
TMA4268 Statistical Learning V2019
Module 9: SUPPORT VECTOR MACHINES

Mette Langaas and Thea Roksvåg, Department of Mathematical Sciences, NTNU
week 11 2019

Contents
Learning material for this module . 2
Topics . 2
Motivation . 2
Dataset . 5

Maximal Margin Classifier 5
Hyperplane . 5
Assumptions . 6
Possible hyperplans . 6
Questions . 9
Optimization problem . 10
Questions . 11

Support Vector Machines 16
Expanding the feature space . 17
Inner products . 17
Kernels . 19
Kernels and our optimization . 20
Tuning parameter example . 20
Example: forest 3 . 22

Extensions 25
More than two classes . 25

Comparisons 26
When to use SVM? . 26

Summing up 26

Recommended exercises 28
1. Understanding the algorithms: . 28
2. Data analysis . 28
Compulsory exercise 3 2018: Problem 2 - Nonlinear class boundaries and support vector machine . 32

R packages 35

References 35

Last changes: (13.05 typos from student, 09.03: first version)

#Introduction

This field dates back to the 1990s in computer science, and in this presentation we put emphasis on the
underlying motivation and connections to linear algebra, optimization theory and statistics.

We will only cover classification, and in particular two-class problems.

1

Learning material for this module

• James et al (2013): An Introduction to Statistical Learning. Chapter 9.

• Classnotes 11.03.2019

Some of the figures in this presentation are taken from (or are inspired by) “An Introduction to Statistical
Learning, with applications in R” (Springer, 2013) with permission from the authors: G. James, D. Witten,
T. Hastie and R. Tibshirani.

Topics

• Motivation
• Maximal margin classifier
• Support vector classifier
• Support vector machines
• Extensions
• Comparisons
• Summing up
• Recommended exercises
• R Packages
• References

Motivation

Suppose that you are interested in the distribution of two tree types: redwood and pines. You have three
different study areas in which these trees grow. Your study areas are visualized in the three figures below
with orange points indicating the position of a redwood tree and green points indicating the position of a
pine tree in a forest.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

Forest 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 3

Assume you want to build one continuous fence to separate the two tree types in each of the three study
areas. Where should you build the fence?

2

https://www.math.ntnu.no/emner/TMA4268/2019v/notes/M9notes.pdf

For Forest 1 the choice seems easy: The orange and green points are clearly separated and the fence can be
built anywhere inside the band that separates them. However, we can draw infinitely many straight lines
that all separate the two tree types, and we should take into account that the trees reproduce and that we
want future pines and future redwoods to grow up on the correct side of the fence.

The problem gets more complicated for Forest 2. A linear fence still seems like a good idea, but in this case
the two tree types can not be perfectly separated. You have to allow some of the trees to be on the wrong side
of the fence. The complexity of the problem is further increased for Forest 3. It is not possible to separate
the two tree types by a straight line without getting a large number of misclassifications. Here, a circular
fence around the pine trees seems like a reasonable choice.

Forest 1 illustrates the problem of finding an optimal separating hyperplane for a dataset. In this module
you are going to learn a method for finding optimal hyperplanes called Maximal Margin hyperplanes.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 1

You are also going to learn how you can find an optimal separating hyperplane when your data cannot be
perfectly separated by a straight line, as in Forest 2. This leads to a classifier called a Support Vector
Classifier or a Soft Margin Classifier.

3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2
Forest 2

The Support vector classifier can be generalised to an approach that produces non-linear decision boundaries.
This is called the Support Vector Machine (SVM) and is useful when the data is distributed as illustrated
in Forest 3.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 3

4

The reason why we want to separate the data by finding an optimal hyperplane or a separating cruve, is that
we want to use it for classification. In our example: Is it likely that a random seed found at location (0.8, 0.4)
becomes a redwood or a pine tree given the observed data? We classify a new observation based on which
side of the decision boundary it falls into.

The methods presented in this module are intended for binary classification, i.e classification with two
classes, but extensions to more than two classes are briefly mentioned.

Dataset

The three forests will be used as illustrative examples throughout the module. In this dataset we have two
covariates,

the x1- and the x2-coordinate of each tree in the forest, and the response is the tree type, either pine or
redwood.

The class pine is stored as 1 in our dataset, while redwood is stored as -1. (Yes, we have used 0 and 1 before.)

Our goal is to make a classifier for random seeds that we find on the ground for each of the three forests.
The locations of the seeds are shown in the figure below (black circles), and we want to classify the seeds as
either pine seeds or redwood seeds given our observations. Thus, the point patterns above can be thought of
as the training set, while the point pattern generated by the black circles can be thought of as the test set.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

Forest 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 3

Maximal Margin Classifier

Hyperplane

A hyperplane in p-dimensions is defined as

β0 + β1X1 + β2X2 + ...+ βpXp = β0 + xTβ = 0.

5

and is a p− 1 dimensional subspace.

• If a point X = (X1, X2, ..., Xp)T satisfies the above equation, it lies on the hyperplane.
• If β0 = 0 the hyperplane goes through the origin (origo).
• The vector β1, . . . , βp (not including β0) is called the normal vector and points in the direction orthogonal

to the hyperplane.

