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Introduction

Maximal score is 15 points. You need a score of 6/15 for the exercise to be approved. Your score will make
up 15% points of your final grade.

Supervision

All supervision is in Smia.

• Thursday February 7, 14.15-15: introduction to R Markdown

General supervision:

• Thursdays 16.15-18, in addition
• Monday February 11 at 8.15-10
• Thursday February 14 at 14.15-16
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Practical issues

• Maximal group size is 3 - join a group (self enroll) before handing in on Bb.
• Remember to write your names and group number on top of your submission.
• The exercise should be handed in as one R Markdown file and a pdf-compiled version of the R Markdown

file (if you are not able to produce a pdf-file directly please make an html-file, open it in your browser
and save as pdf - no, not landscape - but portrait please). We will read the pdf-file and use the Rmd
file in case we need to check details in your submission.

• In the R-chunks please use both echo=TRUE and eval=TRUE to make it simpler for us to read and grade.
• Please do not include all the text from this file (that you are reading now) - we want your R code,

plots and written solutions - use the template: https://www.math.ntnu.no/emner/TMA4268/2019v/
CompEx1mal.Rmd

• Please not more than 10 pages in your pdf-file! (This is a request, not a requirement.)
• Please save us time and NOT submit word or zip - or only Rmd - that only results in extra work for us!

R packages

You need to install the following packages in R to run the code in this file.
install.packages("knitr") #probably already installed
install.packages("rmarkdown") #probably already installed
install.packages("GLMsData") #data set for Problem 1
install.packages("ggplot2") #plotting with ggplot (all code provided)
install.packages("nortest") #test that data comes from normal distribution
install.packages("class")# for function knn
install.packages("colorspace") #for nice colors in provided plotting code
install.packages("caret") #for confusion matrices
install.packages("pROC") #for ROC curves

Problem 1: Multiple linear regression

[Maximal score: 4 points]

The lung capacity data lungcap (from the GLMsData R package) gives information on health and on smoking
habits of a sample of 654 youths, aged 3 to 19, in the area of East Boston during middle to late 1970s.

We will focus on modelling forced expiratory volume FEV, a measure of lung capacity. For each person in the
data set we have measurements of the following 5 variables:

• FEV the forced expiratory volume in litres, a measure of lung capacity; a numeric vector,
• Age the age of the subject in completed years; a numeric vector,
• Ht the height in inches; a numeric vector,
• Gender the gender of the subjects: a numeric vector with females coded as 0 and males as 1,
• Smoke the smoking status of the subject: a numeric vector with non-smokers coded as 0 and smokers as

1

First we transform the height from inches to cm. Then a multiple normal linear regression model is fitted to
the data set with log(FEV) as response and the other variables as covariates. The following R code may be
used.
library(GLMsData)
data("lungcap")
lungcap$Htcm=lungcap$Ht*2.54
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modelA = lm(log(FEV) ~ Age + Htcm + Gender + Smoke, data=lungcap)
summary(modelA)

##
## Call:
## lm(formula = log(FEV) ~ Age + Htcm + Gender + Smoke, data = lungcap)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.63278 -0.08657 0.01146 0.09540 0.40701
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.943998 0.078639 -24.721 < 2e-16 ***
## Age 0.023387 0.003348 6.984 7.1e-12 ***
## Htcm 0.016849 0.000661 25.489 < 2e-16 ***
## GenderM 0.029319 0.011719 2.502 0.0126 *
## Smoke -0.046067 0.020910 -2.203 0.0279 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1455 on 649 degrees of freedom
## Multiple R-squared: 0.8106, Adjusted R-squared: 0.8095
## F-statistic: 694.6 on 4 and 649 DF, p-value: < 2.2e-16

Understanding model output

We call the model fitted above modelA.

Q1: Write down the equation for the fitted modelA.

Q2: Explain (with words and formulas) what the following in the summary-output means, use the Age and/or
the Smoke covariate for numerical examples.

• Estimate - in particular interpretation of Intercept
• Std.Error
• Residual standard error
• F-statistic

Model fit

Q3: What is the proportion of variability explained by the fitted modelA? Comment.

