TMA4285 Time series models Solution to exercise 2, autumn 2018

September 27, 2018

Problem 2.9

a)

$$
E\left(Y_{t}\right)=E\left(X_{t}\right)+E\left(W_{t}\right)=E\left(X_{t}\right)
$$

To find $E\left(X_{t}\right)$, we must express X_{t} as $X_{t}=\psi(B) Z_{t}$.

$$
\psi(B)=\frac{1}{1-\phi(B)} \Longleftrightarrow(1-\phi B)\left(1+\psi_{1} B+\psi_{2} B^{2}+\psi_{3} B^{3}+\ldots\right)=1
$$

By collecting terms with same power of B, we get

$$
\begin{aligned}
& \psi_{1}-\phi=1 \rightarrow \psi_{1}=\phi \\
& \psi_{2}-\phi \psi_{1}=0 \rightarrow \psi_{2}=\phi^{2} \\
& \psi_{3}-\phi \psi_{2}=0 \rightarrow \psi_{3}=\phi^{3}
\end{aligned}
$$

Thus, $E\left(Y_{t}\right)=E\left(X_{t}\right)=E\left(Z_{t}+\phi Z_{t-1}+\phi^{2} Z_{t-2}+\ldots\right)=0$.
Next, we find the autocovariance function

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{t}, Y_{t+h}\right) & =\operatorname{Cov}\left(X_{t}+W_{t}, X_{t+h}+W_{t+h}\right) \\
& =\operatorname{Cov}\left(X_{t}, X_{t+h}\right)+\operatorname{Cov}\left(X_{t}, W_{t+h}\right)+\operatorname{Cov}\left(W_{t}, X_{t+h}\right)+\operatorname{Cov}\left(W_{t}, W_{t+h}\right) \\
& =\operatorname{Cov}\left(X_{t}, X_{t+h}\right)+\operatorname{Cov}\left(W_{t}, W_{t+h}\right) \\
& = \begin{cases}\frac{\sigma_{z}^{2}}{1-\phi^{2}}+\sigma_{w}^{2}, \quad h=0 \\
\frac{\sigma_{z}^{2} \phi^{h}}{1-\phi^{2}}, & h>0\end{cases}
\end{aligned}
$$

where we have used that the $\operatorname{AR}(1)$ process has $\operatorname{Cov}\left(X_{t}, X_{t+h}\right)=\frac{\sigma_{z}^{2} \phi^{h}}{1-\phi^{2}}, h \geq 0$.
b)
$\operatorname{Cov}\left(U_{t}, U_{t+h}\right)=\operatorname{Cov}\left(Y_{t}, Y_{t+h}\right)-\phi \operatorname{Cov}\left(Y_{t}, Y_{t-1+h}\right)-\phi \operatorname{Cov}\left(Y_{t-1}, Y_{t+h}\right)+\phi^{2} \operatorname{Cov}\left(Y_{t-1}, Y_{t-1+h}\right)$
We first look at the case $h=0$

$$
\begin{aligned}
\gamma(0) & =\operatorname{Cov}\left(U_{t}, U_{t}\right)=\operatorname{Cov}\left(Y_{t}, Y_{t}\right)-\phi \operatorname{Cov}\left(Y_{t}, Y_{t-1}\right)-\phi \operatorname{Cov}\left(Y_{t-1}, Y_{t}\right)+\phi^{2} \operatorname{Cov}\left(Y_{t-1}, Y_{t-1}\right) \\
& =\cdots=\sigma_{z}^{2}+\sigma_{w}^{2}\left(1+\phi^{2}\right)
\end{aligned}
$$

For $h=1$

$$
\begin{aligned}
\gamma(1) & =\operatorname{Cov}\left(U_{t}, U_{t+1}\right)=\operatorname{Cov}\left(Y_{t}, Y_{t+1}\right)-\phi \operatorname{Cov}\left(Y_{t}, Y_{t}\right)-\phi \operatorname{Cov}\left(Y_{t-1}, Y_{t+1}\right)+\phi^{2} \operatorname{Cov}\left(Y_{t-1}, Y_{t}\right) \\
& =\cdots=-\phi \sigma_{z}^{2}
\end{aligned}
$$

