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With regression the goal isinterpretation in addition to manga rule
forclassification

potpexert c prxir
Let pi e e

It Ri ftp.potprxut prxir

How can we interpret what happens if xig increase to Xu11

need odds pi pi Z odds IT f
t pi

pi to Ya ta o

Ri potpident Prxir i

Pi jeez
t pi Ite 1

He tteri

pie e ktte epotprx.at
1 pi alchemy

e

w
odds

P Yi L Xi
expCpo exp pi expCpr

Poli O xi in 9 I
multiplicativemodel forthe odds

2



So what if we increase Xin to Xin 11 end keep all other
Xi's fixed
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The odds is multiplied by expCpe
You can't use logistic regression if you don't unan this
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Logisticregression as a network e
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For K 2 Classes confusion matrix and misdesitreation rate
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instead of putting different costs on this we instead



investigate different cut offs on pa
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Whatif we just do randomguessing
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This is similar to assign uniformly drawn p's o l

to each observation and then settingdefit cut offs
see a

this will give a Roc cove µOfwith AUC 0.5
0.9 1 spec

This is often used forcomparison An AUC 0.5

is thus not good


