TMA4285 Time series models Solution to exercise 4, autumn 2018

October 2, 2018

Problem 3.1b

We write the ARMA processes as $\phi(B) X_{t}=\theta(B) Z_{t}$. The process $\left\{X_{t}: t \in\right.$ $Z\}$ is causal if and only if $\phi(z) \neq 0$ for each $|z| \leq 1$ and invertible if and only if $\theta(z) \neq 0$ for each $|z| \leq 1$.
$\phi(z)=1+1.9 z+0.88 z^{2}=0$ is solved by $z_{1}=-5 / 4$ and $-10 / 11$. Hence $\left\{X_{t}: t \in Z\right\}$ is not causal.
$\theta(z)=1+0.2 z+0.7 z^{2}=0$ is solved by $z_{1}=-(1-i \sqrt{69}) / 7$ and $z_{2}=$ $-(1+i \sqrt{69}) / 7$. Since $\left|z_{1}\right|=\left|z_{2}\right|=70 / 7>1,\left\{X_{t}: t \in Z\right\}$ is invertible.

Problem 3.4

We have $X_{t}=0.8 X_{t-2}+Z_{t}$, where $\left\{Z_{t}: t \in Z\right\} \sim W N\left(0, \sigma^{2}\right)$. We multiply each side by X_{t-k} and take expected value. Then we get

$$
\mathrm{E}\left[X_{t}, X_{t-k}\right]=0.8 \mathrm{E}\left[X_{t-2}, X_{t-k}\right]+\mathrm{E}\left[Z_{t}, X_{t-k}\right]
$$

which gives us

$$
\begin{aligned}
& \gamma(0)=0.8 \gamma(2)+\sigma^{2} \\
& \gamma(k)=0.8 \gamma(k-2)
\end{aligned}
$$

We use that $\gamma(k)=\gamma(-k)$ and need to solve

$$
\begin{aligned}
& \gamma(0)-0.8 \gamma(2)=\sigma^{2} \\
& \gamma(1)-0.8 \gamma(1)=0 \\
& \gamma(2)-0.8 \gamma(0)=0
\end{aligned}
$$

First we see that $\gamma(1)=0$ and therefore $\gamma(k)=0$ if k is odd. Next we solve for $\gamma(0)$ and we get $\gamma(0)=\sigma^{2} /(1-0.82)$. It follows that $\gamma(2)=\gamma(0) 0.8$, and that $\gamma(4)=\gamma(2) 0.8=\gamma(0) 0.8^{2}$ and hence the ACF is

$$
\rho(k) \begin{cases}1, & k=0 \\ 0.8^{k / 2}, & k \text { even } \\ 0, & \text { else }\end{cases}
$$

The PACF can be computed as $\alpha(0)=1, \alpha(h)=\phi_{h h}$ where $\phi_{h h}$ comes from that the best linear predictor of X_{h+1} has the form

$$
\hat{X}_{h+1}=\sum_{i=1}^{h} \phi_{h i} X_{h+1-i}
$$

For an $\operatorname{AR}(2)$ process we have $\hat{X}_{h+1}=\phi X_{h}+\phi_{2} X_{h-1}$ where we can identify $\alpha(0)=1, \alpha(1)=0, \alpha(2)=0.8$ and $\alpha(h)=0$ for $h \geq 3$.

Problem 3.8

We show that $\left\{W_{t}: t \in \mathbb{Z}\right\}$ is $\operatorname{WN}\left(0, \sigma_{w}^{2}\right)$.

$$
\mathrm{E}\left(W_{t}\right)=\mathrm{E}\left(X_{t}-\frac{1}{\phi} X_{t-1}\right)=0
$$

we compute the ACVF.

$$
\gamma_{W}(h)=\gamma_{X}(h)-\frac{1}{\phi} \gamma_{X}(h+1)-\frac{1}{\phi} \gamma_{X}(h-1)+\frac{1}{\phi^{2}} \gamma_{X}(h)
$$

