TMA4285 Time series models Solution to exercise 10, autumn 2018

November 28, 2018

Problem 7.1

From the process we have $Z_{t}=\sqrt{h_{t}} e_{t}$ so that $Z_{t}^{4}=h_{t}^{2} e_{t}^{4}$.

$$
E\left(Z_{t}^{4}\right)=E\left(e_{t}^{4} h_{t}^{2}\right)=E\left(e_{t}^{4}\right) E\left(h_{t}^{2}\right)=\left(\operatorname{Var}\left(e_{t}^{2}\right)+E\left(e_{t}^{2}\right)^{2}\right) E\left(h_{t}^{2}\right)=3 E\left(h_{t}^{2}\right)
$$

since $\operatorname{Var}\left(e_{t}^{2}\right)=2$ and $E\left(e_{t}^{2}\right)=1$. We use that $h_{t}=Z_{t}^{2} / e_{t}^{2}=\left(\alpha_{0} e_{t}^{2}+\alpha_{1} e_{t}^{2} Z_{t-1}^{2}\right) / e_{t}^{2}=\alpha_{0}+\alpha_{1} Z_{t-1}^{2}$. Then

$$
\begin{aligned}
E\left(Z_{t}^{4}\right) & =3 E\left(\alpha_{0}^{2}+2 \alpha_{0} \alpha_{1} Z_{t-1}^{2}+\alpha_{1}^{2} Z_{t-1}^{4}\right) \\
E\left(Z_{t}^{4}\right) & =3 \alpha_{0}^{2}+6 \alpha_{0} \alpha_{1} \frac{\alpha_{0}}{1-\alpha_{1}}+3 \alpha_{1}^{2} E\left(Z_{t-1}^{4}\right) \\
E\left(Z_{t}^{4}\right)\left(1-3 \alpha_{1}^{2}\right) & =\frac{\left(1-\alpha_{1}\right) 3 \alpha_{0}^{2}+6 \alpha_{0}^{2} \alpha_{1}}{1-\alpha_{1}} \\
E\left(Z_{t}^{4}\right) & =\frac{3 \alpha_{0}^{2}\left(1+\alpha_{1}\right)}{\left(1-3 \alpha_{1}^{2}\right)\left(1-\alpha_{1}\right)}
\end{aligned}
$$

where we have used that $E\left(Z_{t}^{2}\right)=\frac{\alpha_{0}}{1-\alpha_{1}}$. This equation can only be satisfied if $0<\alpha_{1}^{2}<1 / 3$, which becomes the condition for finite expectation.

Problem 7.2

We insert $Z_{t}^{2}=h_{t} e_{t}^{2}$ into Y_{t}

$$
Y_{t}=\frac{h_{t} e_{t}^{2}}{\alpha_{0}}=e_{t}^{2}\left(1+\frac{1}{\alpha_{0}} \sum_{i=1}^{p} \alpha_{i} Z_{t-i}^{2}\right)=e_{t}^{2}\left(1+\frac{1}{\alpha_{0}} \sum_{i=1}^{p} \alpha_{0} \alpha_{i} Y_{t-i}\right)=e_{t}^{2}\left(1+\sum_{i=1}^{p} \alpha_{i} Y_{t-i}\right)
$$

where we have used that $Y_{t-i} \alpha_{0}=Z_{t-i}^{2}$.
Next, we are supposed to deduce that $\left\{Y_{t}\right\}$ has the same autocorrelation function as the $\mathrm{AR}(\mathrm{p})$ process W_{t}. In Problem 7.3 we will see that scaling does not change the correlation which means that Y_{t} will have the same autocorrelation as W_{t}. We could also show this by multiplying Y_{t} with Y_{t-h} and take the expectation. Then we would get the same equation for autocovariance as for the $\operatorname{AR}(p)$ process.

Problem 7.3

a)

$$
\begin{aligned}
E\left(Z_{t}^{2} \mid Z_{t-1}^{2}, Z_{t-2}^{2}, \ldots\right) & =E\left(h_{t} e_{t}^{2} \mid Z_{t-1}^{2}, Z_{t-2}^{2}, \ldots\right)=E\left(\alpha_{0}+\sum_{i=1}^{p} \alpha_{i} Z_{t-1}^{2}+\sum_{j=1}^{p} \beta_{j} h_{t-1}\right) \\
& =\alpha_{0}+\sum_{i=1}^{p} \alpha_{i} E\left(Z_{t-1}^{2}\right)+\sum_{j=1}^{p} \beta_{j} E\left(h_{t-1}\right)=\alpha_{0}+\sum_{i=1}^{p} \alpha_{i} Z_{t-1}^{2}+\sum_{j=1}^{p} \beta_{j} h_{t-1} \\
& =h_{t}
\end{aligned}
$$

where we have used that $E\left(e_{t}^{2}\right)=1$.
b) By inserting $U_{t}=Z_{t}^{2}-h_{t}$ into the expression for Z_{t}^{2} and solving for h_{t}, we end up with the equation for h_{t}.
c) In this exercise there is an error in the book. It should be $V_{t}=\alpha_{1} U_{t-1}$. Using this, $\alpha_{j}^{*}=\alpha_{j+1} / \alpha_{1}$ and $U_{t}=Z_{t}^{2}-h_{t}$ in the expression for h_{t} we end up with the initial equation for h_{t}.

Problem 11.3

We compute the third order cumulant function of the process in (11.3.1)

$$
\begin{aligned}
C_{3}(r, s) & =E\left(X_{t} X_{t+r} X_{t+s}\right)=E\left(\sum_{i=0}^{\infty} \psi_{i} Z_{t-i} \sum_{j=0}^{\infty} \psi_{j} Z_{t+r-j} \sum_{k=0}^{\infty} \psi_{k} Z_{t+s-k}\right) \\
& =\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \psi_{k} \psi_{j} \psi_{i} E\left(Z_{t-i} Z_{t+r-j} Z_{t+s-k}\right)=\eta \sum_{i=0}^{\infty} \psi_{i} \psi_{i+r} \psi_{i+s} \\
& =\eta \sum_{i=-\infty}^{\infty} \psi_{i} \psi_{i+r} \psi_{i+s}
\end{aligned}
$$

where $\psi_{i}=0$ if $i<0$.
Establishing (11.3.4) is outside the curriculum of the course, so we skip this.

