
TMA4285 Time series models
Solution to exercise 4, autumn 2018

October 2, 2018

Problem 3.1b

We write the ARMA processes as φ(B)Xt = θ(B)Zt. The process {Xt : t ∈
Z} is causal if and only if φ(z) 6= 0 for each |z| ≤ 1 and invertible if and only
if θ(z) 6= 0 for each |z| ≤ 1.

φ(z) = 1 + 1.9z + 0.88z2 = 0 is solved by z1 = −5/4 and −10/11. Hence
{Xt : t ∈ Z} is not causal.

θ(z) = 1 + 0.2z + 0.7z2 = 0 is solved by z1 = −(1 − i
√
69)/7 and z2 =

−(1 + i
√
69)/7. Since |z1| = |z2| = 70/7 > 1, {Xt : t ∈ Z} is invertible.

Problem 3.4

We have Xt = 0.8Xt−2 + Zt, where {Zt : t ∈ Z} ∼ WN(0, σ2). We multiply
each side by Xt−k and take expected value. Then we get

E[Xt, Xt−k] = 0.8E[Xt−2, Xt−k] + E[Zt, Xt−k],

which gives us

γ(0) = 0.8γ(2) + σ2

γ(k) = 0.8γ(k − 2)
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We use that γ(k) = γ(−k) and need to solve

γ(0)− 0.8γ(2) = σ2

γ(1)− 0.8γ(1) = 0

γ(2)− 0.8γ(0) = 0

First we see that γ(1) = 0 and therefore γ(k) = 0 if k is odd. Next we solve
for γ(0) and we get γ(0) = σ2/(1− 0.82). It follows that γ(2) = γ(0)0.8, and
that γ(4) = γ(2)0.8 = γ(0)0.82 and hence the ACF is

ρ(k)


1, k = 0

0.8k/2, k even

0, else

The PACF can be computed as α(0) = 1, α(h) = φhh where φhh comes from
that the best linear predictor of Xh+1 has the form

X̂h+1 =
h∑
i=1

φhiXh+1−i.

For an AR(2) process we have X̂h+1 = φXh + φ2Xh−1 where we can identify
α(0) = 1, α(1) = 0, α(2) = 0.8 and α(h) = 0 for h ≥ 3.

Problem 3.8

We show that {Wt : t ∈ Z} is WN(0, σ2
w).

E(Wt) = E(Xt −
1

φ
Xt−1) = 0

we compute the ACVF.

γW (h) = γX(h)−
1

φ
γX(h+ 1)− 1

φ
γX(h− 1) +

1

φ2
γX(h)

We use that the AR(1) series {Xt} has ACVF γX(h) =
σ2φh

1−φ2 , h ≥ 0. If h = 0

γW (0) =
σ2

1− φ2
(1− φ

φ
− φ

φ
+

1

φ2
) =

σ2

1− φ2
(1− 1

φ2
) =

σ2

φ2
.

For h ≥ 1, we get γW (h) = 0. Hence {Wt : t ∈ Z} is WN(0, σ2
w) with

σ2
w = σ2/φ2.
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Problem 3.12

For an MA(1) process

ρ(h) =


1, h = 0

θ/(1 + θ2), |h| = 1,

0, else

Let α = θ/(1 + θ2). The system Rnφn = ρn becomes
1 α 0 0 0 . . . 0
α 1 α 0 0 . . . 0
0 α 1 α 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 . . . α 1




φn,1
φn,2
...

φn,n−1

φn,n

 =


α
0
0
...
0


By solving this system using Gauss elimination and replacing α by θ/(1+θ2),
we get φnn = −(−θ)n/(1 + θ2 + · · ·+ θ2n).
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For an AR(2) process we have X̂h+1 = φ1Xh + φ2Xh−1 where we can identify
α(0) = 1, α(1) = 0, α(2) = 0.8 and α(h) = 0 for h ≥ 3.

Problem 3.6. The ACVF for {Xt : t ∈ Z} is

γX(t + h, t) = Cov(Xt+h, Xt) = Cov(Zt+h + θZt+h−1, Zt + θZt−1)

= γZ(h) + θγZ(h + 1) + θγZ(h− 1) + θ2γZ(h)

=
{

σ2(1 + θ2), h = 0
σ2θ, |h| = 1.

On the other hand, the ACVF for {Yt : t ∈ Z} is

γY (t + h, t) = Cov