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TMA4285 December 2015 Time series models, solution.

Problem 1

a) (i) The slow decay of the ACF of zt suggest that the model is non-stationary. The differenced
series and its ACF appears stationary which suggests that d = 1. The ACF of (1− B)zt cuts
off after lag k = 1 whereas the PACF exhibit exponential decay with alternating signs which
suggest that (1−B)zt is MA(1). Overall the model is then ARIMA(0,1,1).

(ii) The PACF cuts of after lag k = 3 whereas the ACF exhibits damped occilations aswell
as possibly an exponentially decaying component consistent with an AR(3) model with two
complex and one positive real root (any complex roots necessarily appear in conjungate pairs
so at least one root needs to be real). So this is an ARIMA(3,0,0) model.

(iii) The large autocorrelation at lag k = 12 suggest a seasonal model with period s = 12. The
overall sample ACF can be seen as a convolution between the ACF of a regular AR(1) model
(the ACF decays exponentially and the PACF at cuts off at lag k = 2) and the ACF of MA(1)
model at multiples of the seasonal period s (the ACF at lag k = 2s = 24 is zero). Thus the
observed pattern appears consistent with a seasonal ARIMA(1, 0, 0)× (0, 0, 1)12 model.

b) Given that wt = (1 − B)zt is MA(1), the two first autocovariances are γ0 = σ2
a(1 + θ21) and

γ1 = −σ2
aθ1. The theoretical autocorrelation at lag 1 is thus ρ1 = −θ1/(1 + θ21). Equating this

to the sample autocorrelation ρ̂1 and solving for θ1 yields two solutions

θ1 = −1.41, θ1 = −0.71

out of which we choose θ1 = −0.71 as our estimate to satisfy the requirement of invertibility.

Problem 2

a) To write
(1− φ1B)Zt = (1− θ1B)at

in pure AR(∞) form
π(B)Zt = at,

π(B) must satisfy
(1− π1B − π2B2 − . . .)(1− θ1B) = (1− φ1B)

Expanding and equating like terms yields π1 = φ1 − θ1 and πj = θ1πj−1 = θj−11 (φ1 − θ1) for
j ≥ 2. This AR(∞) representation only exist when the MA part of the model is invertible for
|θ1| < 1.
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b) Assuming that 0.56 is the last observation Z15, the 1-step ahead forecast becomes

Ẑ15(1) = E(Z16|Z15, Z14, . . .)

= π1Z15 + π2Z14 + . . .

= (φ1 − θ1)(Z15 + θ1Z14 + θ21Z13 + . . .)

= .5 · (.56 + .4 · 1.93 + .16 · 1.15 + .064 · 2.28 + .0256 · 2.97 + .0102 · .96 + .0041 · 1.54 + .0016 · (−.71) . . .)

= 0.876.

c) For lead times l ≥ 2, the forecasts become

Ẑ15(l) = E(Z15+l|Z15, . . .)

= E(φ1Z15+l−1 + a15+l − θ1a15+l−1|Z15, . . .)

= φ1E(Z15+l−1|Z15, . . .)

= φ1Ẑ15(l − 1)

= φl−11 Ẑ15(1)

= .9l−10.876.

As l→∞ this tends to the stationary mean of the process, E(Zt) = 0.

d) The MA(∞) polynomial ψ(B) = θ(B)/φ(B) must satisfy

(1 + ψ1B + ψ2B
2 + . . .)(1− φ1B) = (1− θ1B)

Expanding and equating like terms yields ψ1 = φ1 − θ1 and ψj = φ1ψj−1 for j ≥ 2. Hence

ψj = φj−11 (φ1 − θ1) for j ≥ 1.

The variance of the l-step ahead forecast error is then

Var(Zt+l − Ẑt(l)) = Var(

l−1∑
j=0

ψjat+l−j)

= σ2
a

l−1∑
j=0

ψ2
j

= σ2
a

1 + (φ1 − θ1)2
l−1∑
j=1

φ
2(j−1)
1


= σ2

a

1 + (φ1 − θ1)2
l−2∑
j=0

(φ21)j


= σ2

a

(
1 + (φ1 − θ1)2

1− φ2(l−1)1

1− φ21

)
.

As l→∞, this tends to

σ2
a

(
1 +

(φ1 − θ1)2

1− φ21

)
= σ2

a

1 + θ21 − 2φ1θ1
1− φ21

= Var(Zt),

the stationary variance of the process (see p. 61 in Wei).
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Problem 3

a) Treating z1 as given, the conditional likelihood takes the form

L∗(φ1, σ
2
a) = f(z2, z3, z4, z5|z1)

=

5∏
t=2

f(zt|zt−1)

=

5∏
t=2

1

(2πσ2
a)1/2

e
− (zt−φ1zt−1)2

2σ2a

=
1

(2πσ2
a)4/2

e
− 1

2σ2a

∑5
t=2(zt−φ1zt−1)

2

.