For $h>1$

$$
\begin{aligned}
\gamma(h) & =\operatorname{Cov}\left(U_{t}, U_{t+h}\right)=\operatorname{Cov}\left(Y_{t}, Y_{t+h}\right)-\phi \operatorname{Cov}\left(Y_{t}, Y_{t-1+h}\right)-\phi \operatorname{Cov}\left(Y_{t-1}, Y_{t+h}\right) \\
& +\phi^{2} \operatorname{Cov}\left(Y_{t-1}, Y_{t-1+h}\right)=0
\end{aligned}
$$

c) Since U_{t} is an MA(1) process, $U_{t}=V_{t}+\theta V_{t-1}$, where $\left\{V_{t}\right\} \sim W N\left(0, \sigma_{v}^{2}\right)$, and from before we have $U_{t}=Y_{t}-\phi Y_{t-1}$, so the ARMA equation becomes

$$
Y_{t}-\phi Y_{t-1}=V_{t}+\theta V_{t-1}
$$

where ϕ is the same as before.
To find the parameters θ and σ_{v}^{2}, we use $\gamma(0)$,

$$
\begin{aligned}
\operatorname{Cov}\left(U_{t}, U_{t}\right) & =\operatorname{Cov}\left(V_{t}, V_{t}\right)+\theta^{2} \operatorname{Cov}\left(V_{t-1}, V_{t-1}\right) \\
& \downarrow \\
\sigma_{z}^{2}+\sigma_{w}^{2}\left(1+\phi^{2}\right) & =\sigma_{v}^{2}+\theta^{2} \sigma_{v}^{2}
\end{aligned}
$$

and $\gamma(1)$

$$
\begin{gathered}
\operatorname{Cov}\left(U_{t}, U_{t+1}\right)=\operatorname{Cov}\left(V_{t}+\theta V_{t-1}, V_{t+1}+\theta V_{t}\right) \\
\quad \downarrow \\
-\phi \sigma_{z}^{2}=\theta \sigma_{v}^{2}
\end{gathered}
$$

To find θ, we must solve

$$
\frac{\theta}{1+\theta^{2}}=\frac{-\phi \sigma_{w}^{2}}{\sigma_{z}^{2}+\sigma_{w}^{2}\left(1+\phi^{2}\right)},
$$

and then σ_{v}^{2} can be obtained from $\sigma_{v}^{2}=-\frac{\phi \sigma_{w}^{2}}{\theta}$.

Problem 2.13

a) Assume an $\mathrm{AR}(1)$-model

$$
X_{t}=\phi X_{t-1}+Z_{t}
$$

Since $\rho(h)=\phi^{h},(h>0)$ for an $\operatorname{AR}(1)$-model, and it has been observed $\hat{\rho(2)}=0.145$, we assume that $\phi^{2} \ll 1$. Using Bartlett's formula,

$$
\operatorname{Var}[\rho \hat{\rho})] \approx \frac{1}{n}\left(1-\phi^{2}\right)
$$

and

$$
\operatorname{Var}[\hat{\rho(2)}] \approx \frac{1}{n}\left(1-\phi^{2}\right)\left(1+3 \phi^{2}\right)
$$

That is, 95% confidence bounds for $\rho(1)$ are approximately

$$
\rho \hat{(1)} \pm \frac{1.96}{\sqrt{n}} \sqrt{1-\phi^{2}}
$$

Correspondingly, 95% confidence bounds for $\rho(2)$ are approximately

$$
\hat{\rho(2)} \pm \frac{1.96}{\sqrt{n}} \sqrt{\left(1-\phi^{2}\right)\left(1+3 \phi^{2}\right)}
$$

With $\phi=\hat{\phi}=\hat{\rho(1)}, n=100, \rho \hat{(1)}=0.438, \rho \hat{(2)}=0.145$, these bounds become $0.262,0.614$ for $\rho(1)$ and $-0.073,0.369$ for $\rho(2)$. These values are not consistent with $\phi=0.8$, since both $\rho(1)=0.8$ and $\rho(2)=0.64$ are outside these bounds.
b)Assume an MA(1)-model

$$
X_{t}=Z_{t}+\theta Z_{t-1} .
$$

Using Bartlett's formula,

$$
\operatorname{Var}[\rho \hat{(1)}] \approx \frac{1}{n}\left(1-3 \rho(1)^{2}+4 \rho(1)^{4}\right)
$$

and

$$
\operatorname{Var}[\rho(2)] \approx \frac{1}{n}\left(1+2 \rho(1)^{2}\right)
$$

