
Module 7: Moving Beyond Linearity
TMA4268 Statistical learning

Andreas Strand
13 May, 2019

Contents
Introduction 1

Basis Functions 2

Predictions 3

Polynomial Regression 4

Step Functions 4

Regression Splines 6
Cubic Splines . 6
Natural Cubic Splines . 9

Smoothing Splines 10
The smoother matrix . 11
Computing S (optional) . 11
Connection to ridge regression (optional) . 12

Local Regression 13

Additive Models 14

Qualitative Responses 16

Recommended Exercises 17

References 20

Introduction

In this module we will make modifications to the regression models explored previously. We will consider six
variations. We need these models when a straight line is not an accurate description.

• Polynomial regression uses powers of the original predictor.
• Step functions are piece-wise constant.
• Regression splines are regional polynomials joined smoothly.
• Smoothing splines are smooth functions.
• Local regressions are splines with overlapping regions.
• Additive models combines models.

1

Basis Functions

Previously, we encountered the multiple linear regression model

yi = β0 + β1xi1 + β2xi2 + . . . βkxik + εi,

or equivalently
y = Xβ + ε,

where y = (y1, y2, . . . , yn)T, β = (β1, β2, . . . , βk)T and ε = (ε1, ε2, . . . , εn)T. This model suggets that the
expected response is a linear combination of some explanatory variables X1, X2, . . . , Xk. We call X the design
matrix. Each row of the design matrix represents an observation i ∈ {1, . . . n}. Each column represents an
explanatory variable. Thus, the design matrix is

X =


1 x11 x12 . . . x1k
1 x21 x22 . . . x2k
...

...
...

. . .
...

1 xn1 xn2 . . . xnk

 .

The OLS estimator for β is
β̂ = (XTX)−1XTy.

The design matrix defines our regression. The one defined above is the special case for MLR, and we will see
other variations. Luckily, the estimator β̂ can still be used when changing X.

We know that the response sometimes can be related to the square of an explanatory variable. In order to
allow for this, we need to change the model. Let us focus on one explanatory variable X for now. Then,
instead of xi1, we just write xi. Some possible models are

yi = β0 + β1xi + εi,

yi = β0 + β1x
2
i + εi,

yi = β0 + β1xi + β2x
2
i + εi

The first model suggests that Y and X have a linear relationship, and the second model suggests a quadratic
one. The third version explains Y as a linear combination of both X and X2. The square X2 is one of many
transformations we can apply to X. We call these transformations basis functions b1(X), b2(X), . . . bk(X).
For any choice of basis functions we can fit the model

yi = β0 + β1b1(xi) + β2b2(xi) + . . . βkbk(xi) + εi.

The basis functions are fixed functions of the known values xi. The corresponding design matrix is

X =


1 b1(x1) b2(x1) . . . bk(x1)
1 b1(x2) b2(x2) . . . bk(x2)
...

...
...

. . .
...

1 b1(xn) b2(xn) . . . bk(xn)

 .

Thus, each row represents an observation and each column a basis function. An intercept is included as the
first column. It is convenient to let k denote the number of basis functions since the design matrix will have
dimensions n× (k + 1). This is the same dimensions as with MLR. The design matrix is fixed and merely a
function of x1, x2, . . . , xn.

Consider the model with X and X2. In basis function notation we write b1(X) = X and b2(X) = X2. Let a
realization be x = (6, 3, 6, 8)T and y = (3,−2, 5, 10)T. This results in

X =


1 b1(x1) b2(x1)
1 b1(x2) b2(x2)
1 b1(x3) b2(x3)
1 b1(x4) b2(x4)

 =


1 x1 x2

1
1 x2 x2

2
1 x3 x2

3
1 x4 x2

4

 =


1 6 36
1 3 9
1 6 36
1 8 64


2

and
β̂ = (XTX)−1XTy = (−4.4, 0.2, 0.2)T.

Predictions

The models presented in this module have coefficients that we estimate. This is done efficiently by R functions.
Furthermore, predicted responses are usually provided by predict(). Finally, we show the result with
plot(). For convenience, we will combine the steps in our own R function Plot().

We will focus on the data set with wage explained by one characteristic, namely age.
library(ISLR)
attach(Wage)

The following objects are masked from Wage (pos = 3):
##
age, education, health, health_ins, jobclass, logwage, maritl,
race, region, wage, year

The following objects are masked from Wage (pos = 6):
##
age, education, health, health_ins, jobclass, logwage, maritl,
race, region, wage, year

plot(age, wage, cex = .5, col = "darkgray", main = "Observations")

20 30 40 50 60 70 80

50
10

0
20

0
30

0

Observations

age

w
ag

e

Each method is a way of drawing a line through these points. We can perform most methods by lm(wage ~
X). We choose the design matrix X according to the desired method.

3

Polynomial Regression

The polynomial regression includes powers of X in the regression. This is

yi = β0 + β1xi + β2x
2
i + . . . βdx

d
i + εi,

where d is the degree. The degree is usually no greater d = 4 as higher degree polynomials can lead to wild
fits. The simplest choice of basis functions are bj(xi) = xji for j = 1, 2, . . . , d. Thus, the design matrix is

X =


1 x1 x2

1 . . . xd1
1 x2 x2

2 . . . xd2
...

