
TMA4268 Statistical Learning V2019
Module 9: SUPPORT VECTOR MACHINES

Mette Langaas and Thea Roksvåg, Department of
Mathematical Sciences, NTNU

week 11 2019

Last changes: (09.03: first version)

Introduction
This field dates back to the 1990s in computer science, and in this
presentation we put emphasis on the underlying motivation and
connections to linear algebra, optimization theory and statistics.
We will only cover classification, and in particular two-class
problems.

Learning material for this module

▶ James et al (2013): An Introduction to Statistical Learning.
Chapter 9.

▶ Classnotes 11.03.2019

Some of the figures in this presentation are taken from (or are
inspired by) “An Introduction to Statistical Learning, with
applications in R” (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

https://www.math.ntnu.no/emner/TMA4268/2019v/notes/M9notes.pdf

Topics

▶ Motivation
▶ Maximal margin classifier
▶ Support vector classifier
▶ Support vector machines
▶ Extensions
▶ Comparisons
▶ Summing up
▶ Recommended exercises
▶ R Packages
▶ References

Motivation
Suppose that you are interested in the distribution of two tree
types: redwood and pines. You have three different study areas in
which these trees grow. Your study areas are visualized in the three
figures below with orange points indicating the position of a
redwood tree and green points indicating the position of a pine
tree in a forest.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

Forest 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 3

Assume you want to build one continuous fence to separate the
two tree types in each of the three study areas. Where should
you build the fence?

For Forest 1 the choice seems easy: The orange and green points
are clearly separated and the fence can be built anywhere inside
the band that separates them. However, we can draw infinitely
many straight lines that all separate the two tree types, and we
should take into account that the trees reproduce and that we
want future pines and future redwoods to grow up on the correct
side of the fence.
The problem gets more complicated for Forest 2. A linear fence
still seems like a good idea, but in this case the two tree types can
not be perfectly separated. You have to allow some of the trees to
be on the wrong side of the fence. The complexity of the problem
is further increased for Forest 3. It is not possible to separate the
two tree types by a straight line without getting a large number of
misclassifications. Here, a circular fence around the pine trees
seems like a reasonable choice.

Forest 1 illustrates the problem of finding an optimal separating
hyperplane for a dataset. In this module you are going to learn a
method for finding optimal hyperplanes called Maximal Margin
hyperplanes.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 1

You are also going to learn how you can find an optimal separating
hyperplane when your data cannot be perfectly separated by a
straight line, as in Forest 2. This leads to a classifier called a
Support Vector Classifier or a Soft Margin Classifier.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 2

The Support vector classifier can be generalised to an approach
that produces non-linear decision boundaries. This is called the
Support Vector Machine (SVM) and is useful when the data is
distributed as illustrated in Forest 3.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 3

The reason why we want to separate the data by finding an
optimal hyperplane or a separating cruve, is that we want to use it
for classification. In our example: Is it likely that a random seed
found at location (0.8, 0.4) becomes a redwood or a pine tree
given the observed data? We classify a new observation based on
which side of the decision boundary it falls into.
The methods presented in this module are intended for binary
classification, i.e classification with two classes, but extensions
to more than two classes are briefly mentioned.

Dataset
The three forests will be used as illustrative examples throughout
the module. In this dataset we have two covariates,
the x1- and the x2-coordinate of each tree in the forest, and the
response is the tree type, either pine or redwood.
The class pine is stored as 1 in our dataset, while redwood is stored
as -1. (Yes, we have used 0 and 1 before.)

Our goal is to make a classifier for random seeds that we find on
the ground for each of the three forests. The locations of the seeds
are shown in the figure below (black circles), and we want to
classify the seeds as either pine seeds or redwood seeds given our
observations. Thus, the point patterns above can be thought of as
the training set, while the point pattern generated by the black
circles can be thought of as the test set.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

Forest 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Forest 3

Maximal Margin Classifier

Hyperplane
A hyperplane in p-dimensions is defined as

β0 + β1X1 + β2X2 + ... + βpXp = β0 + xTβ = 0.

and is a p − 1 dimensional subspace.

▶ If a point X = (X1, X2, ..., Xp)T satisfies the above equation, it
lies on the hyperplane.

▶ If β0 = 0 the hyperplane goes through the origin (origo).
▶ The vector β1, . . . , βp (not including β0) is called the normal

vector and points in the direction orthogonal to the
hyperplane.

If a point X = (X1, X2, ..., Xp)T satisfies

▶ β0 + β1X1 + β2X2 + ... + βpXp = β0 + xTβ > 0 it lies on one
side of the hyperplane, while if it satisfes

▶ β0 + β1X1 + β2X2 + ... + βpXp = β0 + xTβ < 0 it lies on the
opposite side of the hyperplane.

▶ For normalized βs (∑p
j=1 β2

j = 1) the value of β0 + xTβ gives
the distance from the hyperplane.