If a point X = (X1, X2, ..., Xp)T satisfies

• β0 + β1X1 + β2X2 + ...+ βpXp = β0 + xTβ > 0 it lies on one side of the hyperplane, while if it satisfes
• β0 + β1X1 + β2X2 + ...+ βpXp = β0 + xTβ < 0 it lies on the opposite side of the hyperplane.
• For normalized βs (

∑p
j=1 β

2
j = 1) the value of β0 + xTβ gives the distance from the hyperplane.

Assumptions

Assume that we have n training observations with p predictors

x1 =

 x11
...
x1p

 , ...,xn =

 xn1
...
xnp

and that the responses y fall into two classes y1, ..., yn ∈ {−1, 1}. Further, assume that it is possible to
separate the training observations perfectly according to their class.

Possible hyperplans

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

6

The three lines displayed in the figure are three possible separating hyperplanes for this dataset which contains
two predictors x1 and x2 (p = 2). The hyperplanes have the property that

β0 + β1xi1 + β2xi2 + ...+ βpxip = β0 + xTi β > 0

if yi = 1 (green points) and

β0 + β1xi1 + β2xi2 + ...+ βpxip = β0 + xTi β < 0

if yi = −1 (orange points).

This means that for all observations (all are correctly classified)

yi(β0 + xTi β) > 0

The hyperplane leads to a natural classifier:

We can assign a class to a new observation depending on which side of the hyperplane it is located. We
denote the new observation x∗ = (x∗1, ..., x∗n) and classify it as y∗ = 1 if

f(x∗) = β0 + β1x
∗
1 + β2x

∗
2 + ...+ βpx

∗
p > 0

and as y∗ = −1 otherwise.

The next question is which hyperplane we should choose.

In the above figure we plotted three possible hyperplanes, but there exist infinitely many possible separating
hyperplanes for this dataset.

A natural choice is the maximal margin hyperplane. This is the separating hyperplane that is farthest
from the training observations.

(From a statistical point of view we might be afraid that we are overfitting the data now.)

##Optimization problem

• The maximal margin hyperplane is found by computing the perpendicular distance from each training
observation to a given separating hyperplane.

• The smallest such distance is the minimal distance from the observations to the hyperplane, also known
as the margin. (See illustration below.)

• We want to maximize this margin.

The process of finding the maximal margin hyperplane for a dataset with p covariates and n training
observations can be formulated through the following optimization problem:

maximizeβ0,β1,...,βp
M

subject to
p∑
j=1

β2
j = 1,

7

Figure 1: ISLR Figure 9.3

8

yi(β0 + β1xi1 + β2xi2 + ...+ βpxip) ≥M ∀i = 1, ..., n

where M is the width of the margin.

Observe: yi(β0 + xTβ) is the (signed) distance from the ith point to the hyperplane defined by the βs. We
want to find the hyperplane, where each observaton is at least M units away - on the correct side, where M
is as big as possible.

Above (Figure 9.3. from James et al. (2013)) three of the observations are equidistant from the hyperplane.
These are called support vectors. If one of the support vectors changes its position, the whole hyperplane
will move. This is a property of the maximal margin hyperplane: It only depends on the support vectors,
and not on the other observations.

It can be shown, see for example Efron and Hastie (2016) Section 19.1 and Friedman, Hastie, and Tibshirani
(2001) Section 4.5, that the optimization problem can be reformulated using Lagrange multipliers (primal
and dual problem) into a quadratic convex optimization problem that can be solved efficiently.

However, we do of cause have to solve the optimization problem to identify the support vectors and the
unknown parameters for the separating hyperplane.

Since we in TMA4268 Statistical learning do not require a course in optimization - we do not go into details
here.

Questions

• Explain briefly the idea behind the maximal margin classifier.
• Is there any tuning parameters that need to be chosen?
• What if our problem is not separable by a hyperplane?

A:

MMC: drawing is the best! Hyperplane with largest possible margin to the support vectors, all training
data correctly classified (since separable problem). Only support vectors decide boundary. No distribution
assumed for the observations in each class.

No tuning parameter.

Non-separable case is next - by defining slack-variables.

#Support Vector Classifiers

For some data sets a separating hyperplane does not exist, the data set is non-separable.

9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

It is still possible to construct a hyperplane and use it for classification, but then we have to allow some of
the training observations to be misclassified.

Also, in some situation we what to allow for some misclassifications to make the class boundaries more robust
to future observations - that is, we have noisy data or outliers are present.

In the special case where we have more predictors than observations it is possible to find a separating
hyperplane, but the might not be the “best” hyperplane for us.

We now relax the maximal margin classifier to allow for a soft-margin classifier.

Optimization problem

maximizeβ0,β1,...,βp,ε1,...,εn, M subject to
p∑
j=1

β2
j = 1

yi(β0 + β1xi1 + β2xi2 + ...+ βpxip) ≥M(1− εi) ∀i = 1, ..., n.

εi ≥ 0,
n∑
i=1

εi ≤ C.

• M is the width of the margin.
• ε1, ..., εn are slack variables.

