
TMA4285 Time series models
Solution to exercise 4, autumn 2014

Problem 3.8.
a) The model is

zt = at + 1.2at−1 − 0.5at−2

For k = 0, 1, . . . we get

γk = E[ztzt+k] = E[(at + 1.2at−1 − 0.5at−2)(at+k + 1.2at+k−1 − 0.5at+k−2)]

=


σ2
a(1 + 1.22 + 0.52) = 2.69σ2

a for k = 0,
σ2
a(−1.2− 1.2 · 0.5) = −1.8σ2

a for k = 1,
σ2
a · 0.5 = 0.5σ2

a for k = 2,
0 for k = 3, 4, . . ..

Thereby the ACF becomes

ρk =


1 for k = 0,
−1.8
2.69

= −0.67 for k = 1,
0.5
2.69

= 0.19 for k = 2,
0 for k = 3, 4, . . . .

c) Using the results in a) we get

φ11 = ρ1 = −0.67,

φ22 =

∣∣∣∣ 1 ρ1
ρ1 ρ2

∣∣∣∣∣∣∣∣ 1 ρ1
ρ1 1

∣∣∣∣ =
∣∣∣∣ 1 −0.67
−0.67 0.19

∣∣∣∣∣∣∣∣ 1 −0.67
−0.67 1

∣∣∣∣ =
−0.2589
0.5511

= −0.47,

φ33 =

∣∣∣∣∣∣
1 ρ1 ρ1
ρ1 1 ρ2
ρ2 ρ1 ρ3

∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 −0.67 −0.67

−0.67 1 0.19
0.19 −0.67 0

∣∣∣∣∣∣∣∣∣∣∣∣
1 −0.67 0.19

−0.67 1 −0.67
0.19 −0.67 1

∣∣∣∣∣∣
=
−0.0704
0.2367

= −0.30.

Problem 3.9. For the MA(1) model

zt = at − θ1at−1
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we know that the ACF is given by

ρk =


1 for k = 0,

− θ1
1+θ21

for k = 1,

0 for k = 2, 3, . . . .

By choosing

ρ1 = −
θ1

1 + θ21
= 0.25⇒ θ = −2±

√
3

we get a model with the required ACF. For the model to be invertible we also need |θ1| < 1,
so we must use θ1 = −2 +

√
3 = −0.268.

Problem 3.10.
a) For the MA(2) model

zt = at − θ1at−1 − θ2at−2
we know that the autocovariance function is given by

γk =


(1 + θ21 + θ22)σ

2
a for k = 0,

−θ1(1− θ2)σ2
a for k = 1,

−θ2σ2
a for k = 2,

0 for k = 3, 4, . . ..

By choosing

(1 + θ21 + θ22)σ
2
a = 10, − θ1(1− θ2)σ2

a = 0 and − θ2σ2
a = −4

we get the autocovariance function we want. From the second equation we see that we
must have θ1 = 0 or θ2 = 1. We first try θ1 = 0. Then the third equation give θ2 = 4

σ2
a
,

and inserting this into the first equation we get(
1 +

(
4

σ2
a

)2
)
σ2
a = 10⇒ σ2

a = 2 or σ2
a = 8.

Choosing θ2 = 1 the third equation gives σ2
a = 4, and inserting this into the first equation

we get (
1 + θ21 + 12

)
· 4 = 10⇒ θ1 = ±

√
2

2
.

Thereby we have found as much as four models with the required autocovariance function,
namely

zt = at − 2at−2 with σ2
a = 2,

zt = at −
1

2
at−2 with σ2

a = 8,
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zt = at −
√
2

2
at−1 − at−2 with σ2

a = 4,

and

zt = at +

√
2

2
at−1 − at−2 with σ2

a = 4.

b) An MA(2) process is always stationary, so all four processes found in a) are stationary.
To check whether the models are invertible we need to find the roots of θ(B) = 0. For the
first model we get

1− 2B2 = 0⇒ B = ±
√
2

2
.

The two roots are not outside the unit circle, so the model is not invertible. For the second
model we get

1− 1

2
B2 = 0⇒ B = ±

√
2.

