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Previous lecture

Subset selection and shrinkage methods

• Subset selection and shrinkage methods have controlled variance in two ways:
– Using a subset of the original predictors.
– Shrinking their coefficients towards zero.

• Those methods use the original (possibly standardized) predictors X1, . . . , Xp.

Dimension reduction methods

Dimension reduction methods

• Transform the original predictors

Zm =
p∑

j=1
φjmXj

for m = 1, ...,M , j = 1, ..., p and M < p

Dimension reduction methods

• Transform the original predictors

Zm =
p∑

j=1
φjmXj

for m = 1, ...,M , j = 1, ..., p and M < p

• Fit least square using the transformed predictors

yi = θ0 +
M∑

m=1
θmzim + εi, i = 1, ..., n

• If the constants φjm are chosen wisely, then such dimension reduction approaches can often outperform
least squares regression.

• The dimension of the problem has been reduced from p + 1 to M + 1.
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Constrained interpretation

• It can be shown that

βj =
M∑

m=1
θmφjm

Constrained interpretation

• It can be shown that

βj =
M∑

m=1
θmφjm

• So dimension reduction serves to constrain the coefficients of a standard linear regression

• This constrain increase the bias but is useful in situations where the variance is high

• Such as large p in relation to n

Outline

• We will cover two approaches to dimensionality reduction:
– Principal Components
– Partial Least Squares

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• Discussed in greater detail in Chapter 10 about unsupervised learning

• Focus in this lecture is how it can be applied for regression.

– That is, in a supervised setting.

Principal Component Analysis (PCA)

• Discussed in greater detail in Chapter 10 about unsupervised learning

• Focus in this lecture is how it can be applied for regression.

– That is, in a supervised setting.

• PCA is a (unsupervised) technique for reducing the dimension of a n× p data matrix X.
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Principal Component Analysis (PCA)

• We want to create a n×M matrix Z, with M < p.

• The column Zm of Z is the m-th principal component.

Zm =
p∑

j=1
φjmXj subject to

p∑
j=1

φ2
jm = 1

Principal Component Analysis (PCA)

• We want to create a n×M matrix Z, with M < p.

• The column Zm of Z is the m-th principal component.

Zm =
p∑

j=1
φjmXj subject to

p∑
j=1

φ2
jm = 1

• We want Z1 to have the highest possible variance.
– That is, take the direction of the data where the observations vary the most.
– Without the constrain we could get higher variance by increasing φj

Principal Component Analysis (PCA)

• Z2 should be uncorrelated to Z1, and have the highest variance, subject to this constrain.
– The direction of Z1 must be perpendicular (or orthogonal) to the direction of Z2

Principal Component Analysis (PCA)

• Z2 should be uncorrelated to Z1, and have the highest variance, subject to this constrain.

– The direction of Z1 must be perpendicular (or orthogonal) to the direction of Z2

• And so on . . .

• We can construct up to p PCs that way.

– In which case we have captured all the variability contained in the data
– We have created a set of orthogonal predictors
– But have not accomplished dimensionality reduction

PCA Example - Ad spending

• The population size (pop) and ad spending (ad) for 100 different cities are shown as purple circles.

• The green solid line indicates the first principal component.

• The blue dashed line indicates the second principal component.
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PCA Example - Ad spending (II)

• A subset of the advertising data.

• Left: 1st PC

– The dimension along which the data vary the most
– The line that is closest to all n of the observations.

• Right: Rotated so that the 1st PC direction coincides with the x-axis.

PCA Example - Ad spending (III)

• Plots 1st PC scores versus population and ad spending. The relationships are strong.

• Strong relationship: the 1st PC appears to capture most of the information contained in the pop and
ad predictors.

PCA Example - Ad spending (IV)

• There is little relationship between 2nd PC and predictors

• Suggesting one only needs the first principal component in order to accurately represent the pop and
ad budgets.

PCA - General setup

• Let X be a matrix with dimension n× p.

• Each column represent a vector of predictors.

PCA - General setup

• Let X be a matrix with dimension n× p.

• Each column represent a vector of predictors.

• Assume Σ to be the covariance matrix associated with X.

PCA - General setup

• Let X be a matrix with dimension n× p.

• Each column represent a vector of predictors.

• Assume Σ to be the covariance matrix associated with X.

• Since Σ is a non-negative definite matrix, it has an eigen-decomposition

Σ = CΛC−1

– Λ = diag(λ1, ..., λp) is a diagonal matrix of (non-negative) eigenvalues in decreasing order,
– C is a matrix where its columns are formed by the eigenvectors of Σ.
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PCA - General setup (II)

• We want Z1 = φ1X, subject to ||φ1||2 = 1

• We want Z1 to have the highest possible variance, V (Z1) = φT
1 Σφ1

PCA - General setup (II)

• We want Z1 = φ1X, subject to ||φ1||2 = 1

• We want Z1 to have the highest possible variance, V (Z1) = φT
1 Σφ1

• φ1 equals the column eigenvector corresponding with the largest eigenvalue of Σ

PCA - General setup (II)

• We want Z1 = φ1X, subject to ||φ1||2 = 1

• We want Z1 to have the highest possible variance, V (Z1) = φT
1 Σφ1

• φ1 equals the column eigenvector corresponding with the largest eigenvalue of Σ

• The fraction of the original variance kept by the M principal component

R2 =
∑M

i=1 λi∑p
j=1 λj

PCA - general advice

• PCA is not scale invariant,
– standardize all the p variables before applying PCA.