– If εi = 0 it means that observation i is on the correct side of the margin,
– if εi > 0 observation i is on the wrong side of the margin, and
– if εi > 1 observation i is on the wrong side of the hyperplane.

• C is a tuning (regularization) parameter (chosen by cross-validation) giving the budget for slacks. It
restricts the number of the training observations that can be on the wrong side of the hyperplane. No
more than C of the observations can be on the wrong side.

10

The hyperplane has the property that it only depends on the observations that either lie on the margin
or on the wrong side of the margin.

These observations are called our support vectors. The observations on the correct side of the margin
do not affect the support vectors. The length of distance for the support vectors to the class boundary is
proportional to the slacks.

Classification rule: We classify a test observation x∗ based on the sign of f(x∗) = β0 + β1x
∗
1 + ...+ βpx

∗
p

as before:

• If f(x∗) < 0 then y∗ = −1.
• If f(x∗) > 0 then y∗ = 1.

More on solving the optimization problem: Friedman, Hastie, and Tibshirani (2001) Section 12.2.1 (primal
and dual Lagrange problem, quadratic convex problem).

Questions

• Should the variables be standardized before used with this method?
• The support vector classifier only depends on the observations that violate the margin. How does C

affect the width of the margin?

• Discuss how the tuning parameter C affects the bias-variance trade-off of the method.

See also Figure 19.3 in Efron and Hastie (2016).

A: Yes, should be standardized because this method treats all variables equally. Same as for lasso and ridge.

If C is small then M must give narrow margin? C is our bias-variance trade-off tuning parameter: C large:
allow many violations: more bias, less variance. C small: highly fit the data: less bias, more variance.

##Example## We will now find a support vector classifier for the second training dataset (forest2) and use
this to classify the observations in the second test set (seeds2).

• There are 100 observations of trees: 45 pines (yi = 1) and 55 redwood trees (yi = −1).
• In the test set there are 20 seeds: 10 pine seeds and 10 redwood seeds.

The function svm in the package e1071 is used to find the maximal margin hyperplane. The response needs
to be coded as a factor variable, and the data set has to be stored as a dataframe.
library(e1071)
forest2=read.table(file="https://www.math.ntnu.no/emner/TMA4268/2019v/data/forest2.txt");
seeds2=read.table(file="https://www.math.ntnu.no/emner/TMA4268/2019v/data/seeds2.txt");
train2=data.frame(x=forest2[,1:2], y=as.factor(forest2[,3]))
test2=data.frame(x=seeds2[,1:2], y=as.factor(seeds2[,3]))

The svm function uses a slightly different formulation from what we wrote above.

We had in our presentation a budget for errors C, but in svm we instead have an argument cost that allows
us to specify the cost of violating the margin.

11

Figure 2: ISLR Figure 9.7: Top left=large C, smaller top right, bottom left and bottom right. As C decreases
the tolerance for observations being on the wrong side of the margin decreases and the marin narrows.

12

• When cost is set to a low value, the margin will be wider than if set to a large value.

We first try with cost=1. We set kernel='linear' as we are interested in a linear decision boundary.
scale=TRUE scales the predictors to have mean 0 and standard deviation 1. We choose not to scale.

svmfit_linear1=svm(y ~ ., data=train2, kernel='linear', cost=1, scale=FALSE)
plot(svmfit_linear1,train2,col=c("lightcoral","lightgreen"))

−
1

1

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

oo

o

o
x

x

x

x

x
x
x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x

x xx

x

x
x

x

x
x

x

x

x
x

SVM classification plot

x.V2

x.
V

1

summary(svmfit_linear1)

##
Call:
svm(formula = y ~ ., data = train2, kernel = "linear", cost = 1,
scale = FALSE)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 1
gamma: 0.5
##
Number of Support Vectors: 56
##
(28 28)
##
##
Number of Classes: 2
##
Levels:
-1 1
svmfit_linear1$index #support vectors id in data set

[1] 1 2 4 6 9 10 16 21 26 27 28 40 44 53 55 57 58 65 67 72 76 77 80

13

[24] 81 87 91 92 98 5 8 11 13 18 19 20 23 24 25 34 36 39 41 42 47 48 59
[47] 61 62 70 71 75 78 88 93 95 96

Observations

• Remark that the x1 is plotted on the vertical axis, and the the implementation of the plotting function
is made in a way that the linear boundary looks jagged.

• The crosses in the plot indicate the support vectors. With cost = 1, we have 56 support vectors, 28 in
each class.

• All other observations are shown as circles.

Next, we set cost = 100:
svmfit_linear2=svm(y ~ ., data=train2, kernel='linear', cost=100, scale=FALSE)
plot(svmfit_linear2,train2,col=c("lightcoral","lightgreen"))

−
1

1
0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo o

o

o

o

o

o

o o

o
o

o
o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o
o

oo

o

o

o
o

o

o

o

o
x

x

x
x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

xx x

x
x

x

x

x

SVM classification plot

x.V2

x.
V

1

summary(svmfit_linear2)

##
Call:
svm(formula = y ~ ., data = train2, kernel = "linear", cost = 100,
scale = FALSE)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 100
gamma: 0.5
##
Number of Support Vectors: 31
##

14

(15 16)
##
##
Number of Classes: 2
##
Levels:
-1 1

With cost = 100 we have 31 support vectors, i.e the width of the margin is decreased.