We use that the $\operatorname{AR}(1)$ series $\left\{X_{t}\right\}$ has $\operatorname{ACVF} \gamma_{X}(h)=\frac{\sigma^{2} \phi^{h}}{1-\phi^{2}}, h \geq 0$. If $h=0$

$$
\gamma_{W}(0)=\frac{\sigma^{2}}{1-\phi^{2}}\left(1-\frac{\phi}{\phi}-\frac{\phi}{\phi}+\frac{1}{\phi^{2}}\right)=\frac{\sigma^{2}}{1-\phi^{2}}\left(1-\frac{1}{\phi^{2}}\right)=\frac{\sigma^{2}}{\phi^{2}} .
$$

For $h \geq 1$, we get $\gamma_{W}(h)=0$. Hence $\left\{W_{t}: t \in \mathbb{Z}\right\}$ is $\mathrm{WN}\left(0, \sigma_{w}^{2}\right)$ with $\sigma_{w}^{2}=\sigma^{2} / \phi^{2}$.

Problem 3.12

For an MA(1) process

$$
\rho(h)=\left\{\begin{array}{l}
1, h=0 \\
\theta /\left(1+\theta^{2}\right),|h|=1 \\
0, \text { else }
\end{array}\right.
$$

Let $\alpha=\theta /\left(1+\theta^{2}\right)$. The system $R_{n} \phi_{n}=\rho_{n}$ becomes

$$
\left(\begin{array}{ccccccc}
1 & \alpha & 0 & 0 & 0 & \ldots & 0 \\
\alpha & 1 & \alpha & 0 & 0 & \ldots & 0 \\
0 & \alpha & 1 & \alpha & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & \alpha & 1
\end{array}\right)\left(\begin{array}{c}
\phi_{n, 1} \\
\phi_{n, 2} \\
\vdots \\
\phi_{n, n-1} \\
\phi_{n, n}
\end{array}\right)=\left(\begin{array}{c}
\alpha \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

By solving this system using Gauss elimination and replacing α by $\theta /\left(1+\theta^{2}\right)$, we get $\phi_{n n}=-(-\theta)^{n} /\left(1+\theta^{2}+\cdots+\theta^{2 n}\right)$.

For an $\operatorname{AR}(2)$ process we have $\hat{X}_{h+1}=\phi_{1} X_{h}+\phi_{2} X_{h-1}$ where we can identify $\alpha(0)=1, \alpha(1)=0, \alpha(2)=0.8$ and $\alpha(h)=0$ for $h \geq 3$.
Problem 3.6. The ACVF for $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is

$$
\begin{aligned}
& \gamma_{X}(t+h, t)=\operatorname{Cov}\left(X_{t+h}, X_{t}\right)=\operatorname{Cov}\left(Z_{t+h}+\theta Z_{t+h-1}, Z_{t}+\theta Z_{t-1}\right) \\
& \quad=\gamma_{Z}(h)+\theta \gamma_{Z}(h+1)+\theta \gamma_{Z}(h-1)+\theta^{2} \gamma_{Z}(h) \\
& \quad= \begin{cases}\sigma^{2}\left(1+\theta^{2}\right), & h=0 \\
\sigma^{2} \theta, & |h|=1\end{cases}
\end{aligned}
$$

On the other hand, the ACVF for $\left\{Y_{t}: t \in \mathbb{Z}\right\}$ is

$$
\begin{aligned}
& \gamma_{Y}(t+h, t)=\operatorname{Cov}\left(Y_{t+h}, Y_{t}\right)=\operatorname{Cov}\left(\tilde{Z}_{t+h}+\theta^{-1} \tilde{Z}_{t+h-1}, \tilde{Z}_{t}+\theta^{-1} \tilde{Z}_{t-1}\right) \\
& \quad=\gamma_{\tilde{Z}}(h)+\theta^{-1} \gamma_{\tilde{Z}}(h+1)+\theta^{-1} \gamma_{\tilde{Z}}(h-1)+\theta^{-2} \gamma_{\tilde{Z}}(h) \\
& \quad= \begin{cases}\sigma^{2} \theta^{2}\left(1+\theta^{-2}\right)=\sigma^{2}\left(1+\theta^{2}\right), & h=0 \\
\sigma^{2} \theta^{2} \theta^{-1}=\sigma^{2} \theta, & |h|=1\end{cases}
\end{aligned}
$$

