Spring 2009

TMA4275 LIFETIME ANALYSIS

Bo Lindqvist

Department of Mathematical Sciences NTNU

bo@math.ntnu.no

http://www.math.ntnu.no/~bo/

GOALS

After finishing this course you should

- know the most common concepts and distributions from lifetime modeling
- be able to use graphical methods for description and comparison of lifetime data
- be able to use statistical methods for statistical inference (estimation, confidence interval, hypothesis testing) of lifetime data
- be able to analyze lifetime data by using computer software (MINITAB)

About the Course gives an introduction to stochastic modelling and statistical methods for use in lifetime data analysis, with particular view to applications in reliability analysis and medicine.

The lectures are based on knowledge from TMA4240/TMA4245 Statistics or equivalent. It will be an advantage to have taken one of the courses TPK4120 Industrial safety and reliability, TMA4260 Industrial statistics, or TMA4255 Experimental design and applied statistical methods.

Contents: Basic concepts in lifetime modelling. Censored observations. Nonparametric estimation and graphical plotting for lifetime data (Kaplan-Meier, Nelson-plot). Estimation and testing in parametric lifetime distributions. Analysis of lifetimes with covariates. (Coxregression, accelerated lifetime testing). Modelling and analysis of recurrent events. Nonhomogeneous Poisson-processes. Nelson-Aalen estimators. Bayesian lifetime analysis.

- Weekly hours: Spring: 4F+1Ø+7S = 7,5 SP
- Course type: Lectures and exercises with the use of a computer (MINITAB). Lectures may be given in English. Portfolio assessment is the basis for the grade awarded in the course. This portfolio comprises a written final examination 80% and selected parts of the exercises 20%. The results for the constituent parts are to be given in %-points, while the grade for the whole portfolio (course grade) is given by the letter grading system. Retake of examination may be given as an oral examination.
- Lecturer Professor <u>Bo Lindqvist</u>, room 1129, Sentralbygg II. Tlf. (735)93532 Office hours: To be announced. Email: <u>bo@math.ntnu.no</u>

 Exercise lab
 Research assistant Rupali Akerkar, room 1124, Sentralbygg II. Tlf. (735)92021

 teacher
 Office hours: To be announced.

 Email: Rupali Akerkar@math.ntnu.no

CourseThe main source will be the book Rausand & Høyland: System Reliability Theory:bookModels, Statistical Methods, and Applications, 2nd Edition. Wiley 2004.

Notes/copies about certain topics will be handed out. Foils from the lectures can be downloaded as pdf-files from this website.

Curriculum PRELIMINARY CURRICULUM can be found here.

- Lectures Thursdays 12.15-14.00 in room F6. Fridays 10.15-12.00 in room F2. First lecture is January 15.
- Exercises Mondays 15.15-16.00 in room F2. First time: January 26.

Link to exercise website will come here.

Some exercises (including the obligatory ones) require use of the statistics computer package MINITAB, see http://www.ntnu.no/adm/it/brukerstotte/programvare/minitab.

NTNU has an unlimited site licence for Windows and Macintosh for installation of MINITAB on NTNUs area and on private machines of students and staff. MINITAB is also available on several computer labs.

Final exam: May 18, 2009. Written. 4 hours (9:00-13:00). Permitted aids: B - All printed and handwritten aids permitted, approved simple calculator.

Week No.	Literature R & H	Торіс	Comment R & H
3	2.1-2.14, 2.17, 2.20 Notes on "Log- location-scale"	Probability distributions for lifetimes. Fundamental properties. Important distributions and properties.	Only main results in 2.17 are covered.
4-5	11.1-11.3, 11.5 The note "About the exponential distribution"	Lifetime data. Censoring. Nonparametric methods. Plotting (TTT, Kaplan- Meier, Nelson- Aalen.)	
6-8	11.4 Notes on "Likelihood construction" and "On parametric inference"	Parametric estimation and testing. Maximum likelihood. Information matrix. Confidence intervals. Probability plots (MINITAB).	
9-10		No lectures	
11-13	Ch. 12. Notes on "Survival regression" (Lecture week 8) and "Medical study"	Regression methods. Covariates. Weibull regression. Cox- regression. Accellerated lifetime testing.	Example 12.2 page 532 and rest of Ch. 12 are not covered.

