TMA4285 Time series models
Solution to exercise 2, autumn 2018

September 27, 2018

Problem 2.9
a)

E(Y,) = E(Xy) + EW) = E(X)
To find E(X,), we must express X, as X, = ¢(B)Z,.

¥(B) = (1-¢B) 1+ B+ ¢oB* + 3B’ +...) =1

1
- 1-9(B)

By collecting terms with same power of B, we get

Pr—¢p=1=U1=9¢
¢2—¢¢1:0—>¢2:¢2
U3 — Pthg = 0 — hy = ¢

Thus, E(Y,) = E(X,) = E(Z, + ¢Z11 + ¢*Zy_o+...) =0.

Next, we find the autocovariance function

Cov(Yy, Yipn) = Cov(Xy + Wy, Xign + Wign)

= Cov(Xy, Xyin) + Cov(Xy, Wiyp) + Cov(Wy,, Xyip,) + Cov(Wy, Wign)

= COU(Xt7 Xt—i—h) + CO'U(Wt, Wt+h)
{liiy +02, h=0

2 +h
i‘i(z)27 h>0



where we have used that the AR(1) process has Cov(Xy, Xiyp) = %, h > 0.

b)

COU<Ut7 Ut+h) = COU(Yt, Yt+h) - ¢COU(Yt, th1+h) - ¢COU(Y;71> Yt+h) + ¢2COU(Y247 thprh)

We first look at the case h =0

7(0) - COU<Ut7 Ut) = OOU(Yt? Yt) - ¢OOU(}/t7 }/t—l> - QﬁOOU(}/t_l’ )/t) + ¢2COU(}/15—17 )/t—l)
=..=02+02(1+¢%)

For h =1

’7(1) = COU(Ut7 Ut+1) = COU(Yt,YtH) - ¢COU(K§, Yt) - (ZﬁCOU(Y;Ll’ Y2+1) + ¢2COU(Y247 Y%)
N _¢JZ

For h > 1

v(h) = Cov(U;, Upyp) = Cov(Yy, Yien) — ¢Cov(Yy, Yi_14n) — ¢Cov(Yi1, Yitn)
+ ¢*Cov(Yi_1,Yi114) =0

¢) Since U, is an MA(1) process, U, = V; + 0V;_1, where {V;} ~ WN(0,c2),
and from before we have U, = Y; — ¢Y;_1, so the ARMA equation becomes

Yi— oY1=V, +0V,_4,

where ¢ is the same as before.
To find the parameters 6 and o2, we use v(0),

Cov(Uy,Uy) = Cov(V;, V;) + 0*Cov(Vi_1, Vi_1)

1
o2 +o(1+¢*) =02 + 6%

and (1)
Cov(Up, Upyq) = Cov(Vy + 0Vi_1, Vigq + 0V;)
+
—po? = fo?
To find #, we must solve
0 —¢os,

1+602  o2+02(1+¢?)

2 po2,

and then o7 can be obtained from o} = —2%%.
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Problem 2.13
a) Assume an AR(1)-model
X =o¢Xi1+ 2.
Since p(h) = o, (h > 0) for an AR(1)-model, and it has been observed
p(2) = 0.145, we assume that ¢? << 1. Using Bartlett’s formula,

Varlp(1)] =+ (1 - 6?)

and
Var[p(2)] ~ %(1 — ¢?)(1+3¢%)

That is, 95% confidence bounds for p(1) are approximately

p(l)i%ﬂ—w

Correspondingly, 95% confidence bounds for p(2) are approximately

1.96
p(2) £ —=/(1= ¢*)(1 + 36?)
f
With ¢ = ¢ = p(1), n = 100, p(1) = 0.438, p(2) = 0.145, these bounds
become 0.262, 0.614 for p(1) and -0.073, 0.369 for p(2). These values are not
consistent with ¢ = 0.8, since both p(1) = 0.8 and p(2) = 0.64 are outside
these bounds.

b)Assume an MA(1)-model
Xt - Zt + 9Zt71-

Using Bartlett’s formula,

Var[p(1)] & =(1 = 3p(1)* + 4p(1)")

3I>—‘

and

Var[p(2)] ~ —(1+ 2p(1)%)