That is, 95% confidence bounds for $\rho(1)$ are approximately

$$
\rho \hat{1}) \pm \frac{1.96}{\sqrt{n}} \sqrt{1-3 \rho(1)^{2}+4 \rho(1)^{4}}
$$

Correspondingly, 95% confidence bounds for $\rho(2)$ are approximately

$$
\hat{\rho(2)} \pm \frac{1.96}{\sqrt{n}} \sqrt{1+2 \rho(1)^{2}}
$$

With the numbers as in a), these bounds become $0.290,0.586$ for $\rho(1)$ and $-0.082,0.378$ for $\rho(2) . \theta=0.6$ leads to $\rho(1)=\frac{\theta}{1+\theta 2}=0.4412, \rho(2)=0$. If follows that the confidence bounds are consistent with these two values, and the data are therefore consistent with the MA(1)- model with $\theta=0.6$

Problem 2.15

Let $\hat{X}_{n+1}=P_{n} X_{n+1}=a_{0}+a_{1} X_{n}+\cdots+a_{n} X_{1}$. We may assume that $\mu_{X}(t)=0$. Let $S\left(a_{0}, \ldots, a_{n}\right)=\mathrm{E}\left[\left(X_{n+1}-\hat{X}_{n+1}\right)^{2}\right]$ and minimize this with respect to a_{0}, \ldots, a_{n}.

$$
\begin{aligned}
S\left(a_{0}, \ldots, a_{n}\right) & =\mathrm{E}\left[\left(X_{n+1}-\hat{X}_{n+1}\right)^{2}\right] \\
& =\mathrm{E}\left[\left(X_{n+1}-a_{0}-a_{1} X_{n}-\cdots-a_{n} X_{1}\right)^{2}\right] \\
& =a_{0}^{2}-2 a_{0} \mathrm{E}\left[X_{n+1}-a_{1} X_{n}-\cdots-a_{n} X_{1}\right] \\
& +\mathrm{E}\left[\left(X_{n+1}-a_{1} X_{n}-\cdots-a_{n} X_{1}\right)^{2}\right] \\
& =a_{0}^{2}+\mathrm{E}\left[\left(X_{n+1}-a_{1} X_{n}-\cdots-a_{n} X_{1}\right)^{2}\right]
\end{aligned}
$$

where $\mathrm{E}\left[X_{n+1}-a_{1} X_{n}-\cdots-a_{n} X_{1}\right]=0$ from the properties of $P_{n} X_{n+h}$.
Differentiation with respect to a_{i} gives

$$
\begin{aligned}
& \frac{\partial S}{\partial a_{0}}=2 a_{0} \\
& \frac{\partial S}{\partial a_{i}}=-2 \mathrm{E}\left[\left(X_{n+1}-a_{1} X_{n}-\cdots-a_{n} X_{1}\right) X_{n+1-i}\right], \quad i=1, \ldots, n
\end{aligned}
$$

Putting the partial derivatives equal to zero, we get that $S\left(a_{0}, \ldots, a_{n}\right)$ is minimized if

$$
\begin{aligned}
& a_{0}=0 \\
& \mathrm{E}\left[\left(X_{n+1}-\hat{X}_{n+1}\right) X_{k}\right]=0, \quad k=1, \ldots, n
\end{aligned}
$$

Plugging in the expression for X_{n+1} we get that for $k=1, \ldots, n$,

$$
\mathrm{E}\left[\left(\phi_{1} X_{n}+\cdots+\phi_{p} X_{n-p+1}+Z_{n+1}-a_{1} X_{n}-\cdots-a_{n} X_{1}\right) X_{k}\right]=0
$$

This is clearly satisfied if we let

$$
\left\{\begin{array}{l}
a_{i}=\phi_{i}, \quad 1 \leq i \leq p \\
a_{i}=0, \quad i>p
\end{array}\right.
$$