Assumptions
Assume that we have n training observations with p predictors

x1 =

 x11
...

x1p

 , ..., xn =

 xn1
...

xnp


and that the responses y fall into two classes y1, ..., yn ∈ {−1, 1}.
Further, assume that it is possible to separate the training
observations perfectly according to their class.

Possible hyperplans

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

The three lines displayed in the figure are three possible separating
hyperplanes for this dataset which contains two predictors x1 and
x2 (p = 2). The hyperplanes have the property that

β0 + β1xi1 + β2xi2 + ... + βpxip = β0 + xT
i β > 0

if yi = 1 (green points) and

β0 + β1xi1 + β2xi2 + ... + βpxip = β0 + xT
i β < 0

if yi = −1 (orange points).

This means that for all observations (all are correctly classified)

yi(β0 + xT
i β) > 0

The hyperplane leads to a natural classifier:
We can assign a class to a new observation depending on which
side of the hyperplane it is located. We denote the new
observation x∗ = (x∗

1, ..., x∗
n) and classify it as y∗ = 1 if

f(x∗) = β0 + β1x∗
1 + β2x∗

2 + ... + βpx∗
p > 0

and as y∗ = −1 otherwise.

The next question is which hyperplane we should choose.
In the above figure we plotted three possible hyperplanes, but
there exist infinitely many possible separating hyperplanes for this
dataset.
A natural choice is the maximal margin hyperplane. This is the
separating hyperplane that is farthest from the training
observations.
(From a statistical point of view we might be afraid that we are
overfitting the data now.)

Optimization problem

▶ The maximal margin hyperplane is found by computing the
perpendicular distance from each training observation to a
given separating hyperplane.

▶ The smallest such distance is the minimal distance from the
observations to the hyperplane, also known as the margin.
(See illustration below.)

▶ We want to maximize this margin.

The process of finding the maximal margin hyperplane for a
dataset with p covariates and n training observations can be
formulated through the following optimization problem:

maximizeβ0,β1,...,βp M

subject to
p∑

j=1
β2

j = 1,

yi(β0 + β1xi1 + β2xi2 + ... + βpxip) ≥ M ∀i = 1, ..., n

where M is the width of the margin.
Observe: yi(β0 + xTβ) is the (signed) distance from the ith point
to the hyperplane defined by the βs. We want to find the
hyperplane, where each observaton is at least M units away - on
the correct side, where M is as big as possible.

Above (Figure 9.3. from James et al. (2013)) three of the
observations are equidistant from the hyperplane. These are called
support vectors. If one of the support vectors changes its
position, the whole hyperplane will move. This is a property of the
maximal margin hyperplane: It only depends on the support
vectors, and not on the other observations.

It can be shown, see for example Efron and Hastie (2016) Section
19.1 and Friedman, Hastie, and Tibshirani (2001) Section 4.5, that
the optimization problem can be reformulated using Lagrange
multipliers (primal and dual problem) into a quadratic convex
optimization problem that can be solved efficiently.
However, we do of cause have to solve the optimization problem to
identify the support vectors and the unknown parameters for the
separating hyperplane.
Since we in TMA4268 Statistical learning do not require a course
in optimization - we do not go into details here.

Questions

▶ Explain briefly the idea behind the maximal margin classifier.
▶ Is there any tuning parameters that need to be chosen?
▶ What if our problem is not separable by a hyperplane?

A:
MMC: drawing is the best! Hyperplane with largest possible
margin to the support vectors, all training data correctly classified
(since separable problem). Only support vectors decide boundary.
No distribution assumed for the observations in each class.
No tuning parameter.
Non-separable case is next - by defining slack-variables.

Support Vector Classifiers
For some data sets a separating hyperplane does not exist, the
data set is non-separable.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

It is still possible to construct a hyperplane and use it for
classification, but then we have to allow some of the training
observations to be misclassified.

Also, in some situation we what to allow for some misclassifications
to make the class boundaries more robust to future observations -
that is, we have noisy data or outliers are present.
In the special case where we have more predictors than
observations it is possible to find a separating hyperplane, but the
might not be the “best” hyperplane for us.
We now relax the maximal margin classifier to allow for a
soft-margin classifier.

Optimization problem

maximizeβ0,β1,...,βp,ϵ1,...,ϵn, M subject to
p∑

j=1
β2

j = 1

yi(β0 + β1xi1 + β2xi2 + ... + βpxip) ≥ M(1 − ϵi) ∀i = 1, ..., n.

ϵi ≥ 0,
n∑

i=1
ϵi ≤ C.

▶ M is the width of the margin.
▶ ϵ1, ..., ϵn are slack variables.

▶ If ϵi = 0 it means that observation i is on the correct side of
the margin,

▶ if ϵi > 0 observation i is on the wrong side of the margin, and
▶ if ϵi > 1 observation i is on the wrong side of the hyperplane.

▶ C is a tuning (regularization) parameter (chosen by
cross-validation) giving the budget for slacks. It restricts the
number of the training observations that can be on the wrong
side of the hyperplane. No more than C of the observations
can be on the wrong side.