3I’—‘

w



That is, 95% confidence bounds for p(1) are approximately

o(1) + %ﬂ “3p(12 1 (D)1

Correspondingly, 95% confidence bounds for p(2) are approximately

~ 1.96
2 —/14+2p(1)?
p2) £ 2V 1+ 20(1)
With the numbers as in a), these bounds become 0.290, 0.586 for p(1) and
-0.082, 0.378 for p(2). 6 = 0.6 leads to p(1) = #@92 = 0.4412,p(2) = 0. If
follows that the confidence bounds are consistent with these two values, and
the data are therefore consistent with the MA(1)- model with 6 = 0.6



Problem 2.15

Let X’nﬂ = P, X1 = ayg+ a1 X, + -+ + a,X1. We may assume that
pux(t) = 0. Let S(ag,...,a,) = E[(X,11 — X,11)?] and minimize this with
respect to ag, ..., ay,.

S((lo, .. 7an) = E[(Xn—i-l - Xn+1)2]
= E[(XnJrl — ag — &1Xn — = anX1)2]
= CL(Q) - 2&0E[Xn+1 — aan — e — anXﬂ
+ E[(Xn+1 - aan -t anX1)2]
= a(2) + E[(Xn—H - aan - anXl)Q]
where E[X,, 11 — a1 X,, — -+ — 4, X4] = 0 from the properties of P, X, .
Differentiation with respect to a; gives
oS
— =2
aa,o o
oS .
= —2E[(Xn+1 - Clen — e — anXl)Xnﬁ»lfi]’ 1 = 1, ., n
a;

Putting the partial derivatives equal to zero, we get that S(ay, ..., a,) is min-
imized if

CLO:O

E[(Xn+]_ - Xn+]_)Xk] — O, k - 1, ceey n.
Plugging in the expression for X, we get that for k =1,....n,
E[(¢1Xn + -+ ¢an—p+1 + Zn+1 - aan -t anXl)Xk] - O

This is clearly satisfied if we let

Since the best linear predictor is unique, this is the one. The mean square
error is

E[(Xn1 — Xn+1)2] = E[Z?H—l] =’
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Problem 2.18

Given the MA(1) process X; = Z, — 0Z;_1, where |0] < 1, and Z; ~
WN(0,0?). Represented as an AR(oco) process, it assumes the form

Zt == Xt + HXt,1 + 92Xt72 + ...

Setting ¢ = n + 1 in the last equation and applying P, to each side, leads to
the result

ann+l = - ZernJrlfj =02,
j=1
Prediction error = X411 — PoXpi1 = Zny1. Hence, MSE = E[Z2,,] = o>

Problem 2.19

The given MA(1)-model is Xy = Z; — Z; 1 : t € Z, where Z; ~ WN(0,c?).
The vector a = (ay,...,a,)T of the coefficients that provide the best linear
predictor (BLP) of X,,,; in terms of X = (X,,, ..., X;)7 satisfies the equation

I'a=r,

where the covariance matrix I, = Cov(X,X) and v, = Cov(X,41,X) =
(v(1),....;y(n))T. Since v(0) = 202, y(1) = —0?, y(h) = 0 for |h| > 1, it
follows that

(2 -1 0 o0 0 0 0]
-1 2 -1 0 0 0 0
. |0 -1 2 -1 0 0 0
n=—0 .
0 0 0 0 - 2 -1
(00 0 0 0 -1 2

and v, = 0%(—1,0, ...,0)T.
By solving the system I',a = ~,, (by for example looking at a finite n or
by performing Gauss elimination), the solution is given as follows




Hence it is obtained that

n

Pan+1 = Z(

j=1

7
n+1

- 1)Xn+1*j

The mean square error is

1
Bl(Xusr — PaXosr)?] = 7(0) — aly, = 20° + a10* = o (1 T 1)

Problem 2.20

We have to prove that Cov(X, — X,,, X;) = B[(X, — X,,)X;] = 0 for j =
1,...,n — 1. This follows from equations (2.5.5) for suitable values of n and
h with ag = 0 (since we may assume that E[X,,] = 0). This clearly implies
that

E[(X, — X0)(Xy = X)) = 0

for k=1,.....,n — 1, since X}, is a linear combination of X, ..., X;_1.