...
...

. . .
...

1 xn x2
n . . . xdn

 .

In R we can construct a design matrix for age using poly(age). The default in this funciton is to return
an orthogonal version of the matrix above. This makes no difference in the predictions, but makes XTX
diagonal, which is convenient for estimating coefficients. A polynomial regression with age of degree 4 is
below.
fit = lm(wage ~ poly(age,4))
Plot(fit, main = "Polynomial Regression")

20 30 40 50 60 70 80

50
10

0
20

0
30

0

Polynomial Regression

age

w
ag

e

Step Functions

Step-functions can be used to divide age into bins. We model wage as a constant in each bin. The basis
functions are now indicator functions for what bin xi belongs to. Cutpoints c1, c2, . . . , cK define the bins. The
basis functions becomes bj(xi) = I(cj ≤ xi < cj+1) for j = 1, 2, . . . ,K−1. The last bin is bK(xi) = I(cK ≤ xi).

4

The intercept is the expected value of wage in the first bin, when xi < c1. The design matrix is now

X =


1 I(c1 ≤ x1 < c2) I(c2 ≤ x1 < c3) . . . I(cK ≤ x1)
1 I(c1 ≤ x2 < c2) I(c2 ≤ x2 < c3) . . . I(cK ≤ x2)
...

...
...

. . .
...

1 I(c1 ≤ xn < c2) I(c2 ≤ xn < c3) . . . I(cK ≤ xn)

 .

Each row will have a 1 in the first column and in the column given by the bin index. Otherwise zeros. We
can create the design matrix with cut(age, k).
fit = lm(wage ~ cut(age,3))
Plot(fit, main = "Piecewise Constant")

20 30 40 50 60 70 80

50
10

0
20

0
30

0

Piecewise Constant

age

w
ag

e

Give custom cutpoints to the breaks option if desirable. In the case where the covariate is a factor, cut() is
unnecessary. Simply giving the name of the covariate to lm() will result in a step function. The qualitative
variable education has levels < HS Grad, HS Grad, Some College, College Grad and Advanced Degree.
fit = lm(wage ~ education)
Plot(fit, main = "Piecewise Constant")

5

1. < HS Grad 3. Some College 5. Advanced Degree

80
10

0
12

0
14

0

Piecewise Constant

x

w
ag

e

Regression Splines

Splines are combinations of the previous two methods. They are polynomials joined in a smooth way at knots
c1, c2, . . . , cK . A spline of order M joins polynomials of degree M − 1. The derivatives up to order M − 2
are continous, also in the knots. The basis functions are not so different from those we have seen before.
However, we will express them using a truncated power function, that is

(x− cj)M−1
+ =

{
(x− cj)M−1 , x > cj

0 , otherwise.

This is a polynomial of degree n truncated at a knot. The standard basis for a order-M spline with K knots
is

bj(xi) = xji , j = 1, . . . ,M − 1
bM−1+k(xi) = (xi − ck)M−1

+ , k = 1, . . . ,K.

It may not be obvious why this is a basis for a spline, but you can show that it meets the requirements
mentioned above. Note that there are M +K − 1 basis functions.

Cubic Splines

A spline withM = 4 is cubic. We see that the basis isX,X2, X3, (X−c1)3
+, (X−c2)3

+, . . . , (X−cK)3
+. Consider

an example with the three knots c1 = 25, c2 = 40 and c3 = 60. This results in 6 basis function that we can plot

6

in R.

20 30 40 50 60 70 80

b1(x) = x1

20 30 40 50 60 70 80

b2(x) = x2

20 30 40 50 60 70 80

b3(x) = x3

20 30 40 50 60 70 80

b4(x) = (x − 25)+
3

age

20 30 40 50 60 70 80

b5(x) = (x − 40)+
3

age

20 30 40 50 60 70 80

b6(x) = (x − 60)+
3

age

The design matrix is created in R with bs(), short for basis splines. The default for bs() is cubic splines,
but we can specify a different degree if desirable. Let us see the result from using the knots above.
fit = lm(wage ~ bs(age, knots = c(25,40,60)))
Plot(fit, main = "Cubic spline")

7

20 30 40 50 60 70 80

50
10

0
20

0
30

0

Cubic spline

age

w
ag

e

Instead of giving the knots explicitely, we can ask R to divide the observations into equally sized bins. The
argument df is the number of basis functions we want. Thus, specifying df = 6 results in three knots.
fit = lm(wage ~ bs(age, df = 6))
Plot(fit, main = "Cubic spline")

20 30 40 50 60 70 80

50
10

0
20

0
30

0

Cubic spline

age

w
ag

e

8

In this example, the dotted lines separate the observations into bins with about the same number of
observations in each. Note that the cubic splines have high variance at the ends. For other examples, this
effect may be even larger and our prediction might have a wild behaviour. This issue may be resolved by
using natural cubic splines.