Since the best linear predictor is unique, this is the one. The mean square error is

$$
\mathrm{E}\left[\left(X_{n+1}-\hat{X}_{n+1}\right) 2\right]=\mathrm{E}\left[Z_{n+1}^{2}\right]=\sigma^{2} .
$$

Problem 2.18

Given the MA(1) process $X_{t}=Z_{t}-\theta Z_{t-1}$, where $|\theta|<1$, and $Z_{t} \sim$ $W N\left(0, \sigma^{2}\right)$. Represented as an $\operatorname{AR}(\infty)$ process, it assumes the form

$$
Z_{t}=X_{t}+\theta X_{t-1}+\theta^{2} X_{t-2}+\ldots
$$

Setting $t=n+1$ in the last equation and applying \hat{P}_{n} to each side, leads to the result

$$
\hat{P}_{n} X_{n+1}=-\sum_{j=1}^{\infty} \theta^{j} X_{n+1-j}=\theta Z_{n}
$$

Prediction error $=X_{n+1}-\hat{P}_{n} X_{n+1}=Z_{n+1}$. Hence, MSE $=\mathrm{E}\left[Z_{n+1}^{2}\right]=\sigma^{2}$.

Problem 2.19

The given MA(1)-model is $X_{t}=Z_{t}-Z_{t-1}: t \in Z$, where $Z_{t} \sim W N\left(0, \sigma^{2}\right)$. The vector $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{T}$ of the coefficients that provide the best linear predictor (BLP) of X_{n+1} in terms of $X=\left(X_{n}, \ldots, X_{1}\right)^{T}$ satisfies the equation

$$
\Gamma_{n} \mathbf{a}=\gamma_{n}
$$

where the covariance matrix $\Gamma_{n}=\operatorname{Cov}(\mathbf{X}, \mathbf{X})$ and $\gamma_{n}=\operatorname{Cov}\left(X_{n+1}, \mathbf{X}\right)=$ $(\gamma(1), \ldots, \gamma(n))^{T}$. Since $\gamma(0)=2 \sigma^{2}, \gamma(1)=-\sigma^{2}, \gamma(h)=0$ for $|h|>1$, it follows that

$$
\Gamma_{n}=\sigma^{2}\left[\begin{array}{cccccccc}
2 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & \ldots & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1- & 2 & -1 \\
0 & 0 & 0 & 0 & \ldots & 0 & -1 & 2
\end{array}\right]
$$

and $\gamma_{n}=\sigma^{2}(-1,0, \ldots, 0)^{T}$.
By solving the system $\Gamma_{n} \mathbf{a}=\gamma_{n}$, (by for example looking at a finite n or by performing Gauss elimination), the solution is given as follows

$$
a_{j}=\frac{i}{n+1}-1
$$

Hence it is obtained that

$$
P_{n} X_{n+1}=\sum_{j=1}^{n}\left(\frac{i}{n+1}-1\right) X_{n+1-j}
$$

The mean square error is

$$
\mathrm{E}\left[\left(X_{n+1}-P_{n} X_{n+1}\right)^{2}\right]=\gamma(0)-\mathbf{a}^{T} \gamma_{n}=2 \sigma^{2}+a_{1} \sigma^{2}=\sigma^{2}\left(1+\frac{1}{n+1}\right)
$$

Problem 2.20

We have to prove that $\operatorname{Cov}\left(X_{n}-\hat{X}_{n}, X_{j}\right)=\mathrm{E}\left[\left(X_{n}-\hat{X}_{n}\right) X_{j}\right]=0$ for $j=$ $1, \ldots, n-1$. This follows from equations (2.5.5) for suitable values of n and h with $a_{0}=0$ (since we may assume that $\mathrm{E}\left[X_{n}\right]=0$). This clearly implies that

$$
\mathrm{E}\left[\left(X_{n}-\hat{X}_{n}\right)\left(X_{k}-\hat{X}_{k}\right)\right]=0
$$

for $k=1, \ldots, n-1$, since \hat{X}_{k} is a linear combination of X_{1}, \ldots, X_{k-1}.