PRELIMINARY CURRICULUM AND LECTURE PLAN

		•	
14 and 16-17	Ch. 7	Point processes. Recurrent events. Repairable systems. Poisson processes and renewal. Modelling and statistical analysis of data. Likelihood- methods.	The following is covered (not always in detail): 7.1 only to 7.1.3; most of 7.2, but only to 7.2.6; 7.3 to 7.3.4; but in addition 7.3.8; most of 7.4. Pooled versions of Laplace and Mil-Hdbk tests (as used by MINITAB).
15		Easter vacation	
18	Ch. 13	Bayesian lifetime analysis	Selected parts of 13.1-13.5 are covered.
19		Review	

RELIABILITY

Common technical definition of reliability:

The probability that a system or a component will perform its intended task, under given operational conditions, for a specified time period.

LIFE TIMES (SURVIVAL DATA)

- Time to failure of a component or a system
- Number of cycles to failure (fatigue testing)
- Time to next epileptic seizure for patient
- Times of failure and repair of a machine

WHY COLLECT AND ANALYZE LIFETIME/SURVIVAL/RELIABILITY DATA?

- Assess reliability of a system/component/product
- Compare two or more products with respect to reliability
- Predict product reliability in the design phase
- Predict warranty claims for a product in the market

SPECIAL ASPECTS OF LIFETIME ANALYSIS

- Definition of starting time and failure time are difficult
- Definition of time scale (operation time, calendar time, number of cycles)
- Censored data (what do we do with units that have not failed within the observation period?)
- Effect of environmental conditions
- What if a unit fails of another cause than the one we would like to study? ("competing risks")
- Recurrent events what if the system can fail several times; how to analyze recurring stages of a disease?

BALL BEARINGS FAILURE DATA

Data: Millions of revolutions to fatigue failure for 23 units

17,88	28,92	33,00	41,52	42,12	45,60	48,40	51,84
51,96	54,12	55,56	67,80	68,64	68,64	68,88	84,12
93,12	98,64	105,12	105,84	127,92	128,04	173,40	

Histogram of Revolutions

Lieblein and Zelen Ball Bearing Failure Data

Unit

re Tools

IC Data (Meeker, 1987)

- · Integrated circuit failure times in hours
 - n = 4156 ICs tested for 1,370 hours at 80° C and 80% relative humidity
 - There were 28 failures
 - When the test ended at 1,370 hours, 4128 units were still running

.10	.10	.15	.60	.80	.80
1.20	2.5	3.0	4.0	4.0	6.0
10.0	10.0	12.5	20.	20.	43.
43.	48.	48.	54.	74.	84.
94.	168.	263.	593.		

TYPICAL PROBLEMS:

- How to estimate the distribution of the failure time when there are censored observations?
- Probability of failure before 100 hours?
- Failure rate by 100 hours?
- Proportion failed after 10^5 hours?

IC Data Failure Pattern

RECURRENT EVENTS/REPAIRABLE SYS-TEMS

Valve Seat Replacement Times Event Plot (Nelson and Doganaksoy 1989)

Valve Seat Replacement Times (Nelson and Doganaksoy 1989)

Data collected from valve seats from a fleet of 41 diesel engines (days of operation)

- Each engine has 16 valves
- Does the replacement rate increase with age?
- How many replacement valves will be needed in the future?
- Can valve life in these systems be modeled as a renewal process?