Natural Cubic Splines

This is a cubic spline that is linear at the ends. Our fitted natural cubic spline will be a straight line when
age is less than c0 = 18 or greater than cK+1 = 80. We call these points boundary knots, and they typically
correspond to the extreme values of x. We will continue referring to the points c1, . . . , cK as interior knots
or simply knots. When specifying linearity, we put the second derivative equal to zero on both ends. Two
restrictions means two less basis functions as we have less flexibility. We can write the basis as

b1(xi) = xi, bk+2(xi) = dk(xi)− dK(xi), k = 0, . . . ,K − 1,

dk(xi) =
(xi − ck)3

+ − (xi − cK+1)3
+

cK+1 − ck
.

The function ns() gives the design matrix for the natural spline. We see that basis functions outnumber
knots by 1. Choosing df = 4 results in 3 knots.
fit = lm(wage ~ ns(age, df = 4))
Plot(fit, main = "Natural Cubic Spline")

20 30 40 50 60 70 80

50
10

0
20

0
30

0

Natural Cubic Spline

age

w
ag

e

We are now done with the methods that exclusively uses least squares. Henceforth, we cannot use least
squares, except for in special cases.

9

Smoothing Splines

The idea of smoothing splines is very different from that of regression splines. Common for all methods is
that we want to minimize the prediction error. In practice, we find a function f(x) that fits the observations
well resulting in a small RSS =

∑n
i=1(yi − f(xi))2. However, we need another requirement in addition to the

RSS. Otherwise, our prediction will be a function that interpolates all the observations, with RSS = 0. This
prediction will have a high variance and a high MSE accordingly. Both bias and variance in our prediction
will contribute to the MSE.

Smoothing splines minimize the RSS, but also reduce the variance in the prediction. A smoothing spline is
the function f that minimizes

n∑
i=1

(yi − f(xi))2 + λ

∫
f ′′(t)2dt,

where λ is a non-negative tuning parameter. The first term is loss and puts f close to the observations, while
the second term penalizes variability.

Note that
∫
f ′′(t)2dt is the total squared change of f ′(t), that is how much f turns. The higher λ is, the

smoother f will be. In the limit when λ→∞, f is the straight line we would get from linear least squares
regression. Conversely, when λ = 0, f interpolates all the observations. Thus, λ controls the bias-variance
trade-off.

We have not yet discussed why smoothing splines are actually splines. Splines have knots, so that is the case
also for smoothing splines. A smoothing spline is a natural cubic spline with knots at the unique values of x.
More precisely, it is a shrunken version of the natural cubic spline we saw in the previous section.

The model is fitted with smooth.spline(). A high value of df corresponds to a small λ and a lot of freedom.
We can either specify df or we can ask R to choose a suitable value for λ with leave-one-out cross-validation
(LOOCV). The latter is selected by cv = TRUE.
fit = smooth.spline(age, wage, df = 16)
Plot(fit, main = "Smoothing Splines")

fit = smooth.spline(age, wage, cv = T)
Plot(fit, legend = 16)

10

20 30 40 50 60 70 80

50
10

0
20

0
30

0

Smoothing Splines

age

w
ag

e

df = 16
df = 6.79

LOOCV results in df = 6.79. As expected, this gives a smoother fit than df = 16.

The smoother matrix

This section goes in detail on how we can do LOOCV and how to compute degrees of freedom. A smoothing
spline is a linear smoother, which means that we can write the method as

ŷ = Sy,

where S is the smoother matrix. Thus, ŷ is a linear combination of y. The degrees of freedom of a smoothing
splines is equal to the number of basis functions, which is one more than the number of unique xi. However,
due to the shrinking penalty, the effective degrees of freedom is less. The effective degrees of freedom is
defined as the sum of the diagonal elements of the smoothing matrix, that is

dfλ = tr(S).

We can also compute the leave-one-out cross-validation error efficiently with the smoother matrix by

RSScv(λ) =
n∑
i=1

(
yi − ŷi
1− Sii

)2
.

Note that we only need one fit to do cross-validation!

Computing S (optional)

Finding the smoother matrix efficiently involves some steps. Let X be the n × n design matrix of the
smoothing spline. It consists of an intercept and the natural spline basis functions b2, . . . , bn resulting from

11

knots at the unique xi ∈ [a, b]. The roughness penalty can also be represented as a matrix Ω, with elements
Ωij =

∫ b
a
b′′i (t)b′′j (t)dt. The smoother matrix is now computed as

S = X(XTX + λΩ)−1XT

= X(XT(I + λ(XT)−1ΩX−1)X)−1XT

= XX−1(I + λ(XT)−1ΩX−1)X)−1(XT)−1XT

= (I + λ(XT)−1ΩX−1)−1

= (I + λK)−1

= (UIU−1 + λUDU−1)−1

= (U(I + λD)U−1)−1

= U(I + λD)−1UT,

where K = (XT)−1ΩX−1 is the Reinsch matrix with the eigendecomposition K = UDU−1 = UDUT. We
use this decomposition to avoid computing X−1. Recommended exercise 6 provide code for computing the
Reinsch matrix and the eigendecomposition is obtained with eigen(). We may use the final expression for S
to compute effective degrees of freedom, that is

dfλ = tr(S)
= tr(U(I + λD)−1UT)
= tr(UTU(I + λD)−1)
= tr((I + λD)−1)

=
n∑
i=1

1
1 + λdi

,

where D = diag(d1, . . . , dn). Thus, we only need the smoothing parameter and the eigenvalues of the Reinsch
matrix to compute the effective degrees of freedom. Note that dfλ is monotonically decreaing in λ.