Both roots are outside the unit circle, so the model is invertible. For the third model we
get

1−
√
2

2
B −B2 = 0⇒ B = −

√
2 or B =

√
2

2
.

The second root is not outside the unit circle, so the model is not invertible. For the fourth
model we get

1 +

√
2

2
B −B2 = 0⇒ B = −

√
2

2
or B =

√
2.

Again one of the roots are not outside the unit circle, so this model is not invertible either.
Thus, only one of the models found in a) is invertible, namely

zt = at −
1

2
at−2 with σ2

a = 8.

Problem 3.11.
a) All MA(2) processes are stationary, so the current one is thereby also stationary.

b) We need to find the roots of θ(B) = 0,

1− 0.1B + 0.21B2 = 0⇒ B = 0.2381± 2.1692i.

We see that both roots are outside the unit circle, so the model is invertible.

c) No solution given here.

Problem 3.12. One can simulate in R with the command

x = arima.sim(model = list(order = c(0, 0, 2),ma = c(−1.2, 0.5)), n = 100),
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but you should note that the the MA model in R is defined with opposite sign for the MA
coefficients θ1 and θ2 relative to what we do in the lectures and in Wei (2006). One can
estimate the autocorrelation and partial autocorrelation functions with the R functions acf
and pacf, respectively. To estimate ρk and φkk for the required values of k one can use the
option “lag.max=20” in the acf and pacf functions, for instance

acf(x, lag.max = 20).

Problem 3.13. No solution given here.

Problem 8. First note that reversing the order of the coefficients in a MA(q)-model don’t
lead to any change in the autocorrelation function. By choosing a suitable value of σ2′

a

in the reparameterized model, the autocovariance function will also be equal to that of
the original non-invertible model. Since the distribution of the data is the same, these
alternative parameter values only represents alternative parameterizations of the same
model.

Let θ(B) = (1 − R1B)(1 − R2B) = 1 − (R1 + R2)B + R1R2B
2 represent the moving

average polynomial of the non-invertible model. If both roots are inside the unit circle, we
have |R1| > 1 and |R2| > 1. The reparameterized model obtained by reversing the order
of the MA-coefficients is given by

θ′(B) = (R1R2 − (R1 +R2)B +B2)/(R1R2) (1)

if also rescaling all coefficients such that the convention θ0 = 1 is satisfied. This can be
rewritten as

θ′(B) = (R1 −B)(R2 −B)/(R1R2) (2)

from which it is clear that the roots of the reparameterized model B′1 = R1 and B′2 = R2

are both outside the unitcircle. The reparameterized model is thus invertible.

Update It turns out that any non-invertible MA(q) model can be made invertible through
reparameterization except if the roots are exactly on the unit circle. Consider the model
MA(q)-model

θ(B) =

q∏
i=1

(1−RiB). (3)

This has autocovariancegenerating function (see 2.6.8-2.6.9 in Wei)

γ(B) = σ2
a

q∏
i=1

(1−RiB)(1−Ri
1

B
). (4)
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Suppose that the first root is inside the unit circle, that is, |B1| < 1 and |R1| > 1 such that
model is non-invertible.

Consider the model obtained by changing R1 to R′1 = 1/R1 and the white noise variance
to σ2′

a = σ2
aR

2
1. This model with different parameter values is invertible. Is it still the same

model? The autocovariance generating function becomes

γ(B) = σ′2a (1−R′iB)(1−R′i
1

B
)

q∏
i=2

(1−RiB)(1−Ri
1

B
) (5)

= σ2
aR

2
1(1−

1

R 1
B)(1− 1

R 1

1

B
)

q∏
i=2

(1−RiB)(1−Ri
1

B
) (6)

= σ2
aR

2
1(1 +

1

R2
1

− 1

R 1
B − 1

R 1
B)

q∏
i=2

(1−RiB)(1−Ri
1

B
) (7)

= σ2
a(R

2
1 + 1−R1B −R1B)

q∏
i=2

(1−RiB)(1−Ri
1

B
) (8)

which equals the autocovariance generating function (4) of (3). Thus the two models are
equivalent representations of the same stochastic process and just differ in terms of their
parameterizations.
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