How do we find an optimal cost parameter? By using the tune() function we can perform ten-fold cross-
validation and find the cost-parameter that gives the lowest cross-validation error:
set.seed(1)
CV_linear=tune(svm,y~.,data=train2,kernel="linear",ranges=list(cost=c(0.001,0.01,0.1,1,5,10,100)))
summary(CV_linear)

##
Parameter tuning of 'svm':
##
- sampling method: 10-fold cross validation
##
- best parameters:
cost
0.1
##
- best performance: 0.15
##
- Detailed performance results:
cost error dispersion
1 1e-03 0.45 0.1779513
2 1e-02 0.22 0.1751190
3 1e-01 0.15 0.1269296
4 1e+00 0.15 0.1269296
5 5e+00 0.15 0.1080123
6 1e+01 0.15 0.1080123
7 1e+02 0.15 0.1080123

According to the tune() function we should set the cost parameter to 0.1. The function also stores the best
model obtained and we can access it as follows:
bestmod_linear=CV_linear$best.model

Next, we want to predict the class label of the seeds in the test set. We use the predict function and make a
confusion table:
ypred_linear=predict(bestmod_linear,test2)
table(predict=ypred_linear,truth=test2[,3])

truth
predict -1 1
-1 9 2
1 1 8

par(mfrow=c(1,2)); par(pty="s")
plot(NA,xlab="x1",ylab="x2",xlim=c(0,1),ylim=c(0,1));title("True class")
points(seeds2[seeds2[,3]==-1,1:2],pch=19,col="lightcoral",cex=0.9)
points(seeds2[seeds2[,3]==1,1:2],pch=19,col="darkseagreen",cex=0.9)
points(seeds2[which(ypred_linear!=seeds2[,3]),1:2],pch=21) #Mark misclassification.

plot(NA,xlab="x1",ylab="x2",xlim=c(0,1),ylim=c(0,1));title("Predicted class")
points(seeds2[ypred_linear==-1,1:2],pch=19,col="lightcoral",cex=0.9)

15

points(seeds2[ypred_linear==1,1:2],pch=19,col="darkseagreen",cex=0.9)
points(seeds2[which(ypred_linear!=seeds2[,3]),1:2],pch=21) #Mark misclassification.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

True class

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Predicted class

In this case three of the test observations are misclassified: These three observations are marked with a black
circle in the plot, and we observe that they lie on the border between the green and the orange points which
is reasonable: The test observations located on the border between green and orange are hardest to predict.

Missing: the svm function is not (directly) outputting the equation for the class boundary, and not the value
for the width of the margin. Want to see how to find this? Go to the recommended exercises.

Support Vector Machines

For some datasets a non-linear decicion boundary between the classes is more suitable than a linear decision
boundary. In such cases you can use a Support Vector Machine (SVM). This is an extension of the
support vector classifier.

16

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Expanding the feature space

We saw in Module 7 that in regression we could fit non-linear curves by using a polynomial basis - adding
polynomials of different order as covariates. This was a linear regression in the transformed variables, but
non-linear in the original variables. Maybe we may add many such extra features and find a nice linear
boundary in that high-dimensional space?

Efron and Hastie (2016) (page 377): If n ≤ p+ 1 we can always find a separating hyperplane, unless there
are exact features ties across the class barrier. (Two observations with equal covariate vector, but different
classes.)

Left: expanding feature space to include cubic polynomials (x1, x2, x1x2, x
2
1, x

2
2, x

2
1x2, x1x

2
2x

3
1, x

3
2, 9 parameters

to estimate in addition to intercept), and also observe the margins. (Right: radial basis function kernel - wait
a bit.)

Next: replace polynomials with kernels for elegance and computational issues.

Inner products

We have not focused on how to solve the optimisation problem of finding the support vector classifier
hyperplane, because this is outside the scope of this course.

Remember that we classify a new observation x∗ by first calculating a numerical value for the estimated
f(x∗) and then if f(x∗) < 0 classify as −1 and if f(x∗) > 0 classify as 1.

It can be shown (using optimization theory) that the solution to the support vector classifier problem at a

17

Figure 3: ISLR Figure 9.9

new observation x∗, can be expressed as

f(x∗) = β0 +
n∑
i=1

αi〈x∗,xi〉

where αi is some parameter and i = 1, ..., n.

A term of the form 〈xi,xi′〉 denotes the inner product between two observations i and i′ and is defined as:

〈xi,xi′〉 =
p∑
j=1

xijxi′j .

This means that we need (in addition to the intercept) to estimate n parameters (αis) instead of p (βjs) (and
for our expanded feature space then p might be larger than n). (For the interested reader: See Eq. 19.22 and
19.23 of Efron and Hastie (2016).)

Further, it then turns out that to estimate the parameters β0, α1, ..., αn this can be based on the
(
n
2
)
inner

products 〈xi,x′i〉 between all pair of training observations (the class of the training observations is also
included).