$$
\begin{aligned}
\gamma(0) & =1+0.3^{2}+0.4^{2}=1.25 \\
\gamma(1) & =0.3-0.4 \cdot 0.3=0.18 \\
\gamma(2) & =-0.4 \\
\gamma(h) & =0, \quad h>2 \\
\gamma(-h) & =\gamma(h)
\end{aligned}
$$

b)

$$
\begin{aligned}
Y_{t} & =\tilde{Z}_{t}-1.2 \tilde{Z}_{t-1}-1.6 \tilde{Z}_{t-2} \\
\gamma(0) & =0.25\left(1+1.2^{2}+1.6^{2}\right)=1.25 \\
\gamma(1) & =0.25(-1.2+1.6 \cdot 1.2)=0.18 \\
\gamma(2) & =-1.6 \cdot 0.25=-0.4 \\
\gamma(h) & =0, \quad h>2 \\
\gamma(-h) & =\gamma(h)
\end{aligned}
$$

That is, we obtain the same ACVF as in a).

Exercise 2.5

$\sum_{j=1}^{\infty} \theta^{j} X_{n-j}$ converges absolutely (with probability 1) since

$$
\begin{aligned}
E\left[\sum_{j=1}^{\infty}|\theta|^{j}\left|X_{n-j}\right|\right] & \leq \sum_{j=1}^{\infty}|\theta|^{j} E\left[\left|X_{n-j}\right|\right] \\
& \leq \sum_{j=1}^{\infty}|\theta|^{j} \sqrt{\gamma(0)+\mu^{2}} \quad \text { by Cauchy-Schwartz inequality } \\
& <\infty \operatorname{since}|\theta|<1
\end{aligned}
$$

That is, $\sum_{j=1}^{\infty}|\theta|^{j}\left|X_{n-j}\right|<\infty$ with probability 1.

Mean square convergence of $S_{m}=\sum_{j=1}^{m} \theta^{j} X_{n-j}$ as $m \rightarrow \infty$ can be verified by invoking Cauchy's criterion. For $m>k$

$$
\begin{aligned}
E\left[\left|S_{m}-S_{k}\right|^{2}\right] & =E\left[\left(\sum_{j=k+1}^{m} \theta^{j} X_{n-j}\right)^{2}\right] \\
& =\sum_{i=k+1}^{m} \sum_{j=k+1}^{m} \theta^{i+j} E\left[X_{n-i} X_{n-j}\right] \\
E\left[\left|S_{m}-S_{k}\right|^{2}\right] & =E\left[\left(\sum_{j=k+1}^{m} \theta^{j} X_{n-j}\right)^{2}\right]=\sum_{i=k+1}^{m} \sum_{j=k+1}^{m} \theta^{i+j} E\left[X_{n-i} X_{n-j}\right] \\
& =\sum_{i=k+1}^{m} \sum_{j=k+1}^{m} \theta^{i+j}\left(\gamma(i-j)+\mu^{2}\right) \\
& \leq \sum_{i=k+1}^{m} \sum_{j=k+1}^{m}|\theta|^{i+j}\left(\gamma(0)+\mu^{2}\right)=\left(\gamma(0)+\mu^{2}\right)\left(\sum_{j=k+1}^{m}|\theta|^{j}\right)^{2} \\
& \rightarrow 0 \text { as } k, m \rightarrow \infty
\end{aligned}
$$

since $\sum_{j=1}^{\infty}|\theta|^{j}<\infty$. Hence, by Cauchy's mutual convergence criterion, mean square convergence is guaranteed.

Exercise 2.7

$$
\begin{aligned}
\frac{1}{1-\phi z} & =\frac{-\frac{1}{\phi z}}{1-\frac{1}{\phi z}} \\
& =-\frac{1}{\phi z}\left(1+\frac{1}{\phi z}+\frac{1}{(\phi z)^{2}}+\ldots\right) \\
& =-\sum_{j=1}^{\infty}(\phi z)^{-j}
\end{aligned}
$$

since $|\phi z|>1$.

