Spring 2005 April 26

TMA4275 LIFETIME ANALYSIS

Bo Lindqvist

Department of Mathematical Sciences
NTNU

bo@math.ntnu.no http://www.math.ntnu.no/~bo/

1

SIMPLE EXAMPLE WITH THREE SYSTEMS

Times of Unscheduled Maintenance Actions for a USS Grampus Diesel Engine

- Unscheduled maintenance actions caused by failure of imminent failure.
- Unscheduled maintenance actions are inconvenient and expensive.
- Data available for 16,000 operating hours.
- Data from Lee (1980).
- Is the system deteriorating (i.e., are failures occurring more rapidly as the system ages)?
- Can the occurrence of unscheduled maintenance actions be modeled by an HPP?

3

Cumulative Number of Unscheduled Maintenance Actions Versus Operating Hours for a USS Grampus Diesel Engine Lee (1980)

Grampus-data: Plot of (T_i,T_{i+1}) to check whether times between failures can be assumed independent. The figure does not indicate a correlation between successive interfailure times.

USS Grampus Diesel Engine
Plot of Times Between Unscheduled Maintenance
Actions Versus Lagged Times Between Unscheduled
Maintenance Actions

Lagged Thousands of Hours Between Maintenance Actions

5

Cumulative Number of Unscheduled Maintenance Actions Versus Operating Hours with Power and Loglinear NHPP Models for a USS Grampus Diesel Engine

6

Results of Fitting NHPP Models to the USS Grampus Diesel Engine Data

- Both models seem to fit the data very well.
- For the power recurrence rate model, $\hat{\beta}$ =1.22 and $\hat{\eta}$ =0.553.
- For the loglinear recurrence rate model, $\hat{\gamma}_0$ =1.01 and $\hat{\gamma}_1$ =.0377.
- Times between recurrences are consistent with a HPP:
 - ▶ the Lewis-Robinson test gave $Z_{LR} = 1.02$ with p-value p = .21.
 - ▶ the MIL-HDBk-189 test gave $X_{\text{MHB}}^2 = 92$ with p-value p = .08.

7

Life testing of n=13 airplane components (Mann and Fertig, 1976), censored after failure number r=10 (Type II-censoring), resulted in:

```
j
    Time (Y_j) Censor
         0,22
                     1
1
         0,50
2
                     1
3
         0,88
                     1
         1,00
         1,32
5
6
         1,33
                     1
7
         1,54
                     1
8
         1,76
                     1
9
         2,50
                     1
10
         3,00
                     1
11
         3,00
                     0
12
         3,00
                     0
13
         3,00
```

Let the model be that $T \sim \operatorname{eksp}(\lambda)$, i.e. the likelihood-function is

$$L(\lambda|\mathsf{data}) = \lambda^r e^{-\sum_{j=1}^n y_j} = \lambda^{10} e^{-23.05}$$

Likelihood-function for airplane component data

MLE:
$$\hat{\lambda}=0.434$$

9

Prior distribution for λ in airplane component data, $\Lambda \sim \mathrm{Gamma}(3,4)$

$$E(\Lambda)=0.75,\;SD(\Lambda)=0.43320$$

Prior distribution ("lowest"), Likelihood-function (normalized to density, "second highest") and Posterior distribution ("highest") for λ in airplane component data.

Posterior maximum is for $\lambda = 0.444$

Posterior expectation, i.e. Bayes-estimate is $\hat{\lambda}_B = 0.481$

11

Alternative prior distribution (Gamma(10,10), "lowest"), Likelihood function (normalized to density, "second highest") and Posterior distribution ("highest") for λ in airplane component data.

Posterior maximum is now for $\lambda = 0.575$.

Posterior expectation, i.e. Bayes-estimate is now $\hat{\lambda}_B = 0.6051$