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both forregression and classification
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Pruning
overfitting
unnessessy splebly reduce the number of leaf nodes
interpretability

Merrypossiblepruned trees we use cost complexitypruning
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Given A get a pruned tree see AIG on Moodle page

Bias variance tradeoff

2



BAGGCNGf
bCx decision tree from bootstrap sample b

Fbag G its Ey f b

Makebushytrees B need to be largeenough 500 2000

Out ofbag 0013 estimation of error

It is hard to examine B tree for interpretation instead
we look at variable importance plots

RANDOM FOREST

Bagging may not help so much when we have a strong
predictor and all our B trees are very similar

need to de correlate trees
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only consider me p predictors at each split
in the tree

Tp classification
93 regression pta Few

B needs to be large enough not a tuningparameter



BOOSTING only regression trees here
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