Exercise 2.8

$$
X_{t}=\phi X_{t-1}+Z_{t}
$$

$$
\begin{aligned}
X_{t} & =\phi X_{t-1}+Z_{t} \\
& =Z_{t}+\phi\left(Z_{t-1}+\phi X_{t-2}\right) \\
& =\ldots \\
& \left.=Z_{t}+\phi Z_{t-1}+\ldots+\phi^{n} Z_{t-n}+\phi^{n+1} X_{t-n-1}\right)
\end{aligned}
$$

That is

$$
X_{t}-\phi^{n+1} X_{t-n-1}=Z_{t}+\phi Z_{t-1}+\ldots+\phi^{n} Z_{t-n}
$$

First we calculate

$$
\begin{aligned}
\operatorname{Var}\left(X_{t}-\phi^{n+1} X_{t-n-1}\right) & =\gamma(0)\left(1+\phi^{2 n+2}\right)-2 \phi^{n+1} \gamma(n+1) \\
& \leq \gamma(0)\left(1+|\phi|^{2 n+2}+2|\phi|^{n+1}\right)=4 \gamma(0)
\end{aligned}
$$

if X_{t} is stationary and $|\phi|=1$
Next we calculate

$$
\operatorname{Var}\left(Z_{t}+\phi Z_{t-1}+\ldots+\phi^{n} Z_{t-n}\right)=n \sigma^{2}
$$

if $|\phi|=1$
Since clearly $n \sigma^{2}>4 \gamma(0)$ for sufficiently large n, we have reached a contradiction. Hence X_{t} cannot be stationary if $|\phi|=1$.

Exercise 2.10

$$
X_{t}-\phi X_{t-1}=Z_{t}+\theta Z_{t-1}
$$

where $\phi=\theta=0.5$
According to Section 2.3, equation (2.3.3), we obtain that

$$
X_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}
$$

where $\psi_{0}=1, \psi_{j}=(\phi+\theta) \phi^{j-1}=0.5^{j-1}$ for $j=1,2, \ldots$.
From Section 2.3, equation (2.3.5), we get

$$
Z_{t}=\sum_{j=0}^{\infty} \pi_{j} X_{t-j}
$$

where $\pi_{0}=1, \pi_{j}=-(\phi+\theta)(-\theta)^{j-1}=-(-0.5)^{j-1}$ for $j=1,2, \ldots$.
Agrees with the results from ITSM.

GT Exercises

Exercise 2

a Let's remember that the expected value can be see as an inner product. That is,

$$
<X_{n}, Y_{m}>=E\left(X_{n} Y_{m}\right)
$$

So, using inner product notation, we can make use of the argument in the proof preposition 2.1.2 in Time Series Theory and Methods:

$$
\begin{aligned}
\left|<X_{n}, Y_{m}>-<X, Y>\right| & =\left|<X_{n}, Y_{m}>-<X, Y>+<X_{n}, Y>-<X_{n}, Y>\right| \\
& =\left|<X_{n}, Y_{m}-Y>+<X_{n}-X, Y>\right| \\
& \leq\left\|X_{n}\right\|\left\|Y_{m}-Y\right\|+\left\|X_{n}-X\right\|\|Y\| \quad \text { By Cauchy-Schwarz }
\end{aligned}
$$

Now, given that $X_{n} \rightarrow X$ and $Y_{m} \rightarrow Y$, then we conclude $\left|<X_{n}, Y_{m}\right\rangle$ $-<X, Y>\mid \rightarrow 0$ as $m, n \rightarrow \infty$
b From exercise 1 we know that $E\left(X_{n} Y_{m} \mid W\right)=P_{M(W)} X_{n} Y_{m}$ and $\hat{E}\left(X_{n} Y_{m} \mid W\right)=$ $P_{s \bar{p}(1, W)} X_{n} Y_{m}$. Now, based on the property (iv) of projections in Time Series Theory and Methods:

Let P_{M} denote the projection mapping onto a closed subspace M

$$
P_{M(W)} X_{n} Y_{m} \rightarrow P_{M(W)} X Y \quad \text { if } \quad\left\|X_{n} Y_{m}-X Y\right\| \rightarrow 0
$$

From part a we know that $\left\|X_{n} Y_{m}-X Y\right\| \rightarrow 0$, so

$$
\begin{gathered}
P_{M(W)} X_{n} Y_{m} \rightarrow P_{M(W)} X Y \equiv E\left(X_{n} Y_{m} \mid W\right) \rightarrow E(X Y \mid W) \\
P_{s p(1, W)} X_{n} Y_{m} \rightarrow P_{s \bar{p}(1, W)} X Y \equiv \hat{E}\left(X_{n} Y_{m} \mid W\right) \rightarrow \hat{E}(X Y \mid W) \\
\mathbf{c}-\text { If } \sum_{j=-\infty}^{\infty} \psi_{j} Z_{t-j} \text { exists } \Longrightarrow \sum_{j=-\infty}^{\infty}|\psi|^{2}<\infty
\end{gathered}
$$