Also, αi = 0 for the observations i that are not the support vectors. Remark: we could alternatively say that
αi 6= 0 define the support vectors.

Thus, we only need the inner product between the new observation and the observations corresponding to
support vectors to classify a new observation, and

f(x) = β0 +
∑
i∈S

αi〈x,xi〉,

18

Figure 4: ISLR Figure 9.6

where S contains the indices of the support points. So, we have sparsity in the observations (but not in the
predictors).

Q: Find the support vectors

Observe: we need all observations (both x and y values) to decide on which observations are the support
vectors.

Kernels

(we now use x to denote a new observation)

The next step is now to replace the inner product 〈x,xi〉 with a function K(xi,xi′) referred to as the kernel:

f(x) = β0 +
∑
i∈S

αiK(x,xi).

For the linear case (which is what we have considered so far), the kernel is simply the inner product
K(xi,x′i) =

∑p
j=1 xijxi′j .

The two arguments to the kernel are two p-vectors.

If we want a more flexible decision boundary we could instead use a polynomial kernel. This polynomial
kernel of degree d > 1 is given by:

K(xi,x′i) = (1 +
p∑
j1
xijxi′j)d.

(This kernel is not so much used in practice, but is popular for proofs.)

Using these kernels our solution for the class boundary can be written of the form

f(x) = β0 +
∑
i∈S

αiK(x,xi)

19

The nice thing here is that we only need to calculate the kernels, not the basis functions (what we in Module
7 did as extra columns of the design matrix).

A very popular choice is the radial kernel,

K(xi,x′i) = exp(−γ
p∑
j=1

(xij − xi′j)2),

where γ is a positive constant (a tuning parameter).

Observe the connection to a multivariate normal density, where γ ∝ 1/σ2 (σ2 variance in normal distribution).
If γ is small (similar to large variance in the normal distribution) the decision boundaries are smoother than
for larger γ.

It turns out that this computes the inner product in a very high (infinite) dimensional feature space. But, this
does not give overfitting because some of the dimensions are “squashed down” (but we have the parameter γ
and the budget parameter that we have to decide on).

The radial kernel is convinient if we want a circular decision boundary, and γ and our budget can be chosen
by cross-validation.

Remark: the mathematics behind this is based on reproducing-kernel Hilbert spaces (see page 384 of Efron
and Hastie (2016) for a glimpse of the theory).

Study Figures 19.5 and 19.6 (page 383) in Efron and Hastie (2016) to see how the radial kernel can make
smooth functions.

Computer Age Statistical Inference

Kernels and our optimization

We now merge our optimization problem (from our support vector classifier) with our kernel representation
f(x) to get the Support Vector Machine (SVM).

maximizeβ0,α1,...,αn,ε1,...,εn, M

yi(f(xi)) ≥M(1− εi) ∀i = 1, ..., n.

εi ≥ 0,
n∑
i=1

εi ≤ C.

where
f(xi) = β0 +

∑
l∈S

αlK(xi,xl)

Tuning parameter example

Heart data - predict heart disease from p = 13 predictors.

Training errors as ROC and AUC.

20

https://web.stanford.edu/~hastie/CASI_files/PDF/casi.pdf

Figure 5: ISLR Figure 9.10

Figure 6: ISLR Figure 9.11

21

Heart data - test error.

Example: forest 3

To illustrate the SVM we use the third training dataset (forest3) and the third test set (seeds3). We use the
svm function as before. However, we now set kernel='radial' as we want a non-linear decision boundary:

library(e1071)
forest3=read.table(file="forest3.txt"); seeds3=read.table(file="seeds3.txt")
train3=data.frame(x=forest3[,1:2], y=as.factor(forest3[,3]))
test3=data.frame(x=seeds3[,1:2], y=as.factor(seeds3[,3]))

svmfit_kernel1=svm(y ~ ., data=train3, kernel='radial', gamma=1, cost=10, scale=FALSE)
plot(svmfit_kernel1,train3,col=c("lightcoral","lightgreen"))

−
1

1

0.2 0.4 0.6 0.8

−0.2

0.0

0.2

0.4

0.6

0.8

oo

oo

o
o

o

o

o

o

o

o oo

o

o

o
o

o

o
o

o
o oo oo

o

o

o o

oo o

o

o
o

o

o

o

o

x

x

x

x
x

x

x

x

x
x

x

x
x

x
xx

x

x

x

x

x
x

x
x

x

x

x
xxx

x

SVM classification plot

x.V2

x.
V

1

summary(svmfit_kernel1)

##
Call:
svm(formula = y ~ ., data = train3, kernel = "radial", gamma = 1,
cost = 10, scale = FALSE)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 10
gamma: 1
##
Number of Support Vectors: 31
##

22

(16 15)
##
##
Number of Classes: 2
##
Levels:
-1 1

We could also try with a polynomial kernel with degree 4 as follows:
svmfit_kernel2=svm(y ~ ., data=train3, kernel='polynomial', degree=4, cost=100000, scale=FALSE)
plot(svmfit_kernel2,train3,col=c("lightcoral","lightgreen"))