The hyperplane has the property that it only depends on the
observations that either lie on the margin or on the wrong side
of the margin.
These observations are called our support vectors. The
observations on the correct side of the margin do not affect the
support vectors. The length of distance for the support vectors to
the class boundary is proportional to the slacks.

Classification rule: We classify a test observation x∗ based on the
sign of f(x∗) = β0 + β1x∗

1 + ... + βpx∗
p as before:

▶ If f(x∗) < 0 then y∗ = −1.
▶ If f(x∗) > 0 then y∗ = 1.

More on solving the optimization problem: Friedman, Hastie, and
Tibshirani (2001) Section 12.2.1 (primal and dual Lagrange
problem, quadratic convex problem).

Questions

▶ Should the variables be standardized before used with this
method?

▶ The support vector classifier only depends on the observations
that violate the margin. How does C affect the width of the
margin?

▶ Discuss how the tuning parameter C affects the bias-variance
trade-off of the method.

See also Figure 19.3 in Efron and Hastie (2016).

A: Yes, should be standardized because this method treats all
variables equally. Same as for lasso and ridge.
If C is small then M must give narrow margin? C is our
bias-variance trade-off tuning parameter: C large: allow many
violations: more bias, less variance. C small: highly fit the data:
less bias, more variance.

Example
We will now find a support vector classifier for the second training
dataset (forest2) and use this to classify the observations in the
second test set (seeds2).

▶ There are 100 observations of trees: 45 pines (yi = 1) and 55
redwood trees (yi = −1).

▶ In the test set there are 20 seeds: 10 pine seeds and 10
redwood seeds.

The function svm in the package e1071 is used to find the
maximal margin hyperplane. The response needs to be coded as a
factor variable, and the data set has to be stored as a dataframe.

library(e1071)
forest2 = read.table(file = "https://www.math.ntnu.no/emner/TMA4268/2019v/data/forest2.txt")
seeds2 = read.table(file = "https://www.math.ntnu.no/emner/TMA4268/2019v/data/seeds2.txt")
train2 = data.frame(x = forest2[, 1:2], y = as.factor(forest2[, 3]))
test2 = data.frame(x = seeds2[, 1:2], y = as.factor(seeds2[, 3]))

The svm function uses a slightly different formulation from what
we wrote above.
We had in our presentation a budget for errors C, but in svm we
instead have an argument cost that allows us to specify the cost
of violating the margin.

▶ When cost is set to a low value, the margin will be wider
than if set to a large value.

We first try with cost=1. We set kernel='linear' as we are
interested in a linear decision boundary. scale=TRUE scales the
predictors to have mean 0 and standard deviation 1. We choose
not to scale.

svmfit_linear1 = svm(y ~ ., data = train2, kernel = "linear", cost = 1,
scale = FALSE)

plot(svmfit_linear1, train2, col = c("lightcoral", "lightgreen"))

−
1

1

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o
x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x x
x

x

x

x

x

x

x

x

x

x

x

SVM classification plot

x.V2

x.
V

1

summary(svmfit_linear1)

##
Call:
svm(formula = y ~ ., data = train2, kernel = "linear", cost = 1,
scale = FALSE)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 1
gamma: 0.5
##
Number of Support Vectors: 56
##
(28 28)
##
##
Number of Classes: 2
##
Levels:
-1 1

svmfit_linear1$index #support vectors id in data set

[1] 1 2 4 6 9 10 16 21 26 27 28 40 44 53 55 57 58 65 67 72 76 77 80
[24] 81 87 91 92 98 5 8 11 13 18 19 20 23 24 25 34 36 39 41 42 47 48 59
[47] 61 62 70 71 75 78 88 93 95 96

Observations

▶ Remark that the x1 is plotted on the vertical axis, and the the
implementation of the plotting function is made in a way that
the linear boundary looks jagged.

▶ The crosses in the plot indicate the support vectors. With
cost = 1, we have 56 support vectors, 28 in each class.

▶ All other observations are shown as circles.

Next, we set cost = 100:
svmfit_linear2 = svm(y ~ ., data = train2, kernel = "linear", cost = 100,

scale = FALSE)
plot(svmfit_linear2, train2, col = c("lightcoral", "lightgreen"))

−
1

1

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

xx x

x

x

x

x

x

SVM classification plot

x.V2

x.
V

1

summary(svmfit_linear2)

##
Call:
svm(formula = y ~ ., data = train2, kernel = "linear", cost = 100,
scale = FALSE)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 100
gamma: 0.5
##
Number of Support Vectors: 31
##
(15 16)
##
##
Number of Classes: 2
##
Levels:
-1 1

With cost = 100 we have 31 support vectors, i.e the width of the
margin is decreased.
How do we find an optimal cost parameter? By using the tune()
function we can perform ten-fold cross-validation and find the
cost-parameter that gives the lowest cross-validation error:
set.seed(1)
CV_linear = tune(svm, y ~ ., data = train2, kernel = "linear", ranges = list(cost = c(0.001,

0.01, 0.1, 1, 5, 10, 100)))
summary(CV_linear)