Hence they are equal.
Problem 3.7. First we show that $\left\{W_{t}: t \in \mathbb{Z}\right\}$ is $\mathrm{WN}\left(0, \sigma_{w}^{2}\right)$.

$$
\mathbb{E}\left[W_{t}\right]=\mathbb{E}\left[\sum_{j=0}^{\infty}(-\theta)^{-j} X_{t-j}\right]=\sum_{j=0}^{\infty}(-\theta)^{-j} \mathbb{E}\left[X_{t-j}\right]=0
$$

since $\mathbb{E}\left[X_{t-j}\right]=0$ for each j. Next we compute the ACVF of $\left\{W_{t}: t \in \mathbb{Z}\right\}$ for $h \geq 0$.

$$
\begin{aligned}
& \gamma_{W}(t+h, t)=\mathbb{E}\left[W_{t+h} W_{t}\right]=\mathbb{E}\left[\sum_{j=0}^{\infty}(-\theta)^{-j} X_{t+h-j} \sum_{k=0}^{\infty}(-\theta)^{-k} X_{t-k}\right] \\
& =\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}(-\theta)^{-j}(-\theta)^{-k} \mathbb{E}\left[X_{t+h-j} X_{t-k}\right]=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}(-\theta)^{-j}(-\theta)^{-k} \gamma_{X}(h-j+k) \\
& =\left\{\gamma_{X}(r)=\sigma^{2}\left(1+\theta^{2}\right) \mathbf{1}_{\{0\}}(r)+\sigma^{2} \theta \mathbf{1}_{\{1\}}(|r|)\right\} \\
& =\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}(-\theta)^{-(j+k)}\left(\sigma^{2}\left(1+\theta^{2}\right) \mathbf{1}_{\{j-k\}}(h)+\sigma^{2} \theta \mathbf{1}_{\{j-k+1\}}(h)+\sigma^{2} \theta \mathbf{1}_{\{j-k-1\}}(h)\right) \\
& =\sum_{j=h}^{\infty}(-\theta)^{-(j+j-h)} \sigma^{2}\left(1+\theta^{2}\right)+\sum_{j=h-1, j \geq 0}^{\infty}(-\theta)^{-(j+j-h+1)} \sigma^{2} \theta \\
& +\sum_{j=h+1}^{\infty}(-\theta)^{-(j+j-h-1)} \sigma^{2} \theta \\
& =\sigma^{2}\left(1+\theta^{2}\right)(-\theta)^{-h} \sum_{j=h}^{\infty}(-\theta)^{-2(j-h)}+\sigma^{2} \theta(-\theta)^{-(h-1)} \sum_{j=h-1, j \geq 0}^{\infty}(-\theta)^{-2(j-(h-1))} \\
& +\sigma^{2} \theta(-\theta)^{-(h+1)} \sum_{j=h+1}^{\infty}(-\theta)^{-2(j-(h+1))} \\
& =\sigma^{2}\left(1+\theta^{2}\right)(-\theta)^{-h} \frac{\theta^{2}}{\theta^{2}-1}+\sigma^{2} \theta(-\theta)^{-(h-1)} \frac{\theta^{2}}{\theta^{2}-1}+\sigma^{2} \theta^{2} \mathbf{1}_{\{0\}}(h) \\
& +\sigma^{2} \theta(-\theta)^{-(h+1)} \frac{\theta^{2}}{\theta^{2}-1} \\
& =\sigma^{2}(-\theta)^{-h} \frac{\theta^{2}}{\theta^{2}-1}\left(1+\theta^{2}-\theta^{2}-1\right)+\sigma^{2} \theta^{2} \mathbf{1}_{\{0\}}(h) \\
& =\sigma^{2} \theta^{2} \mathbf{1}_{\{0\}}(h)
\end{aligned}
$$