Q4: Run the code below to produce diagnostic plots of “fitted values vs. standardized residuals” and “QQ-plot
of standardized residuals” to assess the model fit. Comment on what you see.
library(ggplot2)
# residuls vs fitted
ggplot(modelA, aes(.fitted, .stdresid)) + geom_point(pch = 21) +

geom_hline(yintercept = 0, linetype = "dashed") +
geom_smooth(se = FALSE, col = "red", size = 0.5, method = "loess") +
labs(x = "Fitted values", y = "Standardized residuals",

title = "Fitted values vs. standardized residuals",
subtitle = deparse(modelA$call))
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# qq-plot of residuals
ggplot(modelA, aes(sample = .stdresid)) +

stat_qq(pch = 19) +
geom_abline(intercept = 0, slope = 1, linetype = "dotted") +
labs(x = "Theoretical quantiles", y = "Standardized residuals",

title = "Normal Q-Q", subtitle = deparse(modelA$call))

# normality test
library(nortest)
ad.test(rstudent(modelA))

Q5: Now fit a model, call this modelB, with FEV as response, and the same covariates as for modelA. Would
you prefer to use modelA or modelB when the aim is to make inference about FEV? Explain what you base
your conclusion on.

Hypothesis test and confidence interval

We use modelA and focus on addressing the association between Age and the response.

Q6: We would like to test if Age has an effect on log(FEV) in modelA, that is we want to test H0 : βAge = 0
against H1 : βAge 6= 0. What type of test can we perform? Perform the test and report the p-value. At which
significance levels will you reject the null hypothesis?

Q7: Construct a 99% confidence interval for βAge (write out the formula and calculate the interval numerically).
Explain what this interval tells you. From this confidence interval, is it possible for you know anything about
the value of the p-value for the test in Q6? Explain.

Prediction

Consider a 16 year old male. He is 170 cm tall and not smoking.
new = data.frame(Age=16, Htcm=170, Gender="M", Smoke=0)

Q8: What is your best guess for his log(FEV)? Construct a 95% prediction interval for his forced expiratory
volume FEV. Comment. Hint: first contruct values on the scale of the response log(FEV) and then transform
the upper and lower limits of the prediction interval. Do you find this prediction interval useful? Comment.

Problem 2: Classification

[Maximal score: 7 points]

We will look at statistics from the four major tennis tournaments in 2013. For more information on the data
set see https://archive.ics.uci.edu/ml/datasets/Tennis+Major+Tournament+Match+Statistics.

Each row in the data set contains information about one match. The variables that end with .1 relate to
player 1, while .2 concerns player 2.

In tennis, you have two attempts at the serve. You lose the point if you fail both. The number of these double
faults commited is given in the variable DBF, while the variable ACE is the number of times your opponent
fails to return your serve. Similarily, unforced errors (mistakes that are supposedly not forced by good shots
of your opponent) are called UFE. A skilled player will score many aces while committing few double faults
and unforced errors.

Each match involves two players, and there are no draws in tennis. The result of a match is either that
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• player 1 wins, coded as 1 (so, success for player 1) or that
• player 2 wins, coded as 0 (so, failure for player 1).

For our two players, player 1 and player 2, the quality of player k (k = 1, 2) can be summarized as
xk = ACE.k −UFE.k −DBF.k.

We will try to predict the outcome of a match (success or failure for player 1) just using the quality statistics
x1 from player 1 and x2 from player 2.

The code below puts the result of each match and the quality score of each player in a data frame. The rows
in the data set used for training are called tr, which means that test indices are -tr.

In the scatter plot the training observations are depictured as dots (circles) and the test observations as
triangles. Matches where player 1 won is in turquoise and where player 2 won in red.
library(class)# for function knn
library(caret)# for confusion matrices
library(ggplot2)# for ggplot
raw = read.csv("https://www.math.ntnu.no/emner/TMA4268/2019v/data/tennis.csv")
M = na.omit(data.frame(y=as.factor(raw$Result),

x1=raw$ACE.1-raw$UFE.1-raw$DBF.1,
x2=raw$ACE.2-raw$UFE.2-raw$DBF.2))

set.seed(4268) # for reproducibility
tr = sample.int(nrow(M),nrow(M)/2)
trte=rep(1,nrow(M))
trte[tr]=0
Mdf=data.frame(M,"istest"=as.factor(trte))
ggplot(data=Mdf,aes(x=x1,y=x2,colour=y,group=istest,shape=istest))+

geom_point()+theme_minimal()
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K-nearest neighbour classification

For a positive integer K let N′ be the K points in the training data nearest to x = (x1, x2).

Q9: Write down the mathmatical formula for the K-nearest neighbours estimator ŷ(x) ∈ {0, 1}.

Q10: Compute the misclassification error for the training data and the test data using KNN classification
for all K in ks=1:30. See ?class::knn for help on the function knn in the class R package. Save the error
rates of the training and test sets as train.e and test.e, each vectors of length 30.