🗲 МІМ	NITAB - Untit	led																8×
File E	dit Manip C	alc Stat G	Graph Ed	itor Windo	ow Help													
6	6 X B	Basic	Statistics	•	<u>R</u> ====		20 00 00	8		•	6020							
E Se	ssion	ANO	ession /A															
		DOE		٠														
	04	.02 Contr	rol Charts	۲.	<u> </u>				-03									
Weld	come to Min	Qualit Lita Reliat	ty Tools hitty/Surviv	val b	Distribut	ion ID Plot-R	inht Cens											
Retr	ieving wor	ksł Multiv	/ariate	• • •	Distribut	ion Overview	Plot-Right	Cens	93.MTW									
# WC	JINSHEEL WA	Time	Series	۲	Paramet	ric Dist Analy	sis-Right Ce	ns										
		Table	S arametrics		Nonpara	imetric Dist A	nalysis-Righ	t Cens										
		EDA	arametrica	•	Distribut	ion ID Plot-A	rbitrary Cen	s										
		Powe	r and Sam	iple Size 🔸	Paramet	ric Dist Analy	sis-Arbitrarv	ry Cens										
					Nonpara	metric Dist A	nalysis-Arbit	rary Cens										
					Accelerat	ted Life Testi	ng											
					Regressi	ion with Life D	Data											
					Probit Ar	nalysis												
•																		•
II SI	F5075table93	3.MTW ***															=1	
÷	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
									1									
1	31,7	1						_										
2	39,Z	1						-		-				-				
4	65.0	0						_										
5	65,8	1																
6	70,0	1																
7	75, <mark>0</mark>	0																
8	75,2	0																
9	87,5	0																
10	88,3	0																
11	94,2	0												-				
12	101,7	0																× ۲
																		<u> </u>
Pro	ojec 🗗 🔲	×																
erform (a nonparamet	ric distribution	n analysis d	on uncensor	A DATA DATA DATA													
	1.1		a contra contra	on uncensor	rea/ngnt cer	isored data]	13:3	19

🗲 MIN	LTAB - Un	titled										_ & ×
File Ed	it Manip <i>⊑</i> a∫ <u>∦</u> ∎	Calc Stat	Graph Edi	tor Window	Help	? เสป						
	sion						_	_			_	
Lear Steel	ыоп		,	05.00 1	1							
Mean 9((MTTF)),9880	Erro 7,496	r I D 76,	95,0% Norma Lower 2962 105	Upper ,6799							
Media	an = 1	10,0000										
IQR =	.	. ب	21 = 6	5,8000 Q3	=	*						
Kapla	an-Meier	Estimate	3									
	Time	Number at Risk	Number	Surviv Probabili	al s	Standard	95,0%	Normal CI				
3:	L,7000	16	1	0,93	75	Monnara	motric Sur	auDiot for C1				
39	7,2000	15 14	1	0,87	50 25	xa Nonpara	neunc Sur	WPIOL IOF C1				
6	5,8000	12	1	0,74	48				Nonparametric Survival Plo	t for C1		
70	0,0000	11	1	0,67	71				Kaplan-Meier Method			
110	00000	2	1	0,25	39				Censoring Column in C2			
									consering column in ez			
Non	aramet	ric SurvPl	ot for C1				1.0				MTTE	90 988
Constant Co							1850				Modian	110.00
							0.9 -				IQR	*
											0.22409300	F
ETTE	5075tabla	02 MTW ##	1				0,8 -					2
ETT-SITE	C1	95.MTW	C3	C4	C5		0.92					E
	CI	02	0.5		0.5	– – – – – – – – – – – – – – – – – – –	0,7 -					F
1	31.7	1				iii.						
2	39,2	1				oat	0,6 -					
3	57,5	1				2						
4	65, <mark>0</mark>	0					0,5 -					
5	65,8	1										
6	70,0	1					0,4 -					
7	75, <mark>0</mark>	0					22					
8	75,2	0					0,3 -					
9	87,5	0					6.405					
10	88,3	0					0.2 -					
11	94,2	0					,		50	100	 ,	
12	101,7	0					0		Time to Failure	100		F
									Time to Failule			
E Pro	ec <mark>8</mark> 0											
Current \	Worksheet:	SIF5075table	93.MTW									View 9:39
者 Star	t 📴 🧶	w 💌 🚬	10 10	🗀 Foiler		C Foiler		💽 abel.math.n	tnu.no 🔁 MINITAB - Untit 🔚 Corel Pl	IOTO-PAIN	lobb » « 🖏	🕵 😓 09:39

Typical Failure-time cdf, pdf, hf, and sf $F(t) = 1 - \exp(-t^{1.7});$ $f(t) = 1.7 \times t^{.7} \times \exp(-t^{1.7})$ $S(t) = \exp(-t^{1.7});$ $h(t) = 1.7 \times t^{.7}$

