(aes(y = y4, col = "y4")) + ylim(0, 0.5) +
ggtitle("Normal distribution") + scale_colour_discrete(name = "Mean, sd",
breaks = c("yi1", "y2", "y3", "y4"), labels = c("O, 1", "0, 2", "1, 2 ",

"-1, 2")) + theme_minimal()

13
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Let’s assume we flip a coin where the probability of getting head is p = P(head) = P(X = 1) = 0.5, and the
probabiltiy of getting tails is 1 — p = P(tails) = P(X = 0). The following shows the number of times we get
head and tails of a throw when we try 1000 times

n = 1000

p =20.5

x = rbinom(n, size = 1, prob = p)

gplot(x, geom = "histogram") + theme_minimal()

14
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Note here that the option size refers the number of trials.

Exercise: Increase the number of trials to 100 when holding the other parameters constant. Can you explain
what happens here and why? What is the mean and variance of this distribution? What is the probability of
having only one head when you do 100 trials?

Solution: An experiment of flipping a coin 100 times is repeated 1000 times. Each of the 1000 results will
be an integer between 0 and 1000 (inclusive). The number of heads in each experiment has the binomial
distribution with parameters n = 100 and p = 0.5. The mean of this distribution is np = 50 and the variance
is np(1 — p) = 25. We find the probability of having one or zero heads by pbinom(1, size=100, prob=0.5),
which gives 7.967495e-29, and the probability of having exactly one head by dbinom(1,100,.5), which
gives 7.888609e-29, i.e., very small probabilities.

The R code (below) draws a kernel density estimate (a smoothed version of the histogram) of the number
of heads in the 1000 experiments (red). The same is done for a normal approximation to the binomial
distribution (blue).

n = 1000
p =0.5
x = rbinom(n, size = 100, prob = 0.5)

x_normal = rnorm(n, mean = 100 * p, sd = sqrt(100 * p * (1 - p)))
# hist(z) hist(z_normal)

df = data.frame(x = x, x_normal = x_normal)

ggplot(data = df, aes(x = values), color = variable) + geom_density(aes(x = x,
col = "x")) + geom_density(aes(x = x_normal, col = "x_normal")) +
theme_minimal ()

15
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Exercise: Make one plot of the pdf and one plot of the cdf for each of the following distributions

1. x?2- distributions with 1, 2, 3, 4, 6 and 9 degrees of freedom
2. Student t-distribution with 1, 2, 3, 4 and 5 degrees of freedom.

Solution: R code and plots:

x = seq(from = 0, to = 8, length = 500)
y1 = dchisq(x, df = 1)
y2 = dchisq(x, df = 2)
y3 = dchisq(x, df = 3)
y4 = dchisq(x, df = 4)
y6 = dchisq(x, df = 6)
y9 = dchisq(x, df = 9)

df = data.frame(x, y1, y2, y3, y4, y6, y9)

ggplot(df, aes(x, y = value, color = variable)) + geom_line(aes(y = yi,
col = "yi")) + geom_line(aes(y = y2, col = "y2")) + geom_line(aes(y = y3,
col = "y3")) + geom_line(aes(y = y4, col = "y4")) + geom_line(aes(y = y6,
col = "y6")) + geom_line(aes(y = y9, col = "y9")) + ylim(0, 0.5) +
theme_minimal() + ggtitle("Chi~2-pdf") + scale_colour_discrete(name = "Df",
breaks = C(llylll s ||y2|| , ||y3|| , ||y4ll s ll-y6|| s llygll) , 1abels = C(lllll s ||2l| s

|v3u, |v4u’ "6", ugu))

16
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x = seq(from = -4, to = 4, length = 500)
vl = dt(x, df = 1)
v2 = dt(x, df = 2)
y3 = dt(x, df = 3)
y4 = dt(x, df = 4)
y5 = dt(x, df = 5)

df = data.frame(x, yl1, y2, y3, y4, y5)
ggplot(df, aes(x, y = value, color = variable)) + geom_line(aes(y = yi,
col = "yi")) + geom_line(aes(y = y2, col = "y2")) + geom_line(aes(y = y3,
col = "y3")) + geom_line(aes(y = y4, col = "y4")) + geom_line(aes(y = yb5,
col = "y5")) + ylim(0, 0.4) + ggtitle("T-pdf") + scale_colour_discrete(name = "Df",
breaks = c("yi", "y2", "y3", "y4", "y5"), labels = c("1", "2", "3",
"4n . "5")) + theme_minimal ()
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x = seq(from = -4, to = 4, length = 500)
yl = pt(x, df = 1)
y2 = pt(x, df = 2)
y3 = pt(x, df = 3)
y4 = pt(x, df = 4)
y6 = pt(x, df = 5)

df = data.frame(x, yl1, y2, y3, y4, y5)
ggplot(df, aes(x, y = value, color = variable)) + geom_line(aes(y = yi,
col = "yi")) + geom_line(aes(y = y2, col = "y2")) + geom_line(aes(y = y3,
col = "y3")) + geom_line(aes(y = y4, col = "y4")) + geom_line(aes(y = y6,
col = "y5")) + ylim(0, 1) + ggtitle("T-cdf") + scale_colour_discrete(name = "Df",
breaks = c("yi", "y2", "y3", "y4", "y5"), labels = c("1", "2", "3",
"4n o "5")) + theme_minimal ()
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Here is more about using ggplot to plot functions in general: http://t-redactyl.io/blog/2016/03/
creating- plots-in-r-using-ggplot2-part-9-function- plots.html
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