Cross-validation

The optimal K can be chosen by cross-validation. Consider the code below where we divide the training data
into 5 folds using createFolds from the R package caret. The entry (j, k) of the matrix cv is the CV error
rate for test fold j where K = k for the KNN-classifier.
set.seed(0)
ks = 1:30 # Choose K from 1 to 30.
idx = createFolds(M[tr,1], k=5) # Divide the training data into 5 folds.
# "Sapply" is a more efficient for-loop.
# We loop over each fold and each value in "ks"
# and compute error rates for each combination.
# All the error rates are stored in the matrix "cv",
# where folds are rows and values of $K$ are columns.
cv = sapply(ks, function(k){

sapply(seq_along(idx), function(j) {
yhat = class::knn(train=M[tr[ -idx[[j]] ], -1],

cl=M[tr[ -idx[[j]] ], 1],
test=M[tr[ idx[[j]] ], -1], k = k)

mean(M[tr[ idx[[j]] ], 1] != yhat)
})

})

Q11: Compute the average cv.e and standard error cv.se of the average CV error over all 5 folds (that is,
standard deviation over the 5 folds divided by sqrt of 5). Store the K corresponding to the smallest CV error
as k.min.
cv.e = # fill in
cv.se = #fill in
k.min = # fill in

Q12: Plot the misclassification errors using the code below. Will the bias in ŷ(x) increase with K? What
about the variance?
library(colorspace)
co = rainbow_hcl(3)
par(mar=c(4,4,1,1)+.1, mgp = c(3, 1, 0))
plot(ks, cv.e, type="o", pch = 16, ylim = c(0, 0.7), col = co[2],

xlab = "Number of neighbors", ylab="Misclassification error")
arrows(ks, cv.e-cv.se, ks, cv.e+cv.se, angle=90, length=.03, code=3, col=co[2])
lines(ks, train.e, type="o", pch = 16, ylim = c(0.5, 0.7), col = co[3])
lines(ks, test.e, type="o", pch = 16, ylim = c(0.5, 0.7), col = co[1])
legend("topright", legend = c("Test", "5-fold CV", "Training"), lty = 1, col=co)

Q13: Run the code below. Instead of simply choosing the K that results in the smallest CV error rate,
we will try a different strategy shown in the first line of the code below. Explain the proposed strategy for
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choosing K.
k = tail(which(cv.e < cv.e[k.min] + cv.se[k.min]), 1)
size = 100
xnew = apply(M[tr,-1], 2, function(X) seq(min(X), max(X), length.out=size))
grid = expand.grid(xnew[,1], xnew[,2])
grid.yhat = knn(M[tr,-1], M[tr,1], k=k, test=grid)
np = 300
par(mar=rep(2,4), mgp = c(1, 1, 0))
contour(xnew[,1], xnew[,2], z = matrix(grid.yhat, size), levels=.5,

xlab=expression("x"[1]), ylab=expression("x"[2]), axes=FALSE,
main = paste0(k,"-nearest neighbors"), cex=1.2, labels="")

points(grid, pch=".", cex=1, col=grid.yhat)
points(M[1:np,-1], col=factor(M[1:np,1]), pch = 1, lwd = 1.5)
legend("topleft", c("Player 1 wins", "Player 2 wins"),

col=c("red", "black"), pch=1)
box()

ROC and AUC

Q14:

Now select the optimal choice of K that you found in Q13. Use the training set to produce the probability
for player 1 winning the match for the matches in the test set (see code below). Then produce an ROC based
on the test set. Explain how the ROC is produced. Also report the AUC and explain why random guessing
would produce an AUC of 0.5.
K=# your choice from Q13

# knn with prob=TRUE outputs the probability of the winning class
# therefore we have to do an extra step to get the probability of player 1 winning
KNNclass=class::knn(train=M[tr,-1], cl=M[tr,1], test=M[-tr,-1], k = K,prob=TRUE)
KNNprobwinning=attributes(KNNclass)$prob
KNNprob= ifelse(KNNclass == "0", 1-KNNprobwinning, KNNprobwinning)
# now KNNprob has probability that player 1 wins, for all matches in the test set

library(pROC)
# now you use predictor=KNNprob and response=M[-tr,1]
# in your call to the function roc in the pROC library

A competing classifier

Let us consider a different classifier, namely ỹ(x) = argmaxk(xk), which is giving the win to the player with
the highest quality score.

Q15: Add the decision boundary of ỹ(x) in the plot from Q13. Make confusion matrices and report the
estimated misclassification error of ŷ(x) from Q13 and ỹ(x) using the test data. Which classifier do you
prefer? Hint: the R package caret can easily be used for producing a confusion matrix.

Problem 3: Bias-variance trade-off

[Maximal score: 4 points]
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In this problem we will first mathematically derive analytical formulas for the bias and variance terms for
two regression estimators, and then plot curves in R.

Let x be a (p+ 1)× 1 vector of covariates (including a constant 1 as the first term). We look at a regression
problem

Y = f(x) + ε, where E(ε) = 0 and Var(ε) = σ2.