Connection to ridge regression (optional)

Rigde regression is also a linear smoother. The penalty is on the sum of squared regression coefficients. The
smoother matrix is

S = X(XTX + λI)−1XT.

This is similar to the expression for smoothing splines. Instead of a roughness matrix Ω, rigde regression
simply uses the identity I. Note that X is n× k for rigde regression and n× n for smoothing splines. The
effective degrees of freedom for rigde regression is

dfλ = tr(S)
= tr(X(XTX + λI)−1XT)
= tr(XTX(XTX + λI)−1)

=
k∑
i=1

d2
i

d2
i + λ

,

where the values d2
i are the eigenvalues of XTX.

12

Local Regression

Local regression can be thought of as a smoothed k-nearest neighbor algorithm. We first choose a target
point x0 and then make a prediction based on the nearby observations. We draw a line β0 + β1x + β2x

2

through this neighborhood as close to the observations as possible. More precisely, we are finding the β̂0 , β̂1
and β̂2 that minimize

n∑
i=1

Ki0(yi − β0 − β1xi − β2x
2
i)2,

where Ki0 is a weight we give each observation. Close observations are weighted heavily. Our neighborhood
consists of the k observations closest to x0. Denote the kth closest observation xκ. The default weights in R
are proportional to the tricube

Ki0 =
(

1−
∣∣∣∣ x0 − xi
x0 − xκ

∣∣∣∣3
)3

+

Thus, the weights are zero for xi outside the neighborhood. Our prediction of the wage is β̂0 + β̂1x0 + β̂2x
2
0.

Writing loess() fits the observations by local regression. The size of the neighborhood is regulated by span,
the fraction k/n. Let us compare span = 0.2 and span = 0.5.
fit = loess(wage ~ age, span = .2)
Plot(fit, main = "Local Regression")
df = fit$trace.hat

fit = loess(wage ~ age, span = .5)
Plot(fit, legend = df)

20 30 40 50 60 70 80

50
10

0
20

0
30

0

Local Regression

age

w
ag

e

df = 18.15
df = 7.85

Large neighborhoods give little freedom and low variance in the prediction, but at the cost of bias.

13

Additive Models

We have discussed several methods for predicting wage. One option is a cubic spline with X1 = age and
knots at 40 and 60. The design matrix when excluding the intercept is

X1 =


x11 x2

11 x3
11 (x11 − 40)3

+ (x11 − 60)3
+

x21 x2
21 x3

21 (x21 − 40)3
+ (x21 − 60)3

+
...

...
...

...
...

xn1 x2
n1 x3

n1 (xn1 − 40)3
+ (xn1 − 60)3

+

 .

Another option is a natural spline with X2 = year and one knot c1 = 2006. We let the boundary knots be
the extreme values of year, that is c0 = 2003 and c2 = 2009. The design matrix when excluding the intercept
is then

X2 =


x12

[
1
6 (x12 − 2003)3

+ − 1
3 (x12 − 2006)3

+ + 1
6 (x12 − 2009)3

+

]
x22

[
1
6 (x22 − 2003)3

+ − 1
3 (x22 − 2006)3

+ + 1
6 (x22 − 2009)3

+

]
...

...
xn2

[
1
6 (xn2 − 2003)3

+ − 1
3 (xn2 − 2006)3

+ + 1
6 (xn2 − 2009)3

+

]

 .

A third option is using the factor X3 = education which has levels < HS Grad, HS Grad (HSG) , Some
College (SC) , College Grad (CG) and Advanced Degree (AD). The default representation for this factor
in R is dummy variable coding with < HSG as the base line reference. The design when excluding the intercept
is

X3 =


I(x13 = HSG) I(x13 = SC) I(x13 = CG) I(x13 = AD)
I(x23 = HSG) I(x23 = SC) I(x23 = CG) I(x23 = AD)

...
...

...
...

I(xn3 = HSG) I(xn3 = SC) I(xn3 = CG) I(xn3 = AD)

 .

Note that each row of X3 has a single 1, otherwise zeros.