Hence, $\left\{W_{t}: t \in \mathbb{Z}\right\}$ is $\mathrm{WN}\left(0, \sigma_{w}^{2}\right)$ with $\sigma_{w}^{2}=\sigma^{2} \theta^{2}$. To continue we have that

$$
W_{t}=\sum_{j=0}^{\infty}(-\theta)^{-j} X_{t-j}=\sum_{j=0}^{\infty} \pi_{j} X_{t-j}
$$

with $\pi_{j}=(-\theta)^{-j}$ and $\sum_{j=0}^{\infty}\left|\pi_{j}\right|=\sum_{j=0}^{\infty} \theta^{-j}<\infty$ so $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is invertible and solves $\phi(B) X_{t}=\theta(B) W_{t}$ with $\pi(z)=\sum_{j=0}^{\infty} \pi_{j} z^{j}=\phi(z) / \theta(z)$. This implies that we must have

$$
\sum_{j=0}^{\infty} \pi_{j} z^{j}=\sum_{j=0}^{\infty}\left(-\frac{z}{\theta}\right)^{j}=\frac{1}{1+z / \theta}=\frac{\phi(z)}{\theta(z)}
$$

Hence, $\phi(z)=1$ and $\theta(z)=1+z / \theta$, i.e. $\left\{X_{t}: t \in \mathbb{Z}\right\}$ satisfies $X_{t}=W_{t}+\theta^{-1} W_{t-1}$.
Problem 3.11. The PACF can be computed as $\alpha(0)=1, \alpha(h)=\phi_{h h}$ where $\phi_{h h}$ comes from that the best linear predictor of X_{h+1} has the form

$$
\hat{X}_{h+1}=\sum_{i=1}^{h} \phi_{h i} X_{h+1-i}
$$

In particular $\alpha(2)=\phi_{22}$ in the expression

$$
\hat{X}_{3}=\phi_{21} X_{2}+\phi_{22} X_{1}
$$

The best linear predictor satisfies

$$
\operatorname{Cov}\left(X_{3}-\hat{X}_{3}, X_{i}\right)=0, \quad i=1,2 .
$$

This gives us

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{3}-\hat{X}_{3}, X_{1}\right)=\operatorname{Cov}\left(X_{3}-\phi_{21} X_{2}-\phi_{22} X_{1}, X_{1}\right) \\
& \quad=\operatorname{Cov}\left(X_{3}, X_{1}\right)-\phi_{21} \operatorname{Cov}\left(X_{2}, X_{1}\right)-\phi_{22} \operatorname{Cov}\left(X_{1}, X_{1}\right) \\
& \quad=\gamma(2)-\phi_{21} \gamma(1)-\phi_{22} \gamma(0)=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{3}-\hat{X}_{3}, X_{2}\right)=\operatorname{Cov}\left(X_{3}-\phi_{21} X_{2}-\phi_{22} X_{1}, X_{2}\right) \\
& \quad=\gamma(1)-\phi_{21} \gamma(0)-\phi_{22} \gamma(1)=0
\end{aligned}
$$

Since we have an MA(1) process it has ACVF

$$
\gamma(h)= \begin{cases}\sigma^{2}\left(1+\theta^{2}\right), & h=0 \\ \sigma^{2} \theta, & |h|=1 \\ 0, & \text { otherwise }\end{cases}
$$

Thus, we have to solve the equations

$$
\begin{aligned}
\phi_{21} \gamma(1)+\phi_{22} \gamma(0) & =0 \\
\left(1-\phi_{22}\right) \gamma(1)-\phi_{21} \gamma(0) & =0
\end{aligned}
$$