PCA - general advice

• PCA is not scale invariant,
– standardize all the p variables before applying PCA.

• Singular Value Decomposition (SVD) is more numerically stable than eigendecomposition and is usually
used in practice.

PCA - general advice

• PCA is not scale invariant,

– standardize all the p variables before applying PCA.

• Singular Value Decomposition (SVD) is more numerically stable than eigendecomposition and is usually
used in practice.

• How many principal components to retain will depend on the specific application.

• Plotting (1−R2) versus the number of components helps selecting how many components to pick
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Recommended exercise 10

How many principal components should we use for the Credit Dataset? Justify?

PCA - Summary

• Principal component analysis (PCA) is a dimensionality reduction technique

• Useful for:

– Our ability to visualize data is limited to 2 or 3 dimensions.

PCA - Summary

• Principal component analysis (PCA) is a dimensionality reduction technique

• Useful for:

– Our ability to visualize data is limited to 2 or 3 dimensions.
– Lower dimension can reduce numerical algorithms computational time.

PCA - Summary

• Principal component analysis (PCA) is a dimensionality reduction technique

• Useful for:

– Our ability to visualize data is limited to 2 or 3 dimensions.
– Lower dimension can reduce numerical algorithms computational time.
– Many statistical models suffer from high correlation between covariates

Principal Components Regression (PCR)

Principal Components Regression (PCR)

• Principal Components Regression involves:
– Constructing the first M principal components Z1, ...,ZM

– Using these components as the predictors in a standard linear regression model

Principal Components Regression (PCR)

• Principal Components Regression involves:

– Constructing the first M principal components Z1, ...,ZM

– Using these components as the predictors in a standard linear regression model

• Key assumptions: A small number of principal components suffice to explain:

1) Most of the variability in the data.
2) The relationship with the response.

• In other words, we assume that:
– The directions in which the predictors show the most variation are the directions that are associated

with Y.
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Principal Components Regression (PCR)

• Principal Components Regression involves:

– Constructing the first M principal components Z1, ...,ZM

– Using these components as the predictors in a standard linear regression model

• Key assumptions: A small number of principal components suffice to explain:

1) Most of the variability in the data.
2) The relationship with the response.

• The assumptions above are not guaranteed to hold in every case.

– This is true specially for assumption 2 above.
– Since the PCs are selected via unsupervised learning.

Example: PCR vs. Lasso and Ridge (Simulated data)

• Simulated dataset in which the first five principal components of X contain all the information about
the response Y .

• Dashed line: Irreducible error (Simulated data)

• Left: Results for PCR. Right: Results for lasso (solid) and ridge regression (dotted).

Example: PCR vs. Lasso and Ridge (Simulated data)

• PCR performed well on simulated data, recovering the need for M = 5
– However, results are only slightly better than lasso and very similar to Ridge.

Example: PCR vs. Lasso and Ridge (Simulated data)

• PCR performed well on simulated data, recovering the need for M = 5
– However, results are only slightly better than lasso and very similar to Ridge.

• Similar to Ridge, PCR does not perform feature selection
– PCs are linear combination of all predictors

Example: PCR vs. Lasso and Ridge (Simulated data)

• PCR performed well on simulated data, recovering the need for M = 5
– However, results are only slightly better than lasso and very similar to Ridge.

• Similar to Ridge, PCR does not perform feature selection
– PCs are linear combination of all predictors

• PCR can be seen as discretized version of Ridge regression.
– Ridge shrinks coefs. of the PCs by λ2

j/(λ2
j + λ)

– Higher pressure on less important PCs
– PCR discards the p−M smallest eigenvalue components.

7



Example: Shrinkage Factor

Example: PCR (Credit Data)

• The lowest cross-validation error occurs when there are M = 10 components
– almost no dimension reduction at all

• Discretized version of Ridge

Recommended exercise 11

Apply PCR on the Credit dataset and compare the results with the methods covered in Lecture 1.

PCR (Drawback)

• Dimensionality reduction is done via an unsurpevised method (PCA)
– No guarantee that the directions that best explain the predictors will also be the best directions

to use for predicting the response.

Partial Least Squares (PLS)

Partial Least Squares (PLS)

• PLS works similar to PCR
– Dimension reduction: Z1, ..., ZM , M < p
– Zi linear combination of original predictors.
– Apply standard linear model using Z1, ..., ZM as predictors.