A generalized additive model combines the models we have discussed so far. Above we fitted wage in three
different ways. These are a cubic spline in age, a natural spline in year and a step-function in education.
We obtain an additive model (AM) when we add these together. Each component is given by a design matrix.
The design matrix for the AM is

X =
(
1 X1 X2 X3

)
,

where 1 is a column vector of n ones providing an intercept. The easiest way of fitting an AM in R is with
gam().
fit = gam(wage ~ bs(age,knots=c(40,60)) + ns(year,knots=2006) + education)
Plot(fit)

14

20 40 60 80

−
50

−
40

−
30

−
20

−
10

0
10

age

2003 2005 2007 2009

−
6

−
4

−
2

0
2

4

year

−
30

−
20

−
10

0
10

20
30

40

education

1. < HS Grad 4. College Grad

AM
f 1 f 2 f 3

Smoothing splines and local regressions are not expressed by basis functions. Thus, we do not use a design
matrix and least squares. Still, we may include smoothing splines and local regressions in an AM. Simply use
s() and lo(). In this case, backfitting is used to fit the AM. It is an iterative algorithm where we fit one
component at a time, holding the others fixed. Details on this is beyond the scope of what we do here.
fit = gam(wage ~ lo(age, span = 0.6) + s(year, df = 2) + education)
Plot(fit)

15

20 40 60 80

−
30

−
20

−
10

0

age

2003 2005 2007 2009

−
6

−
4

−
2

0
2

4
6

year

−
30

−
20

−
10

0
10

20
30

40

education

1. < HS Grad 4. College Grad

AM
f 1 f 2 f 3

Qualitative Responses

Logistic regression is what we will use for qualitative responses. This is the case whether the model is linear
or not, and also when there is no basis function representation. Let us build on the case of predicting wage.
Only this time, we separate the workers into high earners and low earners with the threshold at $250, 000.
Then we use X to determine the probability p(X) = Pr(Y = 1|X). The generalized logistic regression model
is

log
(

p(X)
1− p(X)

)
= f(X).

Choose the function f(X) from the selection presented in this module. In the first sections we wrote
f(X) = Xβ. Later we relaxed the linearity. To do logistic regresson, use either glm() or gam(), with the
option family="binomial". The qualitive response is created by I(wage>250). Creating a binary variable
like this is in general not recommended, as we lose information. However, let us see some examples.
par(mfrow = c(2,2))
Plot(glm(I(wage>250) ~ poly(age,3), family = "binomial"), main = "Polynomial")
Plot(glm(I(wage>250) ~ bs(age, df = 4), family = "binomial"), main = "Cubic spline")
Plot(gam(I(wage>250) ~ lo(age, span = 0.6) + year, family = "binomial"), multi=T)

16

| | || | ||| | ||| | | ||| | || | | |||

|

|| || ||| | | | || || || | || |

|

|| | | |

|

| || || || | | || | ||| || ||| | | |

|

| || | ||| || | || |||| || || ||| || || ||| |||| || | | | ||

|

|||| ||| ||| || || ||| || ||| | || ||| |||| ||| || | | | ||| || |||| |||| || || | ||||| | || || || | ||| | || ||| || | || ||

|

||| | || | || || | || | ||| || || | || ||| |

|

| | |||| ||| | || | |||| ||| || || ||| | | || || |||||| || | || || | || || | | || || || | || ||| || | || || ||||| ||||| || || || || | |||| || || ||| | || || || |

|

| |||| ||| || || || ||| | | ||

|

|| |

|

| || || || ||| || || | || || || | || ||| || | ||| || | || || || | |||| || | |||| | |||| || | | | ||||

|

| || || || || || |

|

| |||| || || |||| | || || || ||| | || |||| || |

|

| | |||| || || || |

|

|| |||| ||| ||

|

||| || |||| | || || | | |||

|

||| || | || | || | || || ||||| | | ||| |

|

| | || || ||| ||| | || |

|

|| | || || | |||| || | || || | ||| || || || || |||| || | ||||| | | |||| | || ||| || ||| |

|

| ||| | || || | | || |

|

| | | ||| |||| || || | | || || | |||| | | | ||| | || | |||| ||| | |

|

|| ||||| ||| | | || || || || || || || |

|

| || || || | ||| || || | || || |||| |||| |

|

| || || ||| || | | ||| || || | ||| ||| || || |

|

||| || || || || || | | ||| | || ||| || || | |||| || | |

|

|| || ||||| || | || || ||| | ||| | || ||| ||||| || ||||| ||| | ||| ||| | || || || ||| || || | | || |

|

| || |||| ||| | |||

|

| | | | || | ||| | | || | |||| || ||| || | ||| || | ||| ||

|

|| || |||| | ||| | || | | ||| |||| || ||| || || || | | || | || | || || || || | | || || | |

|

|| ||| ||||| ||| ||| || ||||| || || | ||| || | | || | ||| | | ||| || || || || | ||| ||| || || |||

|

| || || ||| | | ||| | |||| | || || ||||

|

| | || | || | || | |||

|

| || || ||| | | ||| ||| | || ||| || || ||| | |||| | ||| | ||| | || | || | || | | || || || || || |||| || | | || | | | |||| || | ||| | || ||| || || ||| ||

|

||| ||| | || || || | | || | || || || || || || | || || | || || |

|

| || ||| || |

| |

| ||| | || || |

|

| |||| ||| | |||| ||

|

| ||| ||| ||| |||| |

|

| || || || || ||| | | | || || | ||| || | || | || | |||| | ||| ||| ||

|

| | ||||| ||| | | || || | | |||| | |||| ||| ||| | || | || || || | || | || || ||| | || ||| | || || ||| | | | |||| | || | | ||| ||| |||| | | ||| | |||| | || | || || | ||