##
Parameter tuning of 'svm':
##
- sampling method: 10-fold cross validation
##
- best parameters:
cost
0.1
##
- best performance: 0.15
##
- Detailed performance results:
cost error dispersion
1 1e-03 0.45 0.1779513
2 1e-02 0.22 0.1751190
3 1e-01 0.15 0.1269296
4 1e+00 0.15 0.1269296
5 5e+00 0.15 0.1080123
6 1e+01 0.15 0.1080123
7 1e+02 0.15 0.1080123

According to the tune() function we should set the cost parameter
to 0.1. The function also stores the best model obtained and we
can access it as follows:

bestmod_linear = CV_linear$best.model

Next, we want to predict the class label of the seeds in the test set.
We use the predict function and make a confusion table:

ypred_linear = predict(bestmod_linear, test2)
table(predict = ypred_linear, truth = test2[, 3])

truth
predict -1 1
-1 9 2
1 1 8

par(mfrow = c(1, 2))
par(pty = "s")
plot(NA, xlab = "x1", ylab = "x2", xlim = c(0, 1), ylim = c(0, 1))
title("True class")
points(seeds2[seeds2[, 3] == -1, 1:2], pch = 19, col = "lightcoral",

cex = 0.9)
points(seeds2[seeds2[, 3] == 1, 1:2], pch = 19, col = "darkseagreen",

cex = 0.9)
points(seeds2[which(ypred_linear != seeds2[, 3]), 1:2], pch = 21) #Mark misclassification.

plot(NA, xlab = "x1", ylab = "x2", xlim = c(0, 1), ylim = c(0, 1))
title("Predicted class")
points(seeds2[ypred_linear == -1, 1:2], pch = 19, col = "lightcoral",

cex = 0.9)
points(seeds2[ypred_linear == 1, 1:2], pch = 19, col = "darkseagreen",

cex = 0.9)
points(seeds2[which(ypred_linear != seeds2[, 3]), 1:2], pch = 21) #Mark misclassification.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

True class

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Predicted class

In this case three of the test observations are misclassified: These
three observations are marked with a black circle in the plot, and
we observe that they lie on the border between the green and the
orange points which is reasonable: The test observations located
on the border between green and orange are hardest to predict.
Missing: the svm function is not (directly) outputting the equation
for the class boundary, and not the value for the width of the
margin. Want to see how to find this? Go to the recommended
exercises.

Support Vector Machines
For some datasets a non-linear decicion boundary between the
classes is more suitable than a linear decision boundary. In such
cases you can use a Support Vector Machine (SVM). This is an
extension of the support vector classifier.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Expanding the feature space
We saw in Module 7 that in regression we could fit non-linear
curves by using a polynomial basis - adding polynomials of
different order as covariates. This was a linear regression in the
transformed variables, but non-linear in the original variables.
Maybe we may add many such extra features and find a nice linear
boundary in that high-dimensional space?
Efron and Hastie (2016) (page 373): If n ≥ p + 1 we can always
find a separating hyperplane, unless there are exact features ties
across the class barrier. (Two observations with equal covariate
vector, but different classes.)

Left: expanding feature space to include cubic polynomials (9
parameters to estimate), and also observe the margins. (Right:
radial basis function kernel - wait a bit.)
Next: replace polynomials with kernels for elegance and
computational issues.

Inner products
We have not focused on how to solve the optimisation problem of
finding the support vector classifier hyperplane, because this is
outside the scope of this course.
Remember that we classify a new observation x∗ by first
calculating a numerical value for the estimated f(x∗) and then if
f(x∗) < 0 classify as −1 and if f(x∗) > 0 classify as 1.
It can be shown (using optimization theory) that the solution to
the support vector classifier problem at a new observation x∗, can
be expressed as

f(x∗) = β0 +
n∑

i=1
αi⟨x∗, xi⟩

where αi is some parameter and i = 1, ..., n.

A term of the form ⟨xi, xi′⟩ denotes the inner product between two
observations i and i′ and is defined as:

⟨xi, xi′⟩ =
p∑

j=1
xijxi′j.

This means that we need (in addition to the intercept) to estimate
n parameters (αis) instead of p (βjs) (and for our expanded feature
space then p might be larger than n). (For the interested reader:
See Eq. 19.22 and 19.23 of Efron and Hastie (2016).)

Further, it then turns out that to estimate the parameters
β0, α1, ..., αn this can be based on the

(n
2
)

inner products ⟨xi, x′
i⟩

between all pair of training observations (the class of the training
observations is also included).
Also, αi = 0 for the observations i that are not the support vectors.
Remark: we could alternatively say that αi ̸= 0 define the support
vectors.

Thus, we only need the inner product between the new observation
and the observations corresponding to support vectors to classify a
new observation, and

f(x) = β0 +
∑
i∈S

αi⟨x, xi⟩,

where S contains the indices of the support points. So, we have
sparsity in the observations (but not in the predictors).

Q: Find the support vectors

Observe: we need all observations (both x and y values) to decide
on which observations are the support vectors.