TMA4285 Tidsrekker og filterteori

7(0) =1+0.3% +0.4> =1.25
y(1) =0.3-0.4-0.3=0.18
v(2) = —0.4
v(h) =0, h>2

v(=h) =~(h)

b)

Y, =27, — 127 1 —1.6Z;_5

7(0) = 0.25(1 + 1.2% +1.6%) = 1.25
y(1) = 0.25(-1.2+ 1.6 - 1.2) = 0.18
7(2) = —-1.6-0.25=—-0.4
v(h) =0, h>2

)

That is, we obtain the same ACVF as in a).

Exercise 2.5

Z;il 67 X,,_; converges absolutely (with probability 1) since

8

ZW! [ Xn—jl] < Z\G\jE[IXn—jH

8

Z 10 \/~(0) + 2 by Cauchy-Schwartz inequality

j=1
< oo sinceld| <1

That is, Y52, 07| Xy—j] < 0o with probability 1.

Exercise 3If September 16, 2004
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Mean square convergence of Sy, = Z;n:l 67 X,,_; as m — oo can be verified by invoking
Cauchy’s criterion. For m > k

BlIS, — Sl = BIC Y. 07%,.)
j=k+1
= i i O E[X,—i X ]
i=k+1j=k+1
E(|Sm — Skl?] Z 0 X, )% = f: i 0" B[ X i X )
j=k+1 i=k+1 j=k+1
= >3 GG )
i=k+1 j=k+1
<32 GO 42 = (o)) (Y 1)
i=k+1 j=k+1 j=k+1

—0 as k,m—

since > 72, [0 < oo. Hence, by Cauchy’s mutual convergence criterion, mean square
convergence is guaranteed.

Exercise 2.7

1
l—¢z 1-1L
1 1 1
- Gt
== (¢2)77
J=1

since |¢z| > 1.

Exercise 2.8

Xt =0Xi 1+ 2y

Exercise  31f September 16, 2004 Side 3
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X=Xy 1+ 2y
=Zi+ ¢(Z—1 + 0 Xi—2)

=Zi4+¢Zra+ . A" Zen+ " Xy )

That is
X — "Xy r=Zi+ dZ 4.+ "2y
First we calculate
Var(X; — "Xy 1) = 9(0)(1+ ¢™%) — 20"y (n + 1)
<y(O)(1+ [o"H + 20¢[") = 49(0)

if X; is stationary and |¢| =1

Next we calculate

Var(Z; + ¢Zt 1+ ...+ ¢"Zi_p) = no?

if o] = 1
Since clearly no? > 4v(0) for sufficiently large n, we have reached a contradiction.
Hence X; cannot be stationary if |¢| = 1.

Exercise 2.10

Xi =0 X4 1 =24+ 07

where ¢ =0 =10.5
According to Section 2.3, equation (2.3.3), we obtain that

(0]
Xy = Z iz
=0

where ¢ =1, ¢; = (¢ + )"t = 0.5 for j =1,2,....
From Section 2.3, equation (2.3.5), we get

00
Zt = Z Wth_j
7=0

where 1o =1, mj = —(¢ + 0)(—0)7~t = —(=0.5)7"L for j = 1,2,....
Agrees with the results from ITSM.

Exercise  31f September 16, 2004 Side 4



GT Exercises

Exercise 2

a Let’s remember that the expected value can be see as an inner product.
That is,
< X, Y >=E(X,Y,)

So, using inner product notation, we can make use of the argument in
the proof preposition 2.1.2 in Time Series Theory and Methods:

| <X,V >—< X Y>|=[<X,Y,>- <X YVY>+<X,)V >—<X,)Y > |
= <X, Yn-Y>+<X,—- XY >|
< || Xl |V = Y| + || X, — X[ ||Y|] By Cauchy-Schwarz

Now, given that X,, — X and Y,, — Y, then we conclude | < X,,,Y,, >
— <X, Y>|—=0asm,n— o0

b From exercise 1 we know that E(X,Y,,|W) = Py w) XYy, and E(XnYm|W) =
Pgawy X Ym. Now, based on the property (iv) of projections in Time
Series Theory and Methods:

Let P,; denote the projection mapping onto a closed subspace M
Pyuo)yXnYm = Puon XY if || XnY, — XY|| =0
From part a we know that || X,,Y,, — XY|| = 0, so

Paiony XnYm — Puan/ XY = E(X,Y,|W) = B(XY|W)

Pay1,w) XnYm = Py XY = E(X,Yu|W) — E(XY W)

c -~ I iZ jexists = Y2 [Y]* < oo

If Y20 2, exists, then limy, oo B(Y)_, 42, ;)" exists
since E(Z?) = 0% < oo (See proposition 3.3.1 Time Series Theory

1



and Methods).

lim E( i %’thj)z = 7}1_{20 E( i i ijthijtfk)

n—00 -
j=—n j=—mk=—n

= lim SN wkE(Zi—iZi)

j=—nk=—n

= 7}1_)120 Z [w;|?0?  since E(Z;_;jZ; ) =0 for t # k

j=—n

Since 02 < 0o and lim,, o0 E( Z?:_n ijt_j)z < oo then

n
. 2
Jim >l < o0

j=—n

- Z;ozfoo [W]? <00 = Z;‘;,Oo ;2 exists

0 2 n 2
(5 0n) - sme(£oe)

j=—o0 j=-n

n
= lim g 2o
n—00 J

j=-n

[e.@]
= > ¥’ <o

J=—00
Thus,> 7 ;2 exists.

d First of all, let’s proof the convergence in squared mean by making use
of the Cauchy criterion. In order to do it, we will prove:

EW,, —W,)* =0 asm,n— oo

2



Let’s assume m > n > 0. Then,

00 00 2 m 2
E( Z YiYm_j — Z kank) :E( Z %Y})

j=—o0 k=—0o0 j=n+1

Il
=
VR
I
[
T
[
s
<
Ed
=
=
N———

A
NE
&

N
iw
=2

which converges to 0 as m,n — oo since ) |i;| < oo

Now, we can prove that W converges absolutely with probability one.

> Y

j=—o00

< ) eyl ElYi]

j=—o00

o0
=< ) le<oo

j=—o00

E|W|=E

Given the stationarity of Y;, we can state

ElY,| < (BlY,]")"? = ¢

e. Linearity:
We aim to prove: Py (aX + YY) = aPy(X) + 5Py (Y).



Since M is a linear subspace of H, we know aPy(X) + 8Py(Y) € M

As well,
aX + BY — (aPy(X) + BPu(Y)) = (X — Py (X)) + B(Y — Pu(Y))

By properties of projections, (X — Py/(X)) € M+ and (Y — Py (Y)) €
M+, Thus, a(X — Py (X)) + B(Y — Py(Y)) € M+ because M+ is a
linear subspace of H.

So, we can represent aX + BY as the sum of an element of M and an
element of M*:

aX +8Y = a(X = Py(X)) + B(Y — Pu(Y)) + —(aPyu(X) + 8Py (Y))
And given that, the representation

is unique for each X € H, we can conclude a(X — Py (X)) + (Y —
Py(Y)) is Py(aX + BY).

Continuity:

Now we aim to prove that if || X,, — X|| = 0 then Py(X,) — Py (X)

First of all, let’s see that || X||> = ||Pu(X)||* + ||[(I — Py)X]||*>. By
properties of projections X = Py(X) + (I — Py)X. Thus,

1X]]2 =< X, X > =< PuX + (I — Py)X, PuX + (I — Py)X >
=< PyX,PyX >+ < PyX,(I—Py)X >+ < (I —Py)X,PyX >
+<(I—Py)X,(I—Py)X >
=< PyX,PyX >+ <(I—Py)X,(I — Py)X >
= [[Pu (X" + [|(1 = Par) X]|?



Since Py X and (I — Py;)X are orthogonal.

Thus,
1 X0 = X7 = |[Par (X = X)[I* + [[(1 = Par) (X = X
which let us conclude ||Py (X, — X)|]> < || X, — X%

Thus, if || X, — X|[> — 0 then || Py (X, —X)| = || Par(Xn) = Par(X)|] —
0