Bathtub Curve Hazard Function

AL.	Levende ved	alder x	Døde i alder	x til x+1	Forventet gjenstående levetig	d ved alder x	Dødssannsynlighet for alder x, Promille, (Uglattet).			
Alder x	lx		dx		e0x		хp			
	Menn	Kvinner	Menn	Kvinner	Menn	Kvinner	Menn	Kvinner		
0	100 000	100 000	424	343	76,21	81,53	4,24	3,43		
1	99 <mark>576</mark>	99 <mark>65</mark> 7	39	27	75,53	80,81	0,39	0,28		
2	99 537	99 <mark>630</mark>	33	7	74,56	79,83	0,33	0,07		
3	99 504	99 623	32	17	73,58	78,84	0,33	0,17		
4	99 472	99 <mark>606</mark>	13	10	72,61	77,85	0,13	<mark>0,10</mark>		
5	99 459	99 596	6	10	71,62	76,86	0,06	0,10		
6	99 453	99 586	22	17	70,62	75,87	0,22	0,17		
7	99 431	99 <mark>5</mark> 69	10	3	69,64	74,88	0,10	0,03		
8	99 422	99 566	9	13	68,64	73,88	0,09	0,13		
9	99 412	99 <mark>55</mark> 2	9	3	67,65	72,89	0,09	0,03		
10	99 403	99 <mark>54</mark> 9	12	3	66,66	71,89	0,12	0,03		
11	99 390	99 546	3	10	65,66	70,89	0,03	0,10		
12	99 387	99 <mark>536</mark>	16	3	64,67	69,90	0,16	0,03		
13	99 371	99 <mark>5</mark> 32	10	11	63,68	68,90	0,10	0,11		
14	99 361	99 <mark>52</mark> 2	7	7	62,68	67,91	0,07	0,07		
15	99 354	99 514	32	11	61,69	66,92	0,32	0,11		
16	99 322	99 503	33	23	60,71	65,92	0,33	0,23		
17	99 289	99 480	77	39	59,73	64,94	0,77	0,39		
18	99 212	99 <mark>4</mark> 41	90	35	58,77	63,96	0,91	0,35		
19	99 122	99 407	123	34	57,83	62,99	1,24	0,34		
20	98 999	99 <mark>37</mark> 3	155	60	56,90	62,01	1,57	0,60		
21	98 844	99 313	142	15	55,99	61,04	1,44	0,15		

10 Dødelighetstabeller ¹. 2001

40	96 600	98 433	147	85	38,05	42,49	1,53	0,86
41	96 453	98 348	144	110	37,11	41,53	1,49	1,12
42	96 309	98 239	208	100	36,16	40,58	2,16	1,02
43	96 101	98 138	181	110	35,24	39,62	1,89	1,12
44	95 919	98 029	205	112	34,31	38,66	2,14	1,15
45	95 715	97 916	190	153	33,38	37,70	1,98	1,57
46	95 525	97 763	256	172	32,44	36,76	2,68	1,76
47	95 268	97 591	256	160	31,53	35,83	2,68	1,64
48	95 013	97 431	324	191	30,61	34,88	3,41	1,96
49	94 689	97 240	310	197	29,72	33,95	3,28	2,03
50	94 379	97 042	324	233	28,81	33,02	3,43	2,40
51	94 055	96 810	387	265	27,91	32,10	4,11	2,74
52	93 668	96 545	332	255	27,02	31,18	3,54	2,64
53	93 336	96 290	461	293	26,12	30,27	4,94	3,04
54	92 875	95 997	504	343	25,25	29,36	5,42	3,58
55	92 371	95 653	546	342	24,38	28,46	5,91	3,57
56	91 825	95 311	583	362	23,52	27,56	6,35	3,80
57	91 242	94 949	647	400	22,67	26,66	7,09	4,22
58	90 595	94 549	593	435	21,83	25,77	6,55	4,60
59	90 002	94 115	713	554	20,97	24,89	7,92	5,89
60	89 289	93 560	797	543	20,13	24,04	8,93	5,81
61	88 492	93 017	853	543	19,31	23,17	9,64	5,83
62	87 639	92 475	911	626	18,49	22,31	10,39	6,77
63	86 728	91 848	1 200	781	17,68	21,45	13,84	8,50
64	85 528	91 068	1 359	795	16,92	20,63	15,89	8,73
65	84 168	90 273	1 356	763	16,19	19,81	16,11	8,45
66	82 812	89 509	1 349	883	15,44	18,98	16,29	9,86
67	81 463	88 627	1 572	897	14,69	18,16	19,30	10,12
68	79 891	87 730	1 746	1 070	13,97	17,34	21,86	12,19
69	78 145	86 660	1 869	1 056	13,27	16,55	23,91	12,19