−
1

1

0.2 0.4 0.6 0.8

−0.2

0.0

0.2

0.4

0.6

0.8

o

oo o

o

o

o

o

o

o

o
o oo o

o
o

o

o
o

o

o
o

o o

o
o

o

o

o

o

o

x

x

xx

x

x
x

x

x

x

x

x

x

x xx

x

x

x

x
x

x

x

x
xx

x
x

x

x
x

x
x

x

x x

xxx
x

SVM classification plot

x.V2

x.
V

1

summary(svmfit_kernel2)

##
Call:
svm(formula = y ~ ., data = train3, kernel = "polynomial", degree = 4,
cost = 1e+05, scale = FALSE)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: polynomial
cost: 1e+05
degree: 4
gamma: 0.5
coef.0: 0
##
Number of Support Vectors: 40
##
(21 19)
##
##
Number of Classes: 2

23

##
Levels:
-1 1

For this dataset a radial kernel is a natural choice: A circular decision boundary seems like a good idea. Thus,
we proceed with kernel='radial', and use the tune() function to find the optimal tuning parameter C:
set.seed(1)
CV_kernel=tune(svm,y~.,data=train3,kernel="radial",gamma=1,ranges=list(cost=c(0.001,0.01,0.1,1,5,10,100)))
summary(CV_kernel)

##
Parameter tuning of 'svm':
##
- sampling method: 10-fold cross validation
##
- best parameters:
cost
10
##
- best performance: 0.1232143
##
- Detailed performance results:
cost error dispersion
1 1e-03 0.2732143 0.1619332
2 1e-02 0.2732143 0.1619332
3 1e-01 0.2732143 0.1619332
4 1e+00 0.1357143 0.1268849
5 5e+00 0.1357143 0.1436486
6 1e+01 0.1232143 0.1379232
7 1e+02 0.1250000 0.1248582

The optimal C is 10. Next, we predict the class label of the seeds in the test set with a model with C=10,
make a confusion table and plot the results:
bestmod_kernel=CV_kernel$best.model
ypred_kernel=predict(bestmod_kernel,test3)

par(mfrow=c(1,3)); par(pty="s")
plot(NA,xlab="x1",ylab="x2",xlim=c(0,1),ylim=c(0,1));title("True class")
points(seeds3[seeds3[,3]==-1,1:2],pch=19,col="lightcoral",cex=0.9)
points(seeds3[seeds3[,3]==1,1:2],pch=19,col="darkseagreen",cex=0.9)
points(seeds3[which(ypred_kernel!=seeds3[,3]),1:2],pch=21) #Mark misclassification.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

True class

24

plot(NA,xlab="x1",ylab="x2",xlim=c(0,1),ylim=c(0,1));title("Predicted class")
points(seeds3[ypred_kernel==-1,1:2],pch=19,col="lightcoral",cex=0.9)
points(seeds3[ypred_kernel==1,1:2],pch=19,col="darkseagreen",cex=0.9)
points(seeds3[which(ypred_kernel!=seeds3[,3]),1:2],pch=21) #Mark misclassification.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Predicted class

table(predict=ypred_kernel,truth=test3[,3])

truth
predict -1 1
-1 9 0
1 1 5

Only one seed is misclassified.

Extensions

More than two classes

What if we have k classes?

• OVA: one-versus-all. Fit k different two-class SVMs fk(x) where one class is compared to all other
classes. Classify a test observation to the class where fk(x∗) is largest.

• OVO: one-versus-one. libsvm uses this approach, in which k(k− 1)/2 binary classifiers are trained; the
appropriate class is found by a voting scheme (the class that wins the most pairwise competitions are
chosen).

25

Comparisons

Focus is comparing the support vector classifier and logistic regression

It is possible to write the optimization problem for the support vector classifier as a “loss”+“penalty”:

minimizeβ

n∑
i=1

max(0, 1− yif(xi)) + λ

p∑
j=1

β2
j

• the loss is called hinge loss - observe the max and 0 to explain why only support vectors contribute

• the penalty is a ridge penalty

• large λ gives βs small and more violations=high bias, but low variance

• small λ gives βs large and less violations=low bias, but high variance

Hinge loss:
max(0, 1− yif(xi))

For comparison a logistic regression (with ridge penalty) would be (binomial deviance with -1,1 coding of y)

log(1 + exp(−yif(xi)))

It can be shown that in logistic regression all observations contribute weighted by pi(1 − pi) (where pi is
probability for class 1), that fade smoothly with distance to the decision boundary

It is possible to extend the logistic regression to include non-linear terms, and ridge penalty.

When to use SVM?

• If classes are nearly separable SVM will perform better than logistic regression. (LDA will also perform
better than logistic regression.)

• and if not, then a ridge penalty version of logistic regression are very similar to SVM, and logistic
regression will also give you probabilities for each class.

• If class boundaries are non-linear then SVM is more popular, but kernel versions of logistic regression is
possible, but more computationally expensive.

Summing up

• We use methods from computer science, not probability models - but looks for a separating hyperplane
in (an extended) feature space in the classification setting.

• SVM is a widely successful and a “must have tool”
• Interpretation of SVM: all features are included and maybe not so easy to interpret (remember ridge-type

penalty does not shrink to zero).
• The budget must be chosen wisely, and a bad choice can lead to overfitting.