If $\sum_{j=-\infty}^{\infty} \psi_{j} Z_{t-j}$ exists, then $\lim _{n \rightarrow \infty} E\left(\sum_{j=-n}^{n} \psi_{j} Z_{t-j}\right)^{2}$ exists since $E\left(Z_{t}^{2}\right)=\sigma^{2}<\infty$ (See proposition 3.3.1 Time Series Theory
and Methods).

$$
\begin{aligned}
\lim _{n \rightarrow \infty} E\left(\sum_{j=-n}^{n} \psi_{j} Z_{t-j}\right)^{2} & =\lim _{n \rightarrow \infty} E\left(\sum_{j=-n}^{n} \sum_{k=-n}^{n} \psi_{j} \psi_{k} Z_{t-j} Z_{t-k}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{j=-n}^{n} \sum_{k=-n}^{n} \psi_{j} \psi_{k} E\left(Z_{t-j} Z_{t-k}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{j=-n}^{n}\left|\psi_{j}\right|^{2} \sigma^{2} \quad \text { since } E\left(Z_{t-j} Z_{t-k}\right)=0 \text { for } t \neq k
\end{aligned}
$$

Since $\sigma^{2}<\infty$ and $\lim _{n \rightarrow \infty} E\left(\sum_{j=-n}^{n} \psi_{j} Z_{t-j}\right)^{2}<\infty$ then

$$
\lim _{n \rightarrow \infty} \sum_{j=-n}^{n}\left|\psi_{j}\right|^{2}<\infty
$$

$-\sum_{j=-\infty}^{\infty}|\psi|^{2}<\infty \Longrightarrow \sum_{j=-\infty}^{\infty} \psi_{j} Z_{t-j}$ exists

$$
\begin{aligned}
E\left(\sum_{j=-\infty}^{\infty} \psi_{j} Z_{t-j}\right)^{2} & =\lim _{n \rightarrow \infty} E\left(\sum_{j=-n}^{n} \psi_{j} Z_{t-j}\right)^{2} \\
& =\lim _{n \rightarrow \infty} \sum_{j=-n}^{n} \psi_{j}^{2} \sigma^{2} \\
& =\sum_{j=-\infty}^{\infty}\left|\psi_{j}\right|^{2} \sigma^{2}<\infty
\end{aligned}
$$

Thus, $\sum_{j=-\infty}^{\infty} \psi_{j} Z_{t-j}$ exists.
d First of all, let's proof the convergence in squared mean by making use of the Cauchy criterion. In order to do it, we will prove:

$$
E\left(W_{m}-W_{n}\right)^{2} \rightarrow 0 \quad \text { as } m, n \rightarrow \infty
$$

Let's assume $m>n>0$. Then,

$$
\begin{aligned}
E\left(\sum_{j=-\infty}^{\infty} \psi_{j} Y_{m-j}-\sum_{k=-\infty}^{\infty} \psi_{k} Y_{n-k}\right)^{2} & =E\left(\sum_{j=n+1}^{m} \psi_{j} Y_{j}\right)^{2} \\
& =E\left(\sum_{j=n+1}^{m} \sum_{k=n+1}^{m} \psi_{j} \psi_{k} Y_{j} Y_{k}\right) \\
& =\sum_{j=n+1}^{m} \sum_{k=n+1}^{m} \psi_{j} \psi_{k} \gamma(k-j) \\
& \leq \sum_{j=n+1}^{m} \sum_{k=n+1}^{m}\left|\psi_{j}\right|\left|\psi_{k}\right||\gamma(k-j)| \\
& \leq\left(\sum_{j=n+1}^{m}\left|\psi_{j}\right|\right)^{2} \gamma(0)
\end{aligned}
$$

which converges to 0 as $m, n \rightarrow \infty$ since $\sum_{j=-\infty}^{\infty}\left|\psi_{j}\right|<\infty$
Now, we can prove that W converges absolutely with probability one.