WEIBULL-DENSITIES ($\alpha = \gamma$, $\lambda = 1$ in terminology of book)

LOGNORMAL DENSITIES ($\tau = \sigma$, $\nu = 0$ in terminology of book)

LOGNORMAL HAZARDS ($\tau = \sigma$, $\nu = 0$ in terminology of book)

RECALL BALL BEARINGS FAILURE DATA

Data: Millions of revolutions to fatigue failure for 23 units

17,88	28,92	33,00	41,52	42,12	45,60	48,40	51,84
51,96	54,12	55,56	67,80	68,64	68,64	68,88	84,12
93,12	98,64	105,12	105,84	127,92	128,04	173,40	

Histogram of Revolutions

Histogram of log(Rev), with Normal Curve

AIRCONDITION FAILURES ON BOEING AIRPLANES (PROSCHAN, 1963)

					• <u>的</u> =====					<u>*5</u>								
Wa	rksheet 1 '	***																
٠	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
	1	log(1)																-
1	413	6,02345		-				_										-
2	14	2,63906					-	_										-
3	27	4,00044		_				_										
4	100	3,01092																-
0	65	4,00017																-
0	00	4,17439		_				_										-
0	160	5 12000																
0	109	6 10256																
9	447	5 21404																-
10	104	3,21494									-							
11	201	5,00002																
12	118	4 77068		-														
14	34	3 52636									-							-
15	31	3 43300					-											-
16	18	2 80037			-													+
17	18	2,00007																-
18	67	4 20469																-
19	57	4 04305																-
20	62	4 12713																+
21	7	1 94591																-
22	22	3 09104						_										
23	34	3 52636		-			-	-			-						_	-
24	۷.	0,02000						_										-
25				-														-
26								-										
27																		-
28																		
29																		
30																		-
31							-											
32																		
	lana i																	

Histogram of T

Histogram of log(T), with Normal Curve

Motivation for the exponential distribution

- Simplest distribution used in the analysis of reliability data.
- Has the important characteristic that its hazard function is constant (does not depend on time t).
- Popular distribution for some kinds of electronic components (e.g., capacitors or robust, high-quality integrated circuits).
- This distribution would not be appropriate for a population of electronic components having failure-causing quality-defects.
- Might be useful to describe failure times for components that exhibit physical wearout only after expected technological life of the system in which the component would be installed.

Motivation for the Weibull distribution

- The theory of extreme values shows that the Weibull distribution can be used to model the minimum of a large number of independent positive random variables from a certain class of distributions.
 - Failure of the weakest link in a chain with many links with failure mechanisms (e.g. fatigue) in each link acting approximately independent.
 - Failure of a system with a large number of components in series and with approximately independent failure mechanisms in each component.
- The more common justification for its use is empirical: the Weibull distribution can be used to model failuretime data with a decreasing or an increasing hazard function.

Motivation for lognormal distribution

- The lognormal distribution is a common model for failure times.
- It can be justified for a random variable that arises from the product of a number of identically distributed independent positive random quantities (remember central limit theorem for sum of normals).
- It has been suggested as an appropriate model for failure time caused by a degradation process with combinations of random rates that combine multiplicatively.
- Widely used to describe time to fracture from fatigue crack growth in metals.
- Useful in modeling failure time of a population electronic components with a decreasing hazard function (due to a small proportion of defects in the population).
- Useful for describing the failure-time distribution of certain degradation processes.

STANDARD GUMBEL AND NORMAL DISTRIBUTIONS ($\mu = 0, \sigma = 1$)

STANDARD LOGISTIC AND NORMAL DISTRIBUTIONS ($\mu = 0, \sigma = 1$)