26

Figure 7: ISLR Figure 9.12: hinge loss - loss 0 for observations on the correct side of the margin

27

• Not so easy to get class probabilites from SVM (what is done is actually to fit a logistic regression after
fitting SVM).

Recommended exercises

1. Understanding the algorithms:

• Exercise 1, 2 and 3 in the book.

2. Data analysis

• Go back and read in the forest1 data (is located in the same place as forest2) and run the svm with
a very high value for cost. The forest1 is a separable problem.

• Linear version of SVM: Making nicer plots for SVM from Lab video. Go through the code and see what
is happening (and see the video if you want more explanation).

code taken from video by Trevor Hastie linked above
library(e1071)
fake data
set.seed(10111)
x=matrix(rnorm(40),20,2)
y=rep(c(-1,1),c(10,10))
x[y==1,]=x[y==1,]+1
plot(x,col=y+3,pch=19)

−1 0 1 2

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

x[,1]

x[
,2

]

#calling svm
dat=data.frame(x,y=as.factor(y))
svmfit=svm(y~.,data=dat, kernel="linear",cost=10,scale=FALSE)
print(svmfit)

28

https://www.youtube.com/watch?v=qhyyufR0930&list=PL5-da3qGB5IDl6MkmovVdZwyYOhpCxo5o&index=5

##
Call:
svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10,
scale = FALSE)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 10
gamma: 0.5
##
Number of Support Vectors: 6
grid for plotting
make.grid=function(x,n=75)
{

grange=apply(x,2,range)
x1=seq(from=grange[1,1],to=grange[2,1],length=n)
x2=seq(from=grange[1,2],to=grange[2,2],length=n)
expand.grid(X1=x1,X2=x2)

}
xgrid=make.grid(x)
ygrid=predict(svmfit,xgrid)
plot(xgrid, col=c("red","blue")[as.numeric(ygrid)],pch=20,cex=.2)
points(x,col=y+3,pch=19)
points(x[svmfit$index,],pch=5,cex=2)

−1 0 1 2

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

X1

X
2

more info on results - class boundary

beta=drop(t(svmfit$coefs)%*%x[svmfit$index,])
beta0=svmfit$rho

29

plot(xgrid, col=c("red","blue")[as.numeric(ygrid)],pch=20,cex=.2)
points(x,col=y+3,pch=19)
points(x[svmfit$index,],pch=5,cex=2)
abline(beta0/beta[2],-beta[1]/beta[2]) #class boundary
abline((beta0-1)/beta[2],-beta[1]/beta[2]) #class boundary-margin
abline((beta0+1)/beta[2],-beta[1]/beta[2]) #class boundary+margin

−1 0 1 2

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

X1

X
2

• SVM for non-linear class boundary using simulated data set from Friedman, Hastie, and Tibshirani
(2001) where the truth is known (mixtures of normals probably).

load(url("https://web.stanford.edu/~hastie/ElemStatLearn/datasets/ESL.mixture.rda"))
names(ESL.mixture)

[1] "x" "y" "xnew" "prob" "marginal" "px1"
[7] "px2" "means"
rm(x,y)
attach(ESL.mixture)

plot(x,col=y+1)

30

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

x[,1]

x[
,2

]

dat=data.frame(y=factor(y),x)
fit=svm(factor(y)~.,data=dat,scale=FALSE,kernel="radial",cost=5)

xgrid=expand.grid(X1=px1,X2=px2)
ygrid=predict(fit,xgrid)
plot(xgrid,col=as.numeric(ygrid),pch=20,cex=.2)
points(x,col=y+1,pch=19)

decision boundary
func=predict(fit,xgrid,decision.values=TRUE)
func=attributes(func)$decision
contour(px1,px2,matrix(func,69,99),level=0,add=TRUE) #svm boundary
contour(px1,px2,matrix(prob,69,99),level=0.5,add=TRUE,col="blue",lwd=2) #truth

31

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

X1

X
2

 0 0.5

 0.5

Compulsory exercise 3 2018: Problem 2 - Nonlinear class boundaries and support
vector machine

##3 a) Bayes decision boundary [1 point]

We will study classification applied to a simulated data set with two classes from Friedman, Hastie, and
Tibshirani (2001), where the data set is supplied together with the Bayes decision boundary. The boundary
is plotted below, together with a training set.
load(url("https://web.stanford.edu/~hastie/ElemStatLearn/datasets/ESL.mixture.rda"))
#names(ESL.mixture)
#prob gives probabilites for each class when the true density functions are known
#px1 and px2 are coordinates in x1 (length 69) and x2 (length 99) where class probabilites are calculated
rm(x,y)
attach(ESL.mixture)
dat=data.frame(y=factor(y),x)
xgrid=expand.grid(X1=px1,X2=px2)
par(pty="s")
plot(xgrid, pch=20,cex=.2)
points(x,col=y+1,pch=20)
contour(px1,px2,matrix(prob,69,99),level=0.5,add=TRUE,col="blue",lwd=2) #optimal boundary

32

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

X1

X
2

 0.5

 0.5

• Q11. What is a Bayes classifier, Bayes decision boundary and Bayes error rate? Hint: pages 37-39 in
James et al. (2013).

