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f& Insulate.MTW ***

R c1 c2 c3 c4 C5-T c6 c7 cs c9 c10 c11
Temp |ArrTemp| Plant | FailureT | Censor Design NewTemp ArrNewT NewPlant

1 170 26,1865 1 343 F 80 80 32,8600 1
2 170 26,1865 1 869 F ' 100 80 32,8600 2|
3 170 26,1865 1 244/C ' ' 100 31,0988 1
4 170, 26,1865 1 716 F ' ' 100 31.0088 2|
5 170, 26,1865 1 531 F ' ' ' ' '
6 170 26,1865 1 738/F

7 170 26,1865 1 461/F

8 170 26,1865 1 221 F

9 170 26,1865 1 665 F

10 170 26,1865 1 384 C

1 170 26,1865 2 394 C

12 170 26,1865 2| 369 F

13 170 26,1865 2| 366 F

14 170 26,1865 2| 507 F

15 170 26,1865 2| 461 F

16 170 26,1865 2| 431 F

17 170 26,1865 2| 479 F

18 170, 26,1865 2| 106 F

19 170 26,1865 2| 545/F

20 170 26,1865 2| 536/F

21 150 27 4242 1 2134cC

22 150 27,4242 1 2746 F

23 150 27,4242 1 2850 F

2|4 150 27.4242 1 1826 C
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Example of Accelerated Life Testing
 main fopic  interpreting results  session command  see also

Suppose you want to investigate the deterioration of an insulation used for electric motors. The motors normally run between 80 and 100° C. To save time and
money, you decide to use accelerated life testing

First you gather failure times for the insulation at abnormally high temperatures — 110, 130, 150, and 170° C — {o speed up the deterioration. With failure time
information at these temperatures, you can then exirapolate to 80 and 100° C. It is known that an Arrhenius relationship exists between temperature and failure time
To see how well the model fits, you will draw a probability plot based on the standardized residuals.

Open the worksheet INSULATE MTW.

Choose Stat > Reliability/Survival > Accelerated Life Testing.

In Variables/Start variables, enter FailureT. In Accelerating variable, enter Temp.

From Relationship, choose Arrhenius.

Click Censor. In Use censoring columns, enter Censor, then click OK

Click Graphs. In Enter design value to include on plot, enter 80. Click OK
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Click Estimate In Enter new predictor values, enter Design, then click OK in each dialog box.

Session window output

Regression with Life Data: FailureT versus Temp

Response Variable: FailureT

Censoring Information Count
Uncensored value 66
Right censored value 14

Censoring value: Censor = C

Estimation Method: Maximum Likelihood
Distribution: Weibull
Transformation on accelerating variable: Arrhenius
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Regression Table
Standard 85.0% Normal CI
Predictor Coef Error Z P Lower Upper
Intercept -15.1874 0.%9862 -15.40 0.000 -17.1203 -13.254¢
Temp 0.83072 0.03504 23.71 0.000 0.76204 0.689%40
Shape 2.824¢ 0.2570 2.3633 3.3760
Log-Likelihood = -564.693
Lnderson-Darling (adjusted) Goodness-of-Fit
Lt each accelerating level
Level Fitted Model
110 *
130 *
150 *
170 *
Table of Percentiles
Standard 85.0% Normal CI
Percent Temp Percentile Error Lower Upper
50 80.0000 159584.5 27446 .85 113818.2 223557.0

50 100.0000 36948.57 4216.511 28543.36 46209.5%4




Probability Plot (Fitted Arrhenius) for FailureT
Weibull Distribution - ML Estimates - 95,0% ClI
Censoring Column in Censor
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Relation Plot (Fitted Arrhenius) for FailureT
Weibull Distribution - ML Estimates - 95,0% ClI
Censoring Column in Censor
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ADDING THE FACTOR "PLANT":

Accelerated Life Testing

[~ Include interaction term between variables

X|

& Responses are uncensfright censored data Censor... |
{~ Responses are uncensfarbitrarily censored data
. Estimate... |
Variables! FailureT =]
Start variables: 7 Graphs... |
End variables: = |
Results...
£
Freq. columns: = OpHons |
[@Esonl) ] Storage... |
Accelerating var: [Temp Relationship: |Arrhenius |
v Second Variable
C Accelerating: | Relationship: |Linear j
@ Factor: [Plant

Select | Assumed distribution: IWeibuII
Help |

.
Cancel |

EXAM MAY 2003, PROBLEM 3:

Assume that a component under normal stress has survival
function (reliability function) Ry(t) and hazard function (fail-

ure rate) z(t).

