
TMA4285 Time series models
Solution to exercise 2, autumn 2018

September 27, 2018

Problem 2.9

a)

E(Yt) = E(Xt) + E(Wt) = E(Xt)

To find E(Xt), we must express Xt as Xt = ψ(B)Zt.

ψ(B) =
1

1− φ(B)
⇐⇒ (1− φB)(1 + ψ1B + ψ2B

2 + ψ3B
3 + . . . ) = 1

By collecting terms with same power of B, we get

ψ1 − φ = 1→ ψ1 = φ

ψ2 − φψ1 = 0→ ψ2 = φ2

ψ3 − φψ2 = 0→ ψ3 = φ3

...

Thus, E(Yt) = E(Xt) = E(Zt + φZt−1 + φ2Zt−2 + . . . ) = 0.

Next, we find the autocovariance function

Cov(Yt, Yt+h) = Cov(Xt +Wt, Xt+h +Wt+h)

= Cov(Xt, Xt+h) + Cov(Xt,Wt+h) + Cov(Wt, Xt+h) + Cov(Wt,Wt+h)

= Cov(Xt, Xt+h) + Cov(Wt,Wt+h)

=

{
σ2
z

1−φ2 + σ2
w, h = 0

σ2
zφ

h

1−φ2 , h > 0
,
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where we have used that the AR(1) process has Cov(Xt, Xt+h) = σ2
zφ

h

1−φ2 , h ≥ 0.

b)

Cov(Ut, Ut+h) = Cov(Yt, Yt+h)− φCov(Yt, Yt−1+h)− φCov(Yt−1, Yt+h) + φ2Cov(Yt−1, Yt−1+h)

We first look at the case h = 0

γ(0) = Cov(Ut, Ut) = Cov(Yt, Yt)− φCov(Yt, Yt−1)− φCov(Yt−1, Yt) + φ2Cov(Yt−1, Yt−1)

= · · · = σ2
z + σ2

w(1 + φ2)

For h = 1

γ(1) = Cov(Ut, Ut+1) = Cov(Yt, Yt+1)− φCov(Yt, Yt)− φCov(Yt−1, Yt+1) + φ2Cov(Yt−1, Yt)

= · · · = −φσ2
z

For h > 1

γ(h) = Cov(Ut, Ut+h) = Cov(Yt, Yt+h)− φCov(Yt, Yt−1+h)− φCov(Yt−1, Yt+h)

+ φ2Cov(Yt−1, Yt−1+h) = 0

c) Since Ut is an MA(1) process, Ut = Vt + θVt−1, where {Vt} ∼ WN(0, σ2
v),

and from before we have Ut = Yt − φYt−1, so the ARMA equation becomes

Yt − φYt−1 = Vt + θVt−1,

where φ is the same as before.
To find the parameters θ and σ2

v , we use γ(0),

Cov(Ut, Ut) = Cov(Vt, Vt) + θ2Cov(Vt−1, Vt−1)

↓
σ2
z + σ2

w(1 + φ2) = σ2
v + θ2σ2

v

and γ(1)

Cov(Ut, Ut+1) = Cov(Vt + θVt−1, Vt+1 + θVt)

↓
−φσ2

z = θσ2
v

To find θ, we must solve

θ

1 + θ2
=

−φσ2
w

σ2
z + σ2

w(1 + φ2)
,

and then σ2
v can be obtained from σ2

v = −φσ2
w

θ
.
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Problem 2.13

a) Assume an AR(1)-model

Xt = φXt−1 + Zt.

