M8L1: Trees_(end forests) TMAM1268, 04.03.2019

Main idea: derive a set of rules (binary splits) for segmenting the predictor space into a number of non-overlapping regions.

Classification tree:

\rightarrow see module page for full tree

There we had $\exists=11$ leaf nodes

Trees are ear to interpret ard visualize.
$0 \quad 1$
$(0.81,0.19)$
850 oles in trany set $133 \mathrm{obs}(0.47,0.57)$
$\geqslant 63.5$$\quad 39(0.2,0.8)$

Classification of 1
!
describes the region in predictor space wher

$$
\underbrace{6 C S . G=1 \text { and aye } \geqslant 63.5}_{R_{j}, \hat{y}_{R_{j}}=1}
$$

Constructing a regression tree

$$
\left(x_{i}, \varphi_{i}\right) \quad i=1, ., n \quad Y=f(x)+c
$$

$\underset{\substack{1 \\ p \text { dim }}}{\substack{\text { convenche, } \\ \text { continuous }}}$

1) Divide the predictor space into f non-avelapping regions R_{1}, \ldots, R_{7}.
2) Prediction in R_{j} is $\hat{y}_{R_{j}}=$ mean of the treeing obs. that fall n roo R_{j}
How to decide on R_{1}, \ldots, R_{f} :

$$
R S S=\sum_{j=1}^{\delta} \sum_{i \in R_{j}}\left(y_{i}-\hat{y}_{R_{j}}\right)^{2} \in \operatorname{minimize} \text { this? }
$$

Greedy epproech \rightarrow recursive bine splitting
At the top node j split into

$$
R_{1}(j, s)=\left\{x \mid x_{j}<s\right\} \text { end } R_{2}(j, s)=\left\{x \mid x_{j} \geqslant s\right\}
$$

by choosing j and s to minimize

$$
\begin{gathered}
\left.\sum_{i: x_{i} \in R_{1}\left(g_{i},\right)}\left(y_{i}-\hat{y}_{R_{1}}\right)^{2}+\sum_{\substack{\text { mean of ting } \\
\text { samples in region } R_{1}}}\left(y_{i}-\hat{y}_{p_{2}}\right)^{2}\right) \\
\text { ow tree has }
\end{gathered}
$$

\Rightarrow ow tree has
one spit with two benches

Classificetion tree \rightarrow see uodule pages

1) Prediction
2) Splettiny alterion: Grui, cross entropy

why Roccurse: because want of aet cut-off hier top 2% on prob.
Spend $80-98 \%$ of time on deta cleerung dete wsenghy deba science
detawzehouse unowledge is important