$$
\begin{aligned}
E|W| & =E\left|\sum_{j=-\infty}^{\infty} \psi_{j} Y_{t-j}\right| \\
& \leq \sum_{j=-\infty}^{\infty}\left|\psi_{j}\right| E\left|Y_{t-j}\right| \\
& =\leq \sum_{j=-\infty}^{\infty}\left|\psi_{j}\right| c<\infty
\end{aligned}
$$

Given the stationarity of Y_{t}, we can state

$$
E\left|Y_{t}\right| \leq\left(E\left|Y_{t}\right|^{2}\right)^{1 / 2}=c
$$

e. Linearity:

We aim to prove: $P_{M}(\alpha X+\beta Y)=\alpha P_{M}(X)+\beta P_{M}(Y)$.

Since M is a linear subspace of \mathcal{H}, we know $\alpha P_{M}(X)+\beta P_{M}(Y) \in M$

As well,
$\alpha X+\beta Y-\left(\alpha P_{M}(X)+\beta P_{M}(Y)\right)=\alpha\left(X-P_{M}(X)\right)+\beta\left(Y-P_{M}(Y)\right)$
By properties of projections, $\left(X-P_{M}(X)\right) \in M^{\perp}$ and $\left(Y-P_{M}(Y)\right) \in$ M^{\perp}. Thus, $\alpha\left(X-P_{M}(X)\right)+\beta\left(Y-P_{M}(Y)\right) \in M^{\perp}$ because M^{\perp} is a linear subspace of \mathcal{H}.
So, we can represent $\alpha X+\beta Y$ as the sum of an element of M and an element of M^{\perp} :
$\alpha X+\beta Y=\alpha\left(X-P_{M}(X)\right)+\beta\left(Y-P_{M}(Y)\right)+-\left(\alpha P_{M}(X)+\beta P_{M}(Y)\right)$
And given that, the representation

$$
X=P_{M}(X)+\left(I-P_{M}\right) X \quad P_{M}(X) \in M \quad\left(I-P_{M}(X)\right) \in M^{\perp}
$$

is unique for each $X \in \mathcal{H}$, we can conclude $\alpha\left(X-P_{M}(X)\right)+\beta(Y-$ $\left.P_{M}(Y)\right)$ is $P_{M}(\alpha X+\beta Y)$.

Continuity:

Now we aim to prove that if $\left\|X_{n}-X\right\| \rightarrow 0$ then $P_{M}\left(X_{n}\right) \rightarrow P_{M}(X)$
First of all, let's see that $\|X\|^{2}=\left\|P_{M}(X)\right\|^{2}+\left\|\left(I-P_{M}\right) X\right\|^{2}$. By properties of projections $X=P_{M}(X)+\left(I-P_{M}\right) X$. Thus,

$$
\begin{aligned}
\|X\|^{2}=<X, X> & =<P_{M} X+\left(I-P_{M}\right) X, P_{M} X+\left(I-P_{M}\right) X> \\
& =<P_{M} X, P_{M} X>+<P_{M} X,\left(I-P_{M}\right) X>+<\left(I-P_{M}\right) X, P_{M} X> \\
& +<\left(I-P_{M}\right) X,\left(I-P_{M}\right) X> \\
& =<P_{M} X, P_{M} X>+<\left(I-P_{M}\right) X,\left(I-P_{M}\right) X> \\
& =\left\|P_{M}(X)\right\|^{2}+\left\|\left(I-P_{M}\right) X\right\|^{2}
\end{aligned}
$$

Since $P_{M} X$ and $\left(I-P_{M}\right) X$ are orthogonal.

Thus,

$$
\left\|X_{n}-X\right\|^{2}=\left\|P_{M}\left(X_{n}-X\right)\right\|^{2}+\left\|\left(I-P_{M}\right)\left(X_{n}-X\right)\right\|^{2}
$$

which let us conclude $\left\|P_{M}\left(X_{n}-X\right)\right\|^{2} \leq\left\|X_{n}-X\right\|^{2}$.
Thus, if $\left\|X_{n}-X\right\|^{2} \rightarrow 0$ then $\left\|P_{M}\left(X_{n}-X\right)\right\|=\left\|P_{M}\left(X_{n}\right)-P_{M}(X)\right\| \rightarrow$ 0