Since ρ(h) = φh, (h > 0) for an AR(1)-model, and it has been observed
ˆρ(2) = 0.145, we assume that φ2 << 1. Using Bartlett’s formula,

Var[ ˆρ(1)] ≈ 1

n
(1− φ2)

and

Var[ ˆρ(2)] ≈ 1

n
(1− φ2)(1 + 3φ2)

That is, 95% confidence bounds for ρ(1) are approximately

ˆρ(1)± 1.96√
n

√
1− φ2

Correspondingly, 95% confidence bounds for ρ(2) are approximately

ˆρ(2)± 1.96√
n

√
(1− φ2)(1 + 3φ2)

With φ = φ̂ = ˆρ(1), n = 100, ˆρ(1) = 0.438, ˆρ(2) = 0.145, these bounds
become 0.262, 0.614 for ρ(1) and -0.073, 0.369 for ρ(2). These values are not
consistent with φ = 0.8, since both ρ(1) = 0.8 and ρ(2) = 0.64 are outside
these bounds.

b)Assume an MA(1)-model

Xt = Zt + θZt−1.

Using Bartlett’s formula,

Var[ ˆρ(1)] ≈ 1

n
(1− 3ρ(1)2 + 4ρ(1)4)

and

Var[ ˆρ(2)] ≈ 1

n
(1 + 2ρ(1)2)
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That is, 95% confidence bounds for ρ(1) are approximately

ˆρ(1)± 1.96√
n

√
1− 3ρ(1)2 + 4ρ(1)4

Correspondingly, 95% confidence bounds for ρ(2) are approximately

ˆρ(2)± 1.96√
n

√
1 + 2ρ(1)2

With the numbers as in a), these bounds become 0.290, 0.586 for ρ(1) and
-0.082, 0.378 for ρ(2). θ = 0.6 leads to ρ(1) = θ

1+θ2
= 0.4412, ρ(2) = 0. If

follows that the confidence bounds are consistent with these two values, and
the data are therefore consistent with the MA(1)- model with θ = 0.6
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Problem 2.15

Let X̂n+1 = PnXn+1 = a0 + a1Xn + · · · + anX1. We may assume that
µX(t) = 0. Let S(a0, ..., an) = E[(Xn+1 − X̂n+1)

2] and minimize this with
respect to a0, ..., an.

S(a0, ..., an) = E[(Xn+1 − X̂n+1)
2]

= E[(Xn+1 − a0 − a1Xn − · · · − anX1)
2]

= a20 − 2a0E[Xn+1 − a1Xn − · · · − anX1]

+ E[(Xn+1 − a1Xn − · · · − anX1)
2]

= a20 + E[(Xn+1 − a1Xn − · · · − anX1)
2]

where E[Xn+1 − a1Xn − · · · − anX1] = 0 from the properties of PnXn+h.
Differentiation with respect to ai gives

∂S

∂a0
= 2a0

∂S

∂ai
= −2E[(Xn+1 − a1Xn − · · · − anX1)Xn+1−i], i = 1, ..., n

Putting the partial derivatives equal to zero, we get that S(a0, ..., an) is min-
imized if

a0 = 0

E[(Xn+1 − X̂n+1)Xk] = 0, k = 1, ..., n.

Plugging in the expression for Xn+1 we get that for k = 1, ..., n,

E[(φ1Xn + · · ·+ φpXn−p+1 + Zn+1 − a1Xn − · · · − anX1)Xk] = 0

This is clearly satisfied if we let{
ai = φi, 1 ≤ i ≤ p

ai = 0, i > p

Since the best linear predictor is unique, this is the one. The mean square
error is

E[(Xn+1 − X̂n+1)2] = E[Z2
n+1] = σ2.
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Problem 2.18

Given the MA(1) process Xt = Zt − θZt−1, where |θ| < 1, and Zt ∼
WN(0, σ2). Represented as an AR(∞) process, it assumes the form

Zt = Xt + θXt−1 + θ2Xt−2 + ...

Setting t = n+ 1 in the last equation and applying P̂n to each side, leads to
the result

P̂nXn+1 = −
∞∑
j=1

θjXn+1−j = θZn

Prediction error = Xn+1 − P̂nXn+1 = Zn+1. Hence, MSE = E[Z2
n+1] = σ2.