|

| || ||||| || ||| ||| || | | ||||| || |||| || | | ||| | || || || ||| |||| |||| | | || || || | ||| | || || || | | || || || |||| || ||| || ||| || |

|

| || || |||| || | ||| | ||| || | || |||| |||| ||| | | | || ||| | || | | ||

|

|| |||| ||| ||| || | | |||| ||| |||| || |||| || || ||| |||| | ||| | |

|

|| | || || || | ||| | || ||| || ||| | || || ||| | || || || | || ||| | || || |||| || || | || ||| ||

|

|| || | || || || | || | ||| | ||| || | || || ||| || ||| ||| || | || || | | || || || ||| || || || | ||| || | |||

|

|| | |

|

||| | | | || ||| || | ||||| | | || || || | | || || || | | || ||| | |||| |

|

||||| | | | || || | | ||| || | | || | || | ||| || |||| | ||| | || || ||||| | || ||| ||| | || || || || || ||| | ||||| || || ||| ||| || | | || || || ||

|

| || | | || | || || | || || || | |||| | | | ||| | | ||

|

| | || ||

|

|| | | ||| || ||| || || | || || || || | | || ||| || ||| || || || ||| | ||| || ||| || ||| | ||| | | | || || | ||| ||| || | ||

|

|||| |

|

|| | |||| ||| | || || ||| || ||| | |||| || |

|

|| ||| ||| | ||| | || | | | ||| || | || || ||| | | | ||| || || ||| || | ||| | || |||| | |||| | ||| || || || || || | ||| || || | | ||| || || |||| ||| || | || ||| || | ||| |

|

| || | |||

|

| | || || | ||| || |

|

| | ||| || || || | | || | ||| | | ||| || | | || | | || ||||| || || |||| | ||| | | || || | | || | | |

|

|| || |||| | || |||| |

||

| | | ||||| |||

|

|| |||| | |||| || |

|

| | || ||||| ||||| | || || || | || ||| ||| | || ||| || ||| || | || || ||| || | | | || || ||| | || || | || || |

|

| || ||

|

|| || ||| || | | | || |||| || |||| ||| || |||| || || | ||| | |||

|

|| ||| | |

| |

|| || | ||| || ||| | | |||| | ||| | |||| || ||| || || | ||| | ||| | |||| || | || |||| | ||||| ||| | | ||| | ||| || ||| || | ||| || ||| | ||| || | ||| | | || || || || | ||| || || || |||| ||| | ||| || || |||| || |||

|

| |||

|

| ||

|

| |

|

|

|

| | | || || |||

|

|||| ||

|

|| || || || || || | | ||||| | ||| || | ||| ||| || ||| || | | || || | || | || ||| |||| || || ||| |||| ||| ||| ||| | | || |

|

| ||| || || || ||| ||| | ||| | || || ||| || || ||| ||

|

| ||| | || | || || |||| || ||| || | | ||| || | || ||| || || | || ||

|

| | ||| || | | | ||

|

| | || | | |||| || | || | ||| || || ||| | | || |

|

|| ||| || || | || || |||| || || || | || || | || ||| | || ||| | || ||| || || | | || || ||| || || || ||| |||| |

20 30 40 50 60 70 80

0.
00

0.
15

Polynomial

age

P
r(

w
ag

e
>

 2
50

)

| | || | ||| | ||| | | ||| | || | | |||

|

|| || ||| | | | || || || | || |

|

|| | | |

|

| || || || | | || | ||| || ||| | | |

|

| || | ||| || | || |||||| || ||| || || ||| |||| || | | | ||

|

|| || ||| ||| || || ||| || ||| | || ||| |||| ||| || | | | ||| || |||| |||| || || | ||||| | || || || | ||| | || ||| || | || ||

|

||| | || | || || | || | ||| || || | || ||| |

|

| | |||| ||| | || | |||| ||| || || ||| | | || || |||||| || | || || | || || | | || || || | || ||| || | || || ||||| ||||| || || || || | |||| || || ||| | || || || |

|

| |||| ||| || || || ||| | | ||

|

|| |

|

| || || || ||| || || | || || || | || ||| || | ||| || | || || || | |||| || | |||| | |||| || | | | ||||

|

| || || || || || |

|

| |||| || || |||| | || || || ||| | || |||| || |

|

| | |||| || || || |

|

|| |||| ||| ||

|

||| || |||| | || || | | |||

|

||| || | || | || | || || ||||| | | ||| |

|

| | || || ||| ||| | || |

|

|| | || || | |||| || | || || | ||| || || || || |||| || | ||||| | | |||| | || ||| || ||| |

|

| ||| | || || | | || |

|

| | | ||| |||| || || | | || || | |||| | | | ||| | || | |||| ||| | |

|

|| ||||| ||| | | || || || || || || || |

|

| || || || | ||| || || | || || |||| |||| |

|

| || || ||| || | | ||| || || | ||| ||| || || |

|

||| || || || || || | | ||| | || ||| || || | |||| || | |

|

|| || ||||| || | || || ||| | ||| | || ||| ||||| || ||||| ||| | ||| ||| | || || || ||| || || | | || |