Solving this system of equations we find

$$
\phi_{22}=-\frac{\theta^{2}}{\theta^{4}+\theta^{2}+1}
$$

GT Exercises

Exercise 4

a The assumption that the process X is, which is an $\operatorname{ARMA}(2,1)$ process,

$$
\begin{equation*}
X_{t}-\phi_{1} X_{t-1}-\phi_{2} X_{t-2}=Z_{t}+\theta_{t} Z_{t-1} \tag{1}
\end{equation*}
$$

is causal means that there exists a sequence of constants $\left\{\psi_{t}\right\}$ such that $\sum_{j=0}^{\infty}\left|\psi_{j}\right|<\infty$ and

$$
X_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j} \quad \text { for all t }
$$

It also means that $\phi(z)=1-\phi_{1} z-\phi_{2} z^{2} \neq 0$ for all z such that $|z| \leq 1$. Similarly, the assumption of invertibility means that there exist constants $\left\{\pi_{t}\right\}$ such that $\sum_{j=0}^{\infty}\left|\pi_{j}\right|<\infty$ and

$$
Z_{t}=\sum_{j=0}^{\infty} \pi_{j} X_{t-j} \quad \text { for all } \mathrm{t}
$$

It also means that $\theta(z)=1+\theta_{1} z \neq 0$ for all z such that $|z| \leq 1$.
b For an ARMA process the general expression of the sequence $\left\{\psi_{t}\right\}$ such that

$$
X_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j} \quad \text { for all t }
$$

is determined by $\psi(z)=\frac{\theta(z)}{\phi(z)}$, which for an $\operatorname{ARMA}(2,1)$ process means

$$
\left(1-\phi_{1} z_{1}-\phi_{2} z^{2}\right)\left(\psi_{0}+\psi_{1} z+\ldots\right)=1+\theta_{1} z
$$

Thus,

$$
\begin{aligned}
1 & =\psi_{0} \\
\theta_{1}=-\phi_{1} \psi_{0}+\psi_{1} & \Longrightarrow \psi_{1}=\theta_{1}+\phi_{1} \\
0=\theta_{2}=\psi_{2}-\left(\theta_{1}+\phi_{1}\right) \phi_{1}-\phi_{2} & \Longrightarrow \psi_{2}=\theta_{2}+\left(\theta_{1}+\phi_{1}\right) \phi_{1}+\phi_{2}
\end{aligned}
$$

For $j \geq 2$,

$$
\psi_{j}=\phi_{1} \psi_{j-1}+\phi_{2} \psi_{j-2}
$$

a linear combination of the two previous elements in the sequence $\left\{\psi_{j}\right\}$
c If eq. (1) is multiplied on each side by X_{t-k} and expectation is taken on both sides, then

$$
\begin{aligned}
& E\left(X_{t} X_{t-k}\right)-\phi_{1} E\left(X_{t-1} X t-k\right)-\phi_{2} E\left(X_{t-2} X_{t-k}\right)=E\left(Z_{t} X_{t-k}\right)+\theta_{t} E\left(Z_{t-1} X_{t-k}\right) \\
& \gamma(k)-\phi_{1} \gamma(k-1)-\phi_{2} \gamma(k-2)=E\left(\sum_{j=0}^{\infty} \psi_{j} Z_{t} Z_{t-k-j}\right)+\theta_{t} E\left(\sum_{j=0}^{\infty} \psi_{j} Z_{t-1} Z_{t-k-j}\right)
\end{aligned}
$$

which becomes

$$
\gamma(k)-\phi_{1} \gamma(k-1)-\phi_{2} \gamma(k-2)=\sigma^{2} \sum_{j=0}^{2} \theta_{j} \psi_{j-k} \quad 0 \leq k \leq 1
$$

and

$$
\gamma(k)-\phi_{1} \gamma(k-1)-\phi_{2} \gamma(k-2)=0 \quad k \geq 2
$$

Based on it,

$$
\begin{aligned}
& \gamma(0)-\phi_{1} \gamma(1)-\phi_{2} \gamma(2)=\sigma^{2}\left(1+\theta_{1} \psi_{1}\right) \\
& \gamma(1)-\phi_{1} \gamma(0)-\phi_{2} \gamma(1)=\sigma^{2} \theta_{1} \\
& \gamma(2)-\phi_{1} \gamma(1)-\phi_{2} \gamma(0)=0
\end{aligned}
$$