Assume that we know that the true function is a linear combination of observed (p+1) covariates f(x) = xT β.
This means that the irreducible error is Var(ε) = σ2.

We will consider two different estimators for β, and let the prediction of a new response at some covariate
vector x0 be

f̂(x0) = xT
0 β̂ or f̃(x0) = xT

0 β̃

for the two estimators β̂ and β̃ to be given below.

The estimators are based on a training set, where X is a n× (p− 1) design matrix and Y is a n× 1 vector of
reponses, where we assume that the observed responses are independent of each other. That is, we assume
that the expected vector is E(Y) = Xβ and the variance-covariance matrix is Cov(Y) = σ2I.

Classical least squares estimator

The first estimator β̂ we will consider is the least squares estimator

β̂ = (XT X)−1XT Y

Q16: Find the expected value vector and variance-covariance matrix for β̂.

Q17: Use this to find the expected value and variance for f̂(x0) = xT
0 β̂, that is E(f̂(x0) and Var(f̂(x0)).

Q18: Use what you found in Q17 to write out E[(Y0 − f̂(x0))2] as a sum of the squared bias, variance and
irreducible error, that is

E[(Y0 − f̂(x0))2] = [E(f̂(x0)− f(x0)]2 + Var(f̂(x0)) + Var(ε)

Ridge regression estimator

A competing estimator is given as
β̃ = (XT X + λI)−1XT Y

for some choice of a numerical parameter λ (called a regularization parameter). Observe that the ridge
regression estimator equals the least squares estimator for λ = 0.

Q19: Find the expected value vector and variance-covariance matrix for β̃.

Q20: Use this to find the expected value and variance for f̃(x0) = xT
0 β̃, that is E(f̃(x0) and Var(f̃(x0)).

Q21: Use what you found in Q20 to write out E[(Y0 − f̃(x0))2] as a sum of the squared bias, variance and
irreducible error, that is

E[(Y0 − f̃(x0))2] = [E(f̃(x0)− f(x0)]2 + Var(f̃(x0)) + Var(ε)
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Plotting the three components

We will now plot the three components (squared bias, variance and irreducible error) as a function of λ for
one set of values for X, x0, β and σ.
values=dget("https://www.math.ntnu.no/emner/TMA4268/2019v/data/BVtradeoffvalues.dd")
X=values$X
dim(X)
x0=values$x0
dim(x0)
beta=values$beta
dim(beta)
sigma=values$sigma
sigma

## [1] 100 81
## [1] 81 1
## [1] 81 1
## [1] 0.5

Observe that all the elements X, x0 and beta, are given as matrices, to fit into your formulas. Hint: we
perform matrix multiplication using %*%, transpose of a matrix A with t(A) and inverse with solve(A).

Q22: Write a function sqbias with input parameters lambda, X, x0, beta and return the squared bias (a
scalar). Plot the function (use colour red) for values of λ in thislambda=seq(0,2,length=500), see code
below. Does this curve look like you expected?
sqbias=function(lambda,X,x0,beta)
{

p=dim(X)[2]
value= #HERE YOU FILL IN
return(value)

}
thislambda=seq(0,2,length=500)
sqbiaslambda=rep(NA,length(thislambda))
for (i in 1:length(thislambda)) sqbiaslambda[i]=sqbias(thislambda[i],X,x0,beta)
plot(thislambda,sqbiaslambda,col=2,type="l")

Q23: Write a function variance with input parameters lambda, X, x0, sigma which return the variance (a
scalar). Plot the function (use colour blue) for values of λ in thislambda=seq(0,2,length=500), see code
below. Does this curve look like you expected?
variance=function(lambda,X,x0,sigma)
{

p=dim(X)[2]
inv=solve(t(X)%*%X+lambda*diag(p))
value=#HERE YOU FILL IN
return(value)

}
thislambda=seq(0,2,length=500)
variancelambda=rep(NA,length(thislambda))
for (i in 1:length(thislambda)) variancelambda[i]=variance(thislambda[i],X,x0,sigma)
plot(thislambda,variancelambda,col=4,type="l")

Q24: Then plot the squared bias (red), the variance (blue), the irreducible error (orange) and the sum of the
three (black) as function of lambda. See code below (then sqbiaslambda and variancelambda need to be
calculated in Q22 and Q23). What is the optimal value of λ for this problem?
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tot=sqbiaslambda+variancelambda+sigma^2
which.min(tot)
thislambda[which.min(tot)]
plot(thislambda,tot,col=1,type="l",ylim=c(0,max(tot)))
lines(thislambda, sqbiaslambda,col=2)
lines(thislambda, variancelambda,col=4)
lines(thislambda,rep(sigma^2,500),col="orange")
abline(v=thislambda[which.min(tot)],col=3)
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