|

| || |||| ||| | |||

|

| | | | || | ||| | | || | |||| || ||| || | ||| || | ||| ||

|

|| || |||| | ||| | || | | ||| |||| || ||| || || || | | || | || | || || || || | | || || | |

|

|| ||| ||||| ||| ||| || ||||| || || | ||| || | | || | ||| | | ||| || || || || | ||| ||| || || |||

|

| || || ||| | | ||| | |||| | || || ||||

|

| | || | || | || | |||

|

| || || ||| | | ||| ||| | || ||| || || ||| | |||| | ||| | ||| | || | || | || | | || || || || || |||| || | | || | | | |||| || | ||| | || ||| || || ||| ||

|

||| ||| | || || || || || | || || || || || || | || || | || || |

|

| || ||| || |

| |

| ||| | || || |

|

| |||| ||| | |||| ||

|

| ||| ||| ||| |||| |

|

| || || || || ||| | | | || || | ||| || | || | || | |||| | ||| ||| ||

|

| | ||||| ||| | | || || | | |||| | |||| ||| ||| | || | || || || | || | || || ||| | || ||| | || || ||| | | | |||| | || | | ||| ||| |||| | | ||| | |||| | || | || || | ||

|

| || ||||| || ||| ||| || | | ||||| || |||| || | | ||| | || || || ||| |||| |||| | | || || || | ||| | || || || | | || || || |||| || ||| || ||| || |

|

| || || |||| || | ||| | ||| || | || |||| |||| ||| | | | || ||| | || | | ||

|

|| |||| ||| ||| || | | |||| ||| |||| || |||| || || ||| |||| | ||| | |

|

|| | || || || | ||| | || ||| || ||| | || || ||| | || || || | || ||| | || || |||| || || | || ||| ||

|

|| || | || || || | || | ||| | ||| || | || || ||| || ||| ||| || | || || | | || || || ||| || || || | ||| || | |||

|

|| | |

|

||| | | | || ||| || | ||||| | | || || || | | || || || | | || ||| | |||| |

|

||||| | | | || || | | ||| || | | || | || | ||| || |||| | ||| | || || ||||| | || ||| ||| | || || || || || ||| | ||||| || || ||| ||| || | | || || || ||

|

| || | | || | || || | || || || | |||| | | | ||| | | ||

|

| | || ||

|

|| | | ||| || ||| || || | || || || || | | || ||| || ||| || || || ||| | ||| || ||| || ||| | ||| | | | || || | ||| ||| || | ||

|

|||| |

|

|| | |||| ||| | || || ||| || ||| | |||| || |

|

|| ||| ||| | ||| | || | | | ||| || | || || ||| | | | ||| || || ||| || | ||| | || |||| | |||| | ||| || || || || || | ||| || || | | ||| || || |||| ||| || | || ||| || | ||| |

|

| || | |||

|

| | || || | ||| || |

|

| | ||| || || || | | || | ||| | | ||| || | | || | | || ||||| || || |||| | ||| | | || || | | || | | |

|

|| || |||| | || |||| |

||

| | | ||||| |||

|

|| |||| | |||| || |

|

| | || ||||| ||||| | || || || | || ||| ||| | || ||| || ||| || | || || ||| || | | | || || ||| ||| || | || || |

|

| || ||

|

|| || ||| || | | | || |||| || |||| ||| || |||| || || | ||| | |||

|

|| ||| | |

| |

|| || | ||| || ||| | | |||| | ||| | |||| || ||| || || | ||| | ||| | |||| || | || |||| | ||||| ||| | | ||| | ||| || ||| || | ||| || ||| | ||| || | ||| | | || || || || | ||| || || || |||| ||| | ||| || || |||| || |||

|

| |||

|

| ||

|

| |

|

|

|

| | | || || |||

|

|||| ||

|

|| || || || || || | | ||||| | ||| || | ||| ||| || ||| || | | || || | || | || ||| |||| || || ||| |||| ||| ||| ||| | | || |

|

| ||| || || || ||| ||| | ||| | || || ||| || || ||| ||

|

| ||| | || | || || |||| || ||| || | | ||| || | || ||| || || | || ||

|

| | ||| || | | | ||

|

| | || | | ||| | || | || | ||| || || ||| | | || |

|

|| ||| || || | || || |||| || || || | || || | || ||| | || ||| | || ||| || || | | || || ||| || || || ||| |||| |

20 30 40 50 60 70 80

0.
00

0.
15

Cubic spline

age

P
r(

w
ag

e
>

 2
50

)

20 30 40 50 60 70 80

−
4

−
1

1

AM

age

2003 2005 2007 2009
−

0.
4

0.
2

AM

year

f 1 f 2

The figure shows estimates of wage on the variables X1 = age and X2 = year. The top-left frame is a plot
of fitted probabilities for a polynomial logistic regression. The polynomial is of degree 3 in X1 and the model
takes the form

log
(

p(X1)
1− p(X1)

)
= β0 + β1X1 + β2X

2
1 + β3X

3
1 .