Thus,

$$
\gamma(0)=\frac{1}{\phi_{1}}\left[\left(1-\phi_{2}\right) \gamma(1)-\sigma^{2} \theta_{1}\right]
$$

with

$$
\gamma(1)=\sigma^{2}\left[\frac{\left(1-\phi_{2}^{2}\right) \theta_{1}+\phi_{1}\left(1+\theta_{1} \psi_{1}\right)}{\left(1-\phi_{2}^{2}\right)\left(1-\phi_{2}\right)-\phi_{1}^{2}\left(1+\phi_{2}\right)}\right]
$$

Based on $\gamma(1)$ and $\gamma(0)$ we can compute:

$$
\gamma(k)=\phi_{1} \gamma(k-1)+\phi_{2} \gamma(k-2)
$$

for all $k \geq 2$.
From this recurrence $\rho(k)$ can be computed for all k.
d For the zero-mean process $\left\{X_{t}\right\}$ with $E\left(X_{i} X_{j}\right)=\kappa(i, j)$, the innovation algorithm states the one step predictors \hat{X}_{n+1} are given by

$$
\hat{X}_{n+1}= \begin{cases}0 & \text { if } n=0 \\ \sum_{j=1}^{n} \theta_{n_{j}}\left(X_{n+1-j}-\hat{X}_{n+1-j}\right) & \text { if } n \geq 1\end{cases}
$$

where

$$
\begin{cases}\nu_{0} & =\kappa(1,1) \\ \theta_{n, n-k} & =\nu_{k}^{-1}\left(\kappa(n+1, k+1)-\sum_{j=0}^{k-1} \theta_{k, k-j} \theta_{n, n-j} \nu_{j}\right), \quad k=0,1, \ldots, n-1 \\ \nu_{n} & =\kappa(n+1, n+1)-\sum_{j=0}^{n-1} \theta_{n, n-j}^{2} \nu_{j}\end{cases}
$$

- When $\mathrm{n}=0, \hat{X}_{n+1}=\hat{X}_{1}=0$
- For $n=1$ we have:

$$
\hat{X}_{2}=\theta_{11} X_{1}=\frac{\gamma(1)}{\gamma(0)} X_{1}
$$

since

$$
\begin{aligned}
\theta_{11} & =\nu_{0}^{-1} \kappa(1,0) \\
& =\frac{\gamma(1)}{\gamma(0)}
\end{aligned}
$$

which can be computed making use of the recursion in part c .

- When $n=2$:

$$
\begin{aligned}
\hat{X}_{3} & =\theta_{21}\left(X_{2}-\hat{X}_{2}\right)+\theta_{22}\left(X_{1}-\hat{X}_{1}\right) \\
& =\theta_{21}\left(X_{2}-\frac{\gamma(1)}{\gamma(0)} X_{1}\right)+\theta_{22}\left(X_{1}\right)
\end{aligned}
$$

θ_{21} and θ_{22} are obtained as follows:

$$
\begin{aligned}
\nu_{1} & =\kappa(2,2)-\theta_{11}^{2} \nu_{0} \\
& =\left(\gamma(0)-\theta_{11}^{2} \gamma(0)\right) \\
& =\gamma(0)-\frac{\gamma^{2}(1)}{\gamma(0)} \\
& =\frac{\gamma^{2}(0)-\gamma^{2}(1)}{\gamma(0)}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\theta_{22} & =\frac{\gamma(2)}{\nu_{0}} \\
& =\frac{\gamma(2)}{\gamma(0)}
\end{aligned}
$$

$$
\begin{aligned}
\theta_{21} & =\nu_{1}^{-1}\left[\gamma(1)-\theta_{22} \theta_{11} \nu_{0}\right] \\
& =\frac{\gamma(1)-\frac{\gamma(2) \gamma(1)}{\gamma(0)}}{\frac{\gamma^{2}(0)-\gamma^{2}(1)}{\gamma(0)}} \\
& =\frac{\gamma(1)[\gamma(0)-\gamma(2)]}{\gamma^{2}(0)-\gamma^{2}(1)}
\end{aligned}
$$