One wants to estimate the reliability of this component type
by means of accelerated lifetime testing. This is done by
measuring the lifetime (or a censored lifetime) of the com-
ponent under stress s, 0 < s < oo. Normal stress corresponds

to s = 0.

Two models are considered:

Model 1: Proportional hazards model. Under stress s the com-

ponent’s hazard function is

2, (t) = zo(t)g(s)

for a function g(s) with g(0) = 1.

Model 2: Accelerated lifetime model. Under stress s the com-

ponent’s survival function is
R2L(t) = Ro(d(s)t)
for a function ¢(s) with ¢(0) = 1.




(a) Explain briefly what is the purpose of accelerated lifetime
testing. What are the ideas behind the two models? What
do the functions g(s) and ¢(s) express?

(b) Let RPH(.) be the survival function of a component under
stress s in Model 1. Show that

REA(1) = Ro(t)")

Let further z;“L(-) be the hazard function of a component
under stress s in Model 2. Express zAL(.) by the functions

zo(+) and ¢(-).

(c) Assume that the component’s lifetime under normal
stress is Weibull(a, 0), defined by

Ro(t) = e~/

Show that the lifetime under stress s > 0 is also Weibull-
distributed under both models. What are the parameters in
the corresponding Weibull-distributions?

In what sense can we say that Model 1 and Model 2 are
equivalent under Weibull-distributed lifetimes?

Valve Seat Replacement Times Event Plot
(Nelson and Doganaksoy 1989)
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Valve Seat Replacement Times
(Nelson and Doganaksoy 1989)

Data collected from valve seats from a fleet of 41 diesel
engines (days of operation)

e Each engine has 16 valves

e Does the replacement rate increase with age?

e How many replacement valves will be needed in the future?

e Can valve life in these systems be modeled as a renewal
process?
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Estimate of Number of Valve Seat .(t)
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Times of Unscheduled Maintenance Actions
for a USS Grampus Diesel Engine

Unscheduled maintenance actions caused by failure of im-
minent failure.

Unscheduled maintenance actions are inconvenient and ex-
pensive,

Data available for 16,000 operating hours.

Data from Lee (1980).

Is the system deteriorating (i.e., are failures occurring more
rapidly as the system ages)?

Can the occurrence of unscheduled maintenance actions be
modeled by an HPP?
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Cumulative Number of Unscheduled Maintenance
Actions Versus Operating Hours
for a USS Grampus Diesel Engine
Lee (1980)
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The Likelihood for the NHPP - Sindle Unit

¢ With interval recurrence data.

Suppose that the unit has been observed for a period (0, 4]
and the data are the number of recurrences dy....,dp in
the nonoverlapping intervals (tg.t1], (t1.t2], ..., (t;n—1,tm)
(with tg = 0, t; = ta).

L(0) = PrN{s.41) =dismensd N (tm—1.tm) = dm]
m
= ] Pr [N(fj_l- tj) = d,i]
=1
_ 1d;
m ,u(f--j_l-f'j;g) ’
= YL o [uttyrit:0)
=1 “ar
m _,u(f.-;_l-tj?g)-dj
= &8 | — x exp [—u(to. ta; 9)]
Jl':l ﬂrj
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The Likelihood for the NHPP (Continued)

e If the number of intervals m increases and there are exact
recurrences at t1 < ... < tp (here r = Zj‘”:l dj, tg < ty,
tr < ty), then using a limiting argument it follows that the
likelihocod in terms of the density approximation is

L(B) = T[] v(t;;6) x exp [—p(0, ta; B)]
j=1

e For simplicity, above we assumed that the intervals are con-
tiguous. Obvious changes to the formula above give the
likelihood when there are gaps among the intervals.

e In both cases (the interval data or exact recurrences data)
the same methods used in Chapters 7, 8 can be used to
obtain the ML estimate 8 and confidence regions for @ or
functions of 6.
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CONDITIONAL ROCOF BY MINIMAL REPAIR (NHPP)
AND PERFECT REPAIR (RENEWAL PROCESS)
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