Kernels
(we now use x to denote a new observation)
The next step is now to replace the inner product ⟨x, xi⟩ with a
function K(xi, xi′) referred to as the kernel:

f(x) = β0 +
∑
i∈S

αiK(x, xi).

For the linear case (which is what we have considered so far), the
kernel is simply the inner product K(xi, x′

i) =
∑p

j=1 xijxi′j.
The two arguments to the kernel are two p-vectors.
If we want a more flexible decision boundary we could instead use
a polynomial kernel. This polynomial kernel of degree d > 1 is
given by:

K(xi, x′
i) = (1 +

p∑
i=1

xijxi′j)d.

(This kernel is not so much used in practice, but is popular for
proofs.)

Using these kernels our solution for the class boundary can be
written of the form

f(x) = β0 +
∑
i∈S

αiK(x, xi)

The nice thing here is that we only need to calculate the kernels,
not the basis functions (what we in Module 7 did as extra columns
of the design matrix).

A very popular choice is the radial kernel,

K(xi, x′
i) = exp(−γ

p∑
j=1

(xij − xi′j)2),

where γ is a positive constant (a tuning parameter).
Observe the connection to a multivariate normal density, where
γ ∝ 1/σ2 (σ2 variance in normal distribution). If γ is small (similar
to large variance in the normal distribution) the decision
boundaries are smoother than for larger γ.
It turns out that this computes the inner product in a very high
(infinite) dimensional feature space. But, this does not give
overfitting because some of the dimensions are “squashed down”
(but we have the parameter γ and the budget parameter that we
have to decide on).
The radial kernel is convinient if we want a circular decision
boundary, and γ and our budget can be chosen by cross-validation.
Remark: the mathematics behind this is based on
reproducing-kernel Hilbert spaces (see page 384 of Efron and
Hastie (2016) for a glimpse of the theory).

Study Figures 19.5 and 19.6 (page 383) in Efron and Hastie (2016)
to see how the radial kernel can make smooth functions.
Computer Age Statistical Inference

https://web.stanford.edu/~hastie/CASI_files/PDF/casi.pdf

Kernels and our optimization
We now merge our optimization problem (from our support vector
classifier) with our kernel representation f(x) to get the Support
Vector Machine (SVM).

maximizeβ0,α1,...,αn,ϵ1,...,ϵn, M

yi(f(xi)) ≥ M(1 − ϵi) ∀i = 1, ..., n.

ϵi ≥ 0,
n∑

i=1
ϵi ≤ C.

where
f(xi) = β0 +

∑
l∈S

αlK(xi, xl)

Tuning parameter example
Heart data - predict heart disease from p = 13 predictors.
Training errors as ROC and AUC.

Heart data - test error.

Example: forest 3
To illustrate the SVM we use the third training dataset (forest3)
and the third test set (seeds3). We use the svm function as before.
However, we now set kernel='radial' as we want a non-linear
decision boundary:

library(e1071)
forest3 = read.table(file = "forest3.txt")
seeds3 = read.table(file = "seeds3.txt")
train3 = data.frame(x = forest3[, 1:2], y = as.factor(forest3[, 3]))
test3 = data.frame(x = seeds3[, 1:2], y = as.factor(seeds3[, 3]))

svmfit_kernel1 = svm(y ~ ., data = train3, kernel = "radial", gamma = 1,
cost = 10, scale = FALSE)

plot(svmfit_kernel1, train3, col = c("lightcoral", "lightgreen"))

−
1

1

0.2 0.4 0.6 0.8

−0.2

0.0

0.2

0.4

0.6

0.8

oo

oo

o

o

o

o

o

o

o

o o
o

o

o

o

o

o

o

o

o

o oo oo

o

o

o o

o
o o

o

o
o

o

o

o

o

x

x

x

x
x

x

x

x

x

x

x

x

x

x
xx

x

x

x

x

x

x
x

x

x

x

x

x
x

x

x

SVM classification plot

x.V2

x.
V

1

summary(svmfit_kernel1)

##
Call:
svm(formula = y ~ ., data = train3, kernel = "radial", gamma = 1,
cost = 10, scale = FALSE)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 10
gamma: 1
##
Number of Support Vectors: 31
##
(16 15)
##
##
Number of Classes: 2
##
Levels:
-1 1

We could also try with a polynomial kernel with degree 4 as follows:
svmfit_kernel2 = svm(y ~ ., data = train3, kernel = "polynomial", degree = 4,

cost = 1e+05, scale = FALSE)
plot(svmfit_kernel2, train3, col = c("lightcoral", "lightgreen"))

−
1

1

0.2 0.4 0.6 0.8

−0.2

0.0

0.2

0.4

0.6

0.8

o

oo
o

o

o

o

o

o

o

o

o oo o

o

o

o

o

o

o

o
o

o o

o
o

o

o

o

o

o

x

x

xx

x

x
x

x

x

x

x

x

x

x x
x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x
x

x

x

x
x

x
x

x

x

SVM classification plot

x.V2

x.
V

1

summary(svmfit_kernel2)