• Q12. When the Bayes decision boundary is known, do we then need a test set?

b) Support vector machine [1 point]

library(e1071)
support vector classifier
svcfits=tune(svm,factor(y)~.,data=dat,scale=FALSE,kernel="linear",ranges=list(cost=c(1e-2,1e-1,1,5,10)))
summary(svcfits)

##
Parameter tuning of 'svm':
##
- sampling method: 10-fold cross validation
##
- best parameters:
cost
0.01
##
- best performance: 0.275
##
- Detailed performance results:
cost error dispersion
1 0.01 0.275 0.1060660
2 0.10 0.280 0.1159502
3 1.00 0.280 0.1135292
4 5.00 0.285 0.1203005
5 10.00 0.285 0.1203005
svcfit=svm(factor(y)~.,data=dat,scale=FALSE,kernel="linear",cost=0.01)
support vector machine with radial kernel

33

set.seed(4268)
svmfits=tune(svm,factor(y)~.,data=dat,scale=FALSE,kernel="radial",ranges=list(cost=c(1e-2,1e-1,1,5,10),gamma=c(0.01,1,5,10)))
summary(svmfits)

##
Parameter tuning of 'svm':
##
- sampling method: 10-fold cross validation
##
- best parameters:
cost gamma
1 5
##
- best performance: 0.155
##
- Detailed performance results:
cost gamma error dispersion
1 0.01 0.01 0.455 0.17551511
2 0.10 0.01 0.440 0.16964014
3 1.00 0.01 0.295 0.09264628
4 5.00 0.01 0.290 0.10219806
5 10.00 0.01 0.295 0.09264628
6 0.01 1.00 0.435 0.19155794
7 0.10 1.00 0.210 0.07745967
8 1.00 1.00 0.170 0.10327956
9 5.00 1.00 0.165 0.08181958
10 10.00 1.00 0.180 0.07527727
11 0.01 5.00 0.395 0.22785229
12 0.10 5.00 0.315 0.20145305
13 1.00 5.00 0.155 0.06851602
14 5.00 5.00 0.190 0.06992059
15 10.00 5.00 0.200 0.09128709
16 0.01 10.00 0.430 0.19032137
17 0.10 10.00 0.415 0.18265024
18 1.00 10.00 0.175 0.06770032
19 5.00 10.00 0.245 0.10394977
20 10.00 10.00 0.260 0.11005049
svmfit=svm(factor(y)~.,data=dat,scale=FALSE,kernel="radial",cost=1,gamma=5)

the same as in a - the Bayes boundary
par(pty="s")
plot(xgrid, pch=20,cex=.2)
points(x,col=y+1,pch=20)
contour(px1,px2,matrix(prob,69,99),level=0.5,add=TRUE,col="blue",lwd=2) #optimal boundary

decision boundaries from svc and svm added
svcfunc=predict(svcfit,xgrid,decision.values=TRUE)
svcfunc=attributes(svcfunc)$decision
contour(px1,px2,matrix(svcfunc,69,99),level=0,add=TRUE,col="red") #svc boundary
svmfunc=predict(svmfit,xgrid,decision.values=TRUE)
svmfunc=attributes(svmfunc)$decision
contour(px1,px2,matrix(svmfunc,69,99),level=0,add=TRUE,col="orange") #svm boundary

34

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

X1

X
2

 0.5

 0.5

 0

 0

 0

• Q13. What is the difference between a support vector classifier and a support vector machine?
• Q14. What are parameters for the support vector classifier and the support vector machine? How are

these chosen above?
• Q15. How would you evaluate the support vector machine decision boundary compared to the Bayes

decision boundary?

R packages

These packages needs to be install before knitting this R Markdown file.
install.packages(e1071)
install.packages("knitr")
install.packages("MASS")

References

• Videoes on YouTube by the authors of ISL, Chapter 9, and corresponding slides
• Solutions to exercises in the book, chapter 9

Efron, Bradley, and Trevor Hastie. 2016. Computer Age Statistical Inference - Algorithms, Evidence, and
Data Science. Cambridge University Press.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning. Vol. 1.
Springer series in statistics New York.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical
Learning. Vol. 112. Springer.

35

https://www.youtube.com/playlist?list=PL5-da3qGB5IDl6MkmovVdZwyYOhpCxo5o
https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/svm.pdf
https://rpubs.com/ppaquay/65566

	Learning material for this module
	Topics
	Motivation
	Dataset
	Maximal Margin Classifier
	Hyperplane
	Assumptions
	Possible hyperplans
	Questions
	Optimization problem
	Questions

	Support Vector Machines
	Expanding the feature space
	Inner products
	Kernels
	Kernels and our optimization
	Tuning parameter example
	Example: forest 3

	Extensions
	More than two classes

	 Comparisons
	When to use SVM?

	 Summing up
	Recommended exercises
	1. Understanding the algorithms:
	2. Data analysis
	Compulsory exercise 3 2018: Problem 2 - Nonlinear class boundaries and support vector machine

	R packages
	References