- For $n=3$,

$$
\hat{X}_{4}=\theta_{31}\left(X_{3}-\hat{X}_{3}\right)+\theta_{32}\left(X_{2}-\hat{X}_{2}\right)+\theta_{33}\left(X_{1}-\hat{X}_{1}\right)
$$

First, we need to compute ν_{2}

$$
\begin{aligned}
\nu_{2} & =\kappa(3,3)-\theta_{22}^{2} \nu_{0}-\text { theta }_{21}^{2} \nu_{1} \\
& =\gamma(0)\left(1-\theta_{22}^{2}\right)-\theta_{21}^{2}
\end{aligned}
$$

Then,

$$
\theta_{33}=\frac{\gamma(3)}{\gamma(0)}
$$

$$
\theta_{32}=\frac{\gamma(2)-\theta_{11} \theta_{33} \gamma(0)}{\nu_{1}}
$$

and

$$
\theta_{31}=\frac{\gamma(1)-\theta_{22} \theta_{33} \gamma(0)-\theta_{21} \theta_{32} \nu_{1}}{\nu_{2}}
$$

The general expression of the Durbin-Levinson algorithm is

$$
\hat{X}_{n+1}=\phi_{n 1} X_{n}+\cdots+\phi_{n n} X_{1} \text { for } n \geq 1
$$

where $\phi_{11}=\gamma(1) / \gamma(0), \nu_{0}=\gamma(0)$,

$$
\begin{gathered}
\phi_{n n}=\left[\gamma(n)-\sum_{j=1}^{n-1} \phi_{n-1, j} \gamma(n-j)\right] \nu_{n-1}^{-1} \\
{\left[\begin{array}{c}
\phi_{n 1} \\
\vdots \\
\phi_{n, n-1}
\end{array}\right]=\left[\begin{array}{c}
\phi_{n-1,1} \\
\vdots \\
\phi_{n-1, n-1}
\end{array}\right]-\phi_{n n}\left[\begin{array}{c}
\phi_{n-1, n-1} \\
\vdots \\
\phi_{n-1,1}
\end{array}\right]}
\end{gathered}
$$

and

$$
\nu_{n}=\nu_{n-1}\left[1-\phi_{n n}^{2}\right]
$$

$-n=1$

$$
\begin{aligned}
\hat{X}_{2} & =\phi_{11} X_{1} \\
& =\frac{\gamma(1)}{\gamma(0)} X_{1}
\end{aligned}
$$

since $\phi_{11}=\frac{\gamma(1)}{\gamma(0)}$
$-n=2$

$$
\hat{X}_{3}=\phi_{21} X_{2}+\phi_{22} X_{1}
$$

where
$\phi_{22}=\left[\gamma(2)-\phi_{11} \gamma(0)\right] \nu_{1}^{-1}$
with $\nu_{1}=\nu_{0}\left[1-\phi_{11}^{2}\right]=\frac{\gamma^{2}(0)-\gamma^{2}(1)}{\gamma(0)}$. Then,

$$
\phi_{22}=\frac{\gamma(0) \gamma(2)-\gamma^{2}(1)}{\gamma^{2}(0)-\gamma^{2}(1)}
$$

and

$$
\begin{aligned}
\phi_{21} & =\phi_{11}\left(1-\phi_{22}\right) \\
& =\frac{\gamma(1)}{\gamma(0)}\left[1-\frac{\gamma(0) \gamma(2)-\gamma^{2}(1)}{\gamma^{2}(0)-\gamma^{2}(1)}\right]
\end{aligned}
$$