##
Call:
svm(formula = y ~ ., data = train3, kernel = "polynomial", degree = 4,
cost = 1e+05, scale = FALSE)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: polynomial
cost: 1e+05
degree: 4
gamma: 0.5
coef.0: 0
##
Number of Support Vectors: 40
##
(21 19)
##
##
Number of Classes: 2
##
Levels:
-1 1

For this dataset a radial kernel is a natural choice: A circular
decision boundary seems like a good idea. Thus, we proceed with
kernel='radial', and use the tune() function to find the
optimal tuning parameter C:
set.seed(1)
CV_kernel = tune(svm, y ~ ., data = train3, kernel = "radial", gamma = 1,

ranges = list(cost = c(0.001, 0.01, 0.1, 1, 5, 10, 100)))
summary(CV_kernel)

##
Parameter tuning of 'svm':
##
- sampling method: 10-fold cross validation
##
- best parameters:
cost
10
##
- best performance: 0.1232143
##
- Detailed performance results:
cost error dispersion
1 1e-03 0.2732143 0.1619332
2 1e-02 0.2732143 0.1619332
3 1e-01 0.2732143 0.1619332
4 1e+00 0.1357143 0.1268849
5 5e+00 0.1357143 0.1436486
6 1e+01 0.1232143 0.1379232
7 1e+02 0.1250000 0.1248582

The optimal C is 10. Next, we predict the class label of the seeds
in the test set with a model with C=10, make a confusion table
and plot the results:

bestmod_kernel = CV_kernel$best.model
ypred_kernel = predict(bestmod_kernel, test3)

par(mfrow = c(1, 3))
par(pty = "s")
plot(NA, xlab = "x1", ylab = "x2", xlim = c(0, 1), ylim = c(0, 1))
title("True class")
points(seeds3[seeds3[, 3] == -1, 1:2], pch = 19, col = "lightcoral",

cex = 0.9)
points(seeds3[seeds3[, 3] == 1, 1:2], pch = 19, col = "darkseagreen",

cex = 0.9)
points(seeds3[which(ypred_kernel != seeds3[, 3]), 1:2], pch = 21) #Mark misclassification.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

True class

plot(NA, xlab = "x1", ylab = "x2", xlim = c(0, 1), ylim = c(0, 1))
title("Predicted class")
points(seeds3[ypred_kernel == -1, 1:2], pch = 19, col = "lightcoral",

cex = 0.9)
points(seeds3[ypred_kernel == 1, 1:2], pch = 19, col = "darkseagreen",

cex = 0.9)
points(seeds3[which(ypred_kernel != seeds3[, 3]), 1:2], pch = 21) #Mark misclassification.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Predicted class

table(predict = ypred_kernel, truth = test3[, 3])

truth
predict -1 1
-1 9 0
1 1 5

Only one seed is misclassified.

Extensions

More than two classes
What if we have k classes?

▶ OVA: one-versus-all. Fit k different two-class SVMs fk(x)
where one class is compared to all other classes. Classify a
test observation to the class where fk(x∗) is largest.

▶ OVO: one-versus-one. libsvm uses this approach, in which
k(k − 1)/2 binary classifiers are trained; the appropriate class
is found by a voting scheme (the class that wins the most
pairwise competitions are chosen).

Comparisons
Focus is comparing the support vector classifier and logistic
regression
It is possible to write the optimization problem for the support
vector classifier as a “loss”+“penalty”:

minimizeβ


n∑

i=1
max(0, 1 − yif(xi)) + λ

p∑
j=1

β2
j


▶ the loss is called hinge loss - observe the max and 0 to explain

why only support vectors contribute
▶ the penalty is a ridge penalty
▶ large λ gives βs small and more violations=high bias, but low

variance
▶ small λ gives βs large and less violations=low bias, but high

variance

Hinge loss:
max(0, 1 − yif(xi))

For comparison a logistic regression (with ridge penalty) would be
(binomial deviance with -1,1 coding of y)

log(1 + exp(−yif(xi)))

It can be shown that in logistic regression all observations
contribute weighted by pi(1 − pi) (where pi is probability for class
1), that fade smoothly with distance to the decision boundary
It is possible to extend the logistic regression to include non-linear
terms, and ridge penalty.

When to use SVM?

▶ If classes are nearly separable SVM will perform better than
logistic regression. (LDA will also perform better than logistic
regression.)

▶ and if not, then a ridge penalty version of logistic regression
are very similar to SVM, and logistic regression will also give
you probabilities for each class.

▶ If class boundaries are non-linear then SVM is more popular,
but kernel versions of logistic regression is possible, but more
computationally expensive.

Summing up

▶ We use methods from computer science, not probability
models - but looks for a separating hyperplane in (an
extended) feature space in the classification setting.

▶ SVM is a widely successful and a “must have tool”
▶ Interpretation of SVM: all features are included and maybe

not so easy to interpret (remember ridge-type penalty does
not shrink to zero).

▶ The budget must be chosen wisely, and a bad choice can lead
to overfitting.