Assuming that the process is stationary (|φ1| < 1), z1 ∼ N(0,
σ2
a

1−φ2
1
). The exact likelihood is

then

L(φ1, σ
2
a) = f(z1, z2, z3, z4, z5)

= f(z1)

5∏
t=2

f(zt|zt−1)

=
(1− φ21)1/2

(2πσ2
a)1/2

e
− (1−φ21)z21

2σ2a

5∏
t=2

1

(2πσ2
a)1/2

e
− (zt−φ1zt−1)2

2σ2a

=
(1− φ21)1/2

(2πσ2
a)5/2

e
− 1

2σ2a
[(1−φ2

1)z
2
1+

∑5
t=2(zt−φ1zt−1)

2]
.

b) The corresponding log likelihoods are

lnL∗(φ1, σ
2
a) = C − 4

2
lnσ2

a −
1

2σ2
a

5∑
t=2

(zt − φ1zt−1)2

and

lnL(φ1, σ
2
a) = C − 5

2
lnσ2

a +
1

2
ln(1− φ21)− 1

2σ2
a

[(1− φ21)z21 +

5∑
t=2

(zt − φ1zt−1)2].

For φ1 = .5, these are maximised for

σ̂2∗
a =

1

4

5∑
t=2

(zt − φ1zt−1)2 =
1

4
(.22 + .22 + .32 + .22) = 0.0525,

and

σ̂2
a =

1

5
[(1− φ21)z21 +

5∑
t=2

(zt − φ1zt−1)2] =
1

5
((1− .52) · 22 + .22 + .22 + .32 + .22) = 0.642,

respectively.

The large difference is a result of the fact that z1 contains information which is ignored when
using the approximate conditional maximum likelihood approach. The conditional MLE of
0.0525 is not very consistent with the full data set, in particular, this value of σ2

a would imply a
stationary variance σ2

a/(1−φ21) = 0.07 (and a stationary standard deviation of 0.26) for which
z1 ≥ 2 would be an extremely unlikely event with a probability of the order of 10−14.
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Table 1: Results from applying the Kalman filter

t Ŷt|t Vt|t Ŷt+1|t Vt+1|t Ŷt|5 Vt|5
1 2 0 1 1 2 0
2 1 1 .5 1.25 1.1765 0.9882
3 .5 1.25 .25 1.3125 0.9412 1.1765
4 .25 1.3125 .125 1.3281 1.1765 0.9882
5 2 0 2 0

Problem 4

a) With no observations at t = 2, 3, 4, the filtering steps at these time points become

Ŷt|t = Ŷt|t−1, Vt|t = Vt|t−1, (1)

that is, the probability distribution of Yt conditional on observations up to time t is the same
as the distribution conditional on observations up to time t − 1. This can also be seen from
the general formula for the filtering step by letting Ω (or rather the time dependent Ωt) go to
infinity which is equivalent to a missing observation. This leads to a kalman gain Kt = 0 from
which (1) follows.

Also note that the state Y1 and Y5 is observed without any error, such that Ŷt|t = Zt = 2 and
Vt|t = 0 for t = 1 and t = 5 and so no initial values are needed.

Forecasting Y2, we get Ŷ2|1 = φ1Ŷ1|1 = 0.5 · 2 = 1 and V2|1 = φ21V1|1 + σ2
a = 1. Similar

calculations and (1) leads to the numbers in Table 1.

b) Applying the smoothing recursions, using Ŷ5|5 = 2 and V5|5 = 0 as initial values, we first obtain,

for t = 4, J4 = V4|4φ1/V5|4 = 0.5 · 1.3125/1.3281 = 0.4941, Ŷ4|5 = Ŷ4|4 +J4(Ŷ5|5− Ŷ5|4) = .25 +
0.4941(2−0.125) = 1.1764, V4|5 = V4|4+J2

t (V5|5−V5|4) = 1.3125+0.49412(0−1.3281) = 0.9882.
Similar calculations leads to the numbers in Table 1.

Fig. 1 shows the estimates and their associated uncertainty. The symmetry of the autocovari-
ance function of a stationary process Yt and the pattern of the observed values translates to
the estimated states being symmetric about t = 3. Additionallly, the expected value and the
variances of the estimated states tends towards the stationary mean and variance of the process
with increasing distance from the observations (towards the midpoint t = 3) as expected.
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Figure 1: Expected value and 95% probability limits of Yt|Z1, Z5.