Problem 2.19

The given MA(1)-model is Xt = Zt − Zt−1 : t ∈ Z, where Zt ∼ WN(0, σ2).
The vector a = (a1, ..., an)T of the coefficients that provide the best linear
predictor (BLP) of Xn+1 in terms of X = (Xn, ..., X1)

T satisfies the equation

Γna = γn

where the covariance matrix Γn = Cov(X,X) and γn = Cov(Xn+1,X) =
(γ(1), ..., γ(n))T . Since γ(0) = 2σ2, γ(1) = −σ2, γ(h) = 0 for |h| > 1, it
follows that

Γn = σ2



2 −1 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1− 2 −1
0 0 0 0 . . . 0 −1 2


and γn = σ2(−1, 0, ..., 0)T .

By solving the system Γna = γn, (by for example looking at a finite n or
by performing Gauss elimination), the solution is given as follows

aj =
i

n+ 1
− 1
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Hence it is obtained that

PnXn+1 =
n∑
j=1

(
i

n+ 1
− 1)Xn+1−j

The mean square error is

E[(Xn+1 − PnXn+1)
2] = γ(0)− aTγn = 2σ2 + a1σ

2 = σ2

(
1 +

1

n+ 1

)

Problem 2.20

We have to prove that Cov(Xn − X̂n, Xj) = E[(Xn − X̂n)Xj] = 0 for j =
1, ..., n − 1. This follows from equations (2.5.5) for suitable values of n and
h with a0 = 0 (since we may assume that E[Xn] = 0). This clearly implies
that

E[(Xn − X̂n)(Xk − X̂k)] = 0

for k = 1, ...., n− 1, since X̂k is a linear combination of X1, ..., Xk−1.
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γ(0) = 1 + 0.32 + 0.42 = 1.25
γ(1) = 0.3− 0.4 · 0.3 = 0.18
γ(2) = −0.4
γ(h) = 0, h > 2

γ(−h) = γ(h)

b)

Yt = Z̃t − 1.2Z̃t−1 − 1.6Z̃t−2

γ(0) = 0.25(1 + 1.22 + 1.62) = 1.25
γ(1) = 0.25(−1.2 + 1.6 · 1.2) = 0.18
γ(2) = −1.6 · 0.25 = −0.4
γ(h) = 0, h > 2

γ(−h) = γ(h)

That is, we obtain the same ACVF as in a).

Exercise 2.5
∑∞

j=1 θjXn−j converges absolutely (with probability 1) since

E[
∞∑

j=1

|θ|j |Xn−j |] ≤
∞∑

j=1

|θ|jE[|Xn−j |]

≤
∞∑

j=1

|θ|j
√

γ(0) + µ2 by Cauchy-Schwartz inequality

< ∞ since|θ| < 1

That is,
∑∞

j=1 |θ|j |Xn−j | < ∞ with probability 1.
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Mean square convergence of Sm =
∑m

j=1 θjXn−j as m →∞ can be veri�ed by invoking
Cauchy's criterion. For m > k

E[|Sm − Sk|2] = E[(
m∑

j=k+1

θjXn−j)2]

=
m∑

i=k+1

m∑

j=k+1

θi+jE[Xn−iXn−j ]

E[|Sm − Sk|2] = E[(
m∑

j=k+1

θjXn−j)2] =
m∑

i=k+1

m∑

j=k+1

θi+jE[Xn−iXn−j ]

=
m∑

i=k+1

m∑

j=k+1

θi+j
(
γ(i− j) + µ2

)

≤
m∑

i=k+1

m∑

j=k+1

|θ|i+j
(
γ(0) + µ2

)
=

(
γ(0) + µ2

)( m∑

j=k+1

|θ|j
)2

→ 0 as k, m →∞

since
∑∞

j=1 |θ|j < ∞. Hence, by Cauchy's mutual convergence criterion, mean square
convergence is guaranteed.

Exercise 2.7

1
1− φz

=
− 1

φz

1− 1
φz

= − 1
φz

(
1 +

1
φz

+
1

(φz)2
+ . . .