▶ Not so easy to get class probabilites from SVM (what is done
is actually to fit a logistic regression after fitting SVM).

Recommended exercises
1. Understanding the algorithms:

▶ Exercise 1, 2 and 3 in the book.

2. Data analysis

▶ Go back and read in the forest1 data (is located in the same
place as forest2) and run the svm with a very high value for
cost. The forest1 is a separable problem.

▶ Linear version of SVM: Making nicer plots for SVM from Lab
video. Go through the code and see what is happening (and
see the video if you want more explanation).

code taken from video by Trevor Hastie linked above
library(e1071)
fake data
set.seed(10111)
x = matrix(rnorm(40), 20, 2)
y = rep(c(-1, 1), c(10, 10))
x[y == 1,] = x[y == 1,] + 1
plot(x, col = y + 3, pch = 19)

−1 0 1 2

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

x[,1]

x[
,2

]

calling svm
dat = data.frame(x, y = as.factor(y))
svmfit = svm(y ~ ., data = dat, kernel = "linear", cost = 10, scale = FALSE)
print(svmfit)

##
Call:
svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10,
scale = FALSE)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 10
gamma: 0.5
##
Number of Support Vectors: 6

grid for plotting
make.grid = function(x, n = 75) {

grange = apply(x, 2, range)
x1 = seq(from = grange[1, 1], to = grange[2, 1], length = n)
x2 = seq(from = grange[1, 2], to = grange[2, 2], length = n)
expand.grid(X1 = x1, X2 = x2)

}
xgrid = make.grid(x)
ygrid = predict(svmfit, xgrid)
plot(xgrid, col = c("red", "blue")[as.numeric(ygrid)], pch = 20, cex = 0.2)
points(x, col = y + 3, pch = 19)
points(x[svmfit$index,], pch = 5, cex = 2)

−1 0 1 2

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

X1

X
2

more info on results - class boundary

beta = drop(t(svmfit$coefs) %*% x[svmfit$index,])
beta0 = svmfit$rho
plot(xgrid, col = c("red", "blue")[as.numeric(ygrid)], pch = 20, cex = 0.2)
points(x, col = y + 3, pch = 19)
points(x[svmfit$index,], pch = 5, cex = 2)
abline(beta0/beta[2], -beta[1]/beta[2]) #class boundary
abline((beta0 - 1)/beta[2], -beta[1]/beta[2]) #class boundary-margin
abline((beta0 + 1)/beta[2], -beta[1]/beta[2]) #class boundary+margin

−1 0 1 2

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

X1

X
2

▶ SVM for non-linear class boundary using simulated data set
from Friedman, Hastie, and Tibshirani (2001) where the truth
is known (mixtures of normals probably).

load(url("https://web.stanford.edu/~hastie/ElemStatLearn/datasets/ESL.mixture.rda"))
names(ESL.mixture)

[1] "x" "y" "xnew" "prob" "marginal" "px1"
[7] "px2" "means"

rm(x, y)
attach(ESL.mixture)

plot(x, col = y + 1)

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

x[,1]

x[
,2

]

dat = data.frame(y = factor(y), x)
fit = svm(factor(y) ~ ., data = dat, scale = FALSE, kernel = "radial",

cost = 5)

xgrid = expand.grid(X1 = px1, X2 = px2)
ygrid = predict(fit, xgrid)
plot(xgrid, col = as.numeric(ygrid), pch = 20, cex = 0.2)
points(x, col = y + 1, pch = 19)

decision boundary
func = predict(fit, xgrid, decision.values = TRUE)
func = attributes(func)$decision
contour(px1, px2, matrix(func, 69, 99), level = 0, add = TRUE) #svm boundary
contour(px1, px2, matrix(prob, 69, 99), level = 0.5, add = TRUE, col = "blue",

lwd = 2) #truth

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

X1

X
2

 0

 0.5

 0.5

Compulsory exercise 3 2018: Problem 2 - Nonlinear class
boundaries and support vector machine

3 a) Bayes decision boundary [1 point]

We will study classification applied to a simulated data set with
two classes from Friedman, Hastie, and Tibshirani (2001), where
the data set is supplied together with the Bayes decision boundary.
The boundary is plotted below, together with a training set.

load(url("https://web.stanford.edu/~hastie/ElemStatLearn/datasets/ESL.mixture.rda"))
names(ESL.mixture) prob gives probabilites for each class when the
true density functions are known px1 and px2 are coordinates in x1
(length 69) and x2 (length 99) where class probabilites are
calculated
rm(x, y)
attach(ESL.mixture)
dat = data.frame(y = factor(y), x)
xgrid = expand.grid(X1 = px1, X2 = px2)
par(pty = "s")
plot(xgrid, pch = 20, cex = 0.2)
points(x, col = y + 1, pch = 20)
contour(px1, px2, matrix(prob, 69, 99), level = 0.5, add = TRUE, col = "blue",

lwd = 2) #optimal boundary

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

X1

X
2

 0.5

 0.5

▶ Q11. What is a Bayes classifier, Bayes decision boundary and
Bayes error rate? Hint: pages 37-39 in James et al. (2013).