$-n=3$

$$
\hat{X}_{4}=\phi_{31} X_{3}+\phi_{32} X_{2}+\phi_{33} X_{1}
$$

with

$$
\phi_{33}=\left[\gamma(3)-\phi_{21} \gamma(2)-\phi_{22} \gamma(1)\right] \nu_{2}^{-1}
$$

where $\nu_{2}=\nu_{1}\left[1-\phi_{22}^{2}\right]$,

$$
\phi_{32}=\phi_{22}-\phi_{33} \phi_{21}
$$

and

$$
\phi_{31}=\phi_{21}-\phi_{33} \phi_{22}
$$

Both the innovations algorithm and Durbin-Watson algorithm are a recursive way of performing prediction. They also work as a preliminary estimation of ARMA(p, q) processes. Durbin-Watson algorithm is also useful as a way to compute the Partial Autocorrelation Function as seen in part e.
e Based on chapter 8 from Brockwell, Davids (1991),

$$
\alpha(k)=\phi_{k k}, \quad k \geq 1
$$

Then,

$$
\begin{aligned}
& \alpha_{1}=\phi_{11}=\frac{\gamma(1)}{\gamma(0)} \\
& \alpha_{2}=\phi_{22}=\frac{\gamma(0) \gamma(2)-\gamma^{2}(1)}{\gamma^{2}(0)-\gamma^{2}(1)} \\
& \alpha_{3}=\phi_{33}=\left[\gamma(3)-\phi_{21} \gamma(2)-\phi_{22} \gamma(1)\right] \nu_{2}^{-1}
\end{aligned}
$$

and in general

$$
\alpha_{k}=\phi_{k k}=\left[\gamma(k)-\sum_{j=1}^{k-1} \phi_{k-1, j} \gamma(k-j)\right] \nu_{k-1}^{-1}
$$

f For this case, the model parameter Θ is

$$
\Theta=\left(\phi_{1}, \phi_{2}, \theta_{1}, \sigma^{2}\right)
$$

The parameter space depends on the causality and invertibility of the ARMA $(2,1)$ process.
$-\Omega_{\sigma^{2}}=[0, \infty)$.

- The invertibility of the $\operatorname{ARMA}(2,1)$ process means $1+\theta_{1} z \neq 0$ for all $|z| \leq 1$. Then,

$$
\theta_{1} \neq-\frac{1}{z} \quad \text { for all }|z| \leq 1
$$

which implies

$$
\Omega_{\theta_{1}}=(-1,1)
$$

- For the parameters ϕ_{1} and ϕ_{2}, the causality condition means 1 $\phi_{1} z-\phi_{2} z^{2} \neq 0$ for all $|z| \leq 1$. Thus, considering the solutions:

$$
\begin{aligned}
& z_{1}=\frac{\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2} \\
& z_{2}=\frac{\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2},
\end{aligned}
$$

they must satisfy $\left|z_{1}\right|>1$ and $\left|z_{2}\right|>1$. That is:

$$
\begin{aligned}
& \left|\frac{\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}\right|>1 \text { and } \\
& \left|\frac{\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}\right|>1
\end{aligned}
$$

$$
\text { Thus, } \Omega_{\left(\phi_{1}, \phi_{2}\right)}=\left\{\left(\phi_{1}, \phi_{2}\right):\left|\frac{\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}\right|>1 ;\left|\frac{\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}\right|>1\right\}
$$

So,

$$
\Omega_{\Theta}=\Omega_{\left(\phi_{1}, \phi_{2}\right)} \times \Omega_{\theta_{1}} \times \Omega_{\sigma^{2}}
$$

g Based on the commutative diagram of statistics we can affirm that the covariance function $\gamma(h)$ is a parameter since it is unkown and, from part c, $\gamma(0), \gamma(1)$ and $\gamma(k) ; k \geq 2$ can all be expressed as functions of $\Theta=\left(\phi_{1}, \phi_{2}, \theta_{1}, \sigma^{2}\right)$.