The top-right plot include fitted probabilities for a cubic spline with one knot at 42. We can write the model
as

log
(

p(X1)
1− p(X1)

)
= β0 + β1X1 + β2X

2
1 + β3X

3
1 + β4(X1 − 42)3

+.

The plots in the lower row shows a fitted GAM with two components f1(X1) and f2(X2). The model is

log
(

p(X1, X2)
1− p(X1, X2)

)
= β0 + f1(X1) + f2(X2).

The first component f1 is a local regression in age. The second component f2 is a simple linear regression in
year. Consult Module 4 for more on logistic regression.

Recommended Exercises

Problem 1: Let us take a look at the Auto data set. We want to model miles per gallon mpg by engine
horsepower horsepower. Separate the observations into training and test. A training set is plotted below.

Perform polynomial regression of degree 1, 2, 3 and 4. Use lines() to add the fitted values to the plot below.

Also plot the test error by polynomial degree.
library(ISLR)
ds = Auto[c("horsepower","mpg")]
n = nrow(ds)

17

deg = 1:4
set.seed(1)
tr = sample.int(n, n/2)
plot(ds[tr,], col = "darkgrey", main = "Polynomial regression")

50 100 150 200

10
20

30
40

Polynomial regression

horsepower

m
pg

Problem 2: We will continue working with the Auto data set. The variable origin is 1,2 or 3, corresponding
to American, European or Japanese origin. Use factor(origin) for conversion to a factor variable. Predict
mpg by origin. Plot the fitted values and approximative 95 percent confidence intervals. Selecting se = T in
predict() gives standard errors of the prediction.

Problem 3: Now, let us look at the Wage data set. The section on AMs explains how we can create an AM
by adding components together. One component we saw is a natural spline in year with one knot. Derive
the expression for the design matrix X2 from the natural spline basis above.

Problem 4: We will continue working with the same AM as in problem 3. The R call model.matrix(~
bs(age,knots=c(40,60)) + ns(year,knots=2006) + education) gives a design matrix for the AM. This
matrix is what gam() uses. However, it does not equal our matrix X. The predicted responses will still be
the same.

Write code that produces X. The code below may be useful.
mybs = function(x,knots) cbind(x,x^2,x^3,sapply(knots,function(y) pmax(0,x-y)^3))

d = function(c, cK, x) (pmax(0,x-c)^3-pmax(0,x-cK)^3)/(cK-c)
myns = function(x,knots){

kn = c(min(x), knots, max(x))
K = length(kn)
sub = d(kn[K-1],kn[K],x)
cbind(x,sapply(kn[1:(K-2)],d,kn[K],x)-sub)

}

18

myfactor = function(x) model.matrix(~x)[,-1]

If the code is valid, the predicted response ŷ = X(XTX)−1XTy should be the same as when using the built-in
R function.
X =
myhat = lm(wage ~ X - 1)$fit
yhat = gam(wage ~ bs(age, knots = c(40,60)) + ns(year, knots = 2006) + education)$fit
all.equal(myhat,yhat)

How can myhat equal yhat when the design matrices differ?

Problem 5: Problem 3 on Compulsory 2.

Problem 6 (Advanced): In the part where we discussed smoothing splines there is a section explaining
how to compute S, where ŷ = Sy. This is implemented below, with x as unique observations of age and y
the coresponding wage.
K = function(x){

xi = sort(unique(x))
n = length(xi)
h = xi[-1]-xi[-n]
i = seq.int(n-2)
D = diag(1/h[i], ncol = n)
D[cbind(i,i+1)] = - 1/h[i] - 1/h[i+1]
D[cbind(i,i+2)] = 1/h[i+1]
W = diag(h[i]+h[i+1]/3)
W[cbind(i[-1],i[-1]-1)] = h[i[-1]]/6
W[cbind(i[-1]-1,i[-1])] = h[i[-1]]/6
t(D)%*%solve(W)%*%D

}

x = sort(unique(age))
y = wage[order(age[!duplicated(age)])]
eig = eigen(K(x))
U = eig$vectors
d = eig$values
lambda = 2000
S = U%*%diag(1/(1+lambda*d))%*%t(U)

Use S from this code to compute ŷ. Also compute ŷ using smooth.spline() with the correct degrees of
freedom. Finally, plot both sets of fitted values and observe that they are equal.
myhat =
yhat = smooth.spline(x, y, df =)$y

plot(x,y, main = "Comparison of fitted values")
co = c("blue", "red")
w = c(5,2)
lines(x,myhat, lwd = w[1], col = co[1])
lines(x,yhat, lwd = w[2], col = co[2])
legend("topright", legend = c("myhat", "yhat"), col = co,

lwd = w, inset=c(0, -0.19), xpd = T)

19

References

20

	Introduction
	Basis Functions
	Predictions
	 Polynomial Regression
	 Step Functions
	 Regression Splines
	Cubic Splines
	Natural Cubic Splines

	 Smoothing Splines
	The smoother matrix
	 Computing \mathbf S (optional)
	Connection to ridge regression (optional)

	 Local Regression
	 Additive Models
	Qualitative Responses
	Recommended Exercises
	References