▶ Q12. When the Bayes decision boundary is known, do we
then need a test set?

b) Support vector machine [1 point]

library(e1071)
support vector classifier
svcfits = tune(svm, factor(y) ~ ., data = dat, scale = FALSE, kernel = "linear",

ranges = list(cost = c(0.01, 0.1, 1, 5, 10)))
summary(svcfits)

##
Parameter tuning of 'svm':
##
- sampling method: 10-fold cross validation
##
- best parameters:
cost
0.01
##
- best performance: 0.275
##
- Detailed performance results:
cost error dispersion
1 0.01 0.275 0.1060660
2 0.10 0.280 0.1159502
3 1.00 0.280 0.1135292
4 5.00 0.285 0.1203005
5 10.00 0.285 0.1203005

svcfit = svm(factor(y) ~ ., data = dat, scale = FALSE, kernel = "linear",
cost = 0.01)

support vector machine with radial kernel
set.seed(4268)
svmfits = tune(svm, factor(y) ~ ., data = dat, scale = FALSE, kernel = "radial",

ranges = list(cost = c(0.01, 0.1, 1, 5, 10), gamma = c(0.01, 1, 5,
10)))

summary(svmfits)

##
Parameter tuning of 'svm':
##
- sampling method: 10-fold cross validation
##
- best parameters:
cost gamma
1 5
##
- best performance: 0.155
##
- Detailed performance results:
cost gamma error dispersion
1 0.01 0.01 0.455 0.17551511
2 0.10 0.01 0.440 0.16964014
3 1.00 0.01 0.295 0.09264628
4 5.00 0.01 0.290 0.10219806
5 10.00 0.01 0.295 0.09264628
6 0.01 1.00 0.435 0.19155794
7 0.10 1.00 0.210 0.07745967
8 1.00 1.00 0.170 0.10327956
9 5.00 1.00 0.165 0.08181958
10 10.00 1.00 0.180 0.07527727
11 0.01 5.00 0.395 0.22785229
12 0.10 5.00 0.315 0.20145305
13 1.00 5.00 0.155 0.06851602
14 5.00 5.00 0.190 0.06992059
15 10.00 5.00 0.200 0.09128709
16 0.01 10.00 0.430 0.19032137
17 0.10 10.00 0.415 0.18265024
18 1.00 10.00 0.175 0.06770032
19 5.00 10.00 0.245 0.10394977
20 10.00 10.00 0.260 0.11005049

svmfit = svm(factor(y) ~ ., data = dat, scale = FALSE, kernel = "radial",
cost = 1, gamma = 5)

the same as in a - the Bayes boundary
par(pty = "s")
plot(xgrid, pch = 20, cex = 0.2)
points(x, col = y + 1, pch = 20)
contour(px1, px2, matrix(prob, 69, 99), level = 0.5, add = TRUE, col = "blue",

lwd = 2) #optimal boundary

decision boundaries from svc and svm added
svcfunc = predict(svcfit, xgrid, decision.values = TRUE)
svcfunc = attributes(svcfunc)$decision
contour(px1, px2, matrix(svcfunc, 69, 99), level = 0, add = TRUE, col = "red") #svc boundary
svmfunc = predict(svmfit, xgrid, decision.values = TRUE)
svmfunc = attributes(svmfunc)$decision
contour(px1, px2, matrix(svmfunc, 69, 99), level = 0, add = TRUE, col = "orange") #svm boundary

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

X1

X
2

 0.5

 0.5

 0

 0

 0

 0

▶ Q13. What is the difference between a support vector
classifier and a support vector machine?

▶ Q14. What are parameters for the support vector classifier and
the support vector machine? How are these chosen above?

▶ Q15. How would you evaluate the support vector machine
decision boundary compared to the Bayes decision boundary?

https://www.youtube.com/watch?v=qhyyufR0930&list=PL5-da3qGB5IDl6MkmovVdZwyYOhpCxo5o&index=5
https://www.youtube.com/watch?v=qhyyufR0930&list=PL5-da3qGB5IDl6MkmovVdZwyYOhpCxo5o&index=5

R packages

These packages needs to be install before knitting this R
Markdown file.

install.packages(e1071)
install.packages("knitr")
install.packages("MASS")

References

▶ Videoes on YouTube by the authors of ISL, Chapter 9, and
corresponding slides

▶ Solutions to exercises in the book, chapter 9

Efron, Bradley, and Trevor Hastie. 2016. Computer Age Statistical
Inference - Algorithms, Evidence, and Data Science. Cambridge
University Press.
Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001.
The Elements of Statistical Learning. Vol. 1. Springer series in
statistics New York.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert
Tibshirani. 2013. An Introduction to Statistical Learning. Vol.
112. Springer.

https://www.youtube.com/playlist?list=PL5-da3qGB5IDl6MkmovVdZwyYOhpCxo5o
https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/svm.pdf
https://rpubs.com/ppaquay/65566