)

= −
∞∑

j=1

(φz)−j

since |φz| > 1.

Exercise 2.8
Xt = φXt−1 + Zt
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Xt = φXt−1 + Zt

= Zt + φ(Zt−1 + φXt−2)
= . . .

= Zt + φZt−1 + . . . + φnZt−n + φn+1Xt−n−1)

That is
Xt − φn+1Xt−n−1 = Zt + φZt−1 + . . . + φnZt−n

First we calculate
Var(Xt − φn+1Xt−n−1) = γ(0)(1 + φ2n+2)− 2φn+1γ(n + 1)

≤ γ(0)(1 + |φ|2n+2 + 2|φ|n+1) = 4γ(0)

if Xt is stationary and |φ| = 1

Next we calculate
Var(Zt + φZt−1 + . . . + φnZt−n) = nσ2

if |φ| = 1
Since clearly nσ2 > 4γ(0) for su�ciently large n, we have reached a contradiction.

Hence Xt cannot be stationary if |φ| = 1.

Exercise 2.10
Xt − φXt−1 = Zt + θZt−1

where φ = θ = 0.5
According to Section 2.3, equation (2.3.3), we obtain that

Xt =
∞∑

j=0

ψjZt−j

where ψ0 = 1, ψj = (φ + θ)φj−1 = 0.5j−1 for j = 1, 2, . . ..
From Section 2.3, equation (2.3.5), we get

Zt =
∞∑

j=0

πjXt−j

where π0 = 1, πj = −(φ + θ)(−θ)j−1 = −(−0.5)j−1 for j = 1, 2, . . ..
Agrees with the results from ITSM.
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GT Exercises

Exercise 2

a Let’s remember that the expected value can be see as an inner product.
That is,

< Xn, Ym >= E(XnYm)

So, using inner product notation, we can make use of the argument in
the proof preposition 2.1.2 in Time Series Theory and Methods :

| < Xn, Ym > − < X, Y > | = | < Xn, Ym > − < X, Y > + < Xn, Y > − < Xn, Y > |
= | < Xn, Ym − Y > + < Xn −X, Y > |
≤ ||Xn|| ||Ym − Y ||+ ||Xn −X|| ||Y || By Cauchy-Schwarz

Now, given that Xn → X and Ym → Y , then we conclude | < Xn, Ym >
− < X, Y > | → 0 as m,n→∞

b From exercise 1 we know thatE(XnYm|W ) = PM(W )XnYm and Ê(XnYm|W ) =
Ps̄p(1,W )XnYm. Now, based on the property (iv) of projections in Time
Series Theory and Methods :

Let PM denote the projection mapping onto a closed subspace M

PM(W )XnYm → PM(W )XY if ||XnYm −XY || → 0

From part a we know that ||XnYm −XY || → 0, so

PM(W )XnYm → PM(W )XY ≡ E(XnYm|W )→ E(XY |W )

Ps̄p(1,W )XnYm → Ps̄p(1,W )XY ≡ Ê(XnYm|W )→ Ê(XY |W )

c – If
∑∞

j=−∞ ψjZt−j exists =⇒
∑∞

j=−∞ |ψ|2 <∞

If
∑∞

j=−∞ ψjZt−j exists, then limn→∞E
(∑n

j=−n ψjZt−j
)2

exists

since E(Z2
t ) = σ2 <∞ (See proposition 3.3.1 Time Series Theory

1



and Methods).

lim
n→∞

E
( n∑
j=−n

ψjZt−j
)2

= lim
n→∞

E
( n∑
j=−n

n∑
k=−n

ψjψkZt−jZt−k
)

= lim
n→∞

n∑
j=−n

n∑
k=−n

ψjψkE(Zt−jZt−k)