Partial Least Squares (PLS)

• PLS works similar to PCR
– Dimension reduction: Z1, ..., ZM , M < p
– Zi linear combination of original predictors.
– Apply standard linear model using Z1, ..., ZM as predictors.

• But it uses the response Y in order to identify new features
– attempts to find directions that help explain both the response and the predictors.

Partial Least Squares (Algorithm)

• Z1 =
∑p

i=1 φj1Xj

– φj1 is the coefficient from the simple linear regression of Y onto Xj .
– this coefficient is proportional to the correlation between Y and Xj .
– PLS puts highest weight on the variables that are most strongly related to the response.

Partial Least Squares (Algorithm)

• Z1 =
∑p

i=1 φj1Xj

– φj1 is the coefficient from the simple linear regression of Y onto Xj .
– this coefficient is proportional to the correlation between Y and Xj .
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– PLS puts highest weight on the variables that are most strongly related to the response.
• To obtain the second PLS direction, Z2:

– We regress each variable on Z1 and take the residuals
– The residuals are remained info not explained by Z1
– We the compute Z2 using this orthogonalized data, similarly to Z1.

Partial Least Squares (Algorithm)

• Z1 =
∑p

i=1 φj1Xj

– φj1 is the coefficient from the simple linear regression of Y onto Xj .
– this coefficient is proportional to the correlation between Y and Xj .
– PLS puts highest weight on the variables that are most strongly related to the response.

• To obtain the second PLS direction, Z2:
– We regress each variable on Z1 and take the residuals
– The residuals are remained info not explained by Z1
– We the compute Z2 using this orthogonalized data, similarly to Z1.

• We can repeat this iteration process M times to get Z1, ..., ZM .

Recommended exercise 12

Apply PLS on the Credit dataset and compare the results with the methods covered in Lecture 1 and PCR.

Partial Least Squares (Performance)

• In practice, PLS often performs no better than ridge regression or PCR.
– Supervised dimension reduction of PLS can reduce bias.
– It also has the potential to increase variance.

In summary

• PLS, PCR and ridge regression tend to behave similarly.

In summary

• PLS, PCR and ridge regression tend to behave similarly.

• Ridge regression may be preferred because it shrinks smoothly, rather than in discrete steps.

In summary

• PLS, PCR and ridge regression tend to behave similarly.

• Ridge regression may be preferred because it shrinks smoothly, rather than in discrete steps.

• Lasso falls somewhere between ridge regression and best subset regression, and enjoys some of the
properties of each.

• I would say:
– If you only concerned with prediction accuracy, either ridge or lasso.
– If model interpretability is desirable, lasso is prefered.
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Considerations in high dimensions

High dimension

• High dimension problems: n < p

• More common nowadays

High dimension issues (Example)

• Standard linear regression cannot be applied.
– Perfect fit to the data, regardless of relationship
– Unfortunately, the Cp, AIC, and BIC approaches are problematic (hard to estimate σ2)

High dimension issues (Example)

• Standard linear regression cannot be applied.
– Perfect fit to the data, regardless of relationship
– Unfortunately, the Cp, AIC, and BIC approaches are problematic (hard to estimate σ2)

• Simulated example with n = 20 training observations.

• features that are completely unrelated to the outcome are added to the model.

Noise predictors

• The test error tends to increase as the dimensionality of the problem
– Unless the additional features are truly associated with the response.

• The lasso was performed with n = 100 observations and three values of p, the number of features.

• Of the p features, 20 were associated with the response.

• When p = 2000 the lasso performed poorly regardless of the amount of regularization.

The danger of too many features

• In general, adding additional signal features helps (smaller test set errors)

The danger of too many features

• In general, adding additional signal features helps (smaller test set errors)

• However, adding noise features that are not truly associated with the response increases test set error.

– Noise features exacerbating the risk of overfitting
– Previous example shows that regularizations does not eliminate the problem
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The danger of too many features

• In general, adding additional signal features helps (smaller test set errors)

• However, adding noise features that are not truly associated with the response increases test set error.

– Noise features exacerbating the risk of overfitting
– Previous example shows that regularizations does not eliminate the problem

• New technologies that allow for the collection of measurements for thousands or millions of features are
a double-edged sword

Interpreting results in high dimension

• In the high-dimensional setting, the multicollinearity problem is extreme

• Multicollinearity: any variable in the model can be written as a linear combination of all of the other
variables in the model.

Interpreting results in high dimension

• In the high-dimensional setting, the multicollinearity problem is extreme

• Essentially, this means:

– We can never know exactly which variables (if any) truly are predictive of the outcome.
– We can never identify the best coefficients for use in the regression.

Interpreting results in high dimension

• In the high-dimensional setting, the multicollinearity problem is extreme

• Essentially, this means:

– We can never know exactly which variables (if any) truly are predictive of the outcome.
– We can never identify the best coefficients for use in the regression.
– At most, we can hope to assign large regression coefficients to variables that are correlated with

the variables that truly arec predictive of the outcome.
– We will find one of possibly many suitable predictive models.

The end

Thank you for showing up
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