= lim
n→∞

n∑
j=−n

|ψj|2σ2 since E(Zt−jZt−k) = 0 for t 6= k

Since σ2 <∞ and limn→∞E
(∑n

j=−n ψjZt−j
)2
<∞ then

lim
n→∞

n∑
j=−n

|ψj|2 <∞

–
∑∞

j=−∞ |ψ|2 <∞ =⇒
∑∞

j=−∞ ψjZt−j exists

E

( ∞∑
j=−∞

ψjZt−j

)2

= lim
n→∞

E

( n∑
j=−n

ψjZt−j

)2

= lim
n→∞

n∑
j=−n

ψ2
jσ

2

=
∞∑

j=−∞

|ψj|2σ2 <∞

Thus,
∑∞

j=−∞ ψjZt−j exists.

d First of all, let’s proof the convergence in squared mean by making use
of the Cauchy criterion. In order to do it, we will prove:

E(Wm −Wn)
2 → 0 as m,n→∞

2



Let’s assume m > n > 0. Then,

E

( ∞∑
j=−∞

ψjYm−j −
∞∑

k=−∞

ψkYn−k

)2

= E

( m∑
j=n+1

ψjYj

)2

= E

( m∑
j=n+1

m∑
k=n+1

ψjψkYjYk

)

=
m∑

j=n+1

m∑
k=n+1

ψjψkγ(k − j)

≤
m∑

j=n+1

m∑
k=n+1

|ψj| |ψk| |γ(k − j)|

≤
( m∑

j=n+1

|ψj|
)2

γ(0)

which converges to 0 as m,n→∞ since
∑∞

j=−∞ |ψj| <∞
Now, we can prove that W converges absolutely with probability one.

E|W | = E

∣∣∣∣ ∞∑
j=−∞

ψjYt−j

∣∣∣∣
≤

∞∑
j=−∞

|ψj|E|Yt−j|

=≤
∞∑

j=−∞

|ψj| c <∞

Given the stationarity of Yt, we can state

E|Yt| ≤ (E|Yt|2)1/2 = c

e. Linearity:

We aim to prove: PM(αX + βY ) = αPM(X) + βPM(Y ).
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Since M is a linear subspace of H, we know αPM(X) + βPM(Y ) ∈M

As well,

αX + βY − (αPM(X) + βPM(Y )) = α(X − PM(X)) + β(Y − PM(Y ))

By properties of projections, (X −PM(X)) ∈M⊥ and (Y −PM(Y )) ∈
M⊥. Thus, α(X − PM(X)) + β(Y − PM(Y )) ∈ M⊥ because M⊥ is a
linear subspace of H.
So, we can represent αX + βY as the sum of an element of M and an
element of M⊥:

αX +βY = α(X −PM(X))+β(Y −PM(Y ))+−(αPM(X)+βPM(Y ))

And given that, the representation

X = PM(X) + (I − PM)X PM(X) ∈M (I − PM(X)) ∈M⊥

is unique for each X ∈ H, we can conclude α(X − PM(X)) + β(Y −
PM(Y )) is PM(αX + βY ).

Continuity:

Now we aim to prove that if ||Xn −X|| → 0 then PM(Xn)→ PM(X)

First of all, let’s see that ||X||2 = ||PM(X)||2 + ||(I − PM)X||2. By
properties of projections X = PM(X) + (I − PM)X. Thus,

||X||2 =< X,X > =< PMX + (I − PM)X,PMX + (I − PM)X >

=< PMX,PMX > + < PMX, (I − PM)X > + < (I − PM)X,PMX >

+ < (I − PM)X, (I − PM)X >

=< PMX,PMX > + < (I − PM)X, (I − PM)X >

= ||PM(X)||2 + ||(I − PM)X||2
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Since PMX and (I − PM)X are orthogonal.

Thus,

||Xn −X||2 = ||PM(Xn −X)||2 + ||(I − PM)(Xn −X)||2

which let us conclude ||PM(Xn −X)||2 ≤ ||Xn −X||2.

Thus, if ||Xn−X||2 → 0 then ||PM(Xn−X)|| = ||PM(Xn)−PM(X)|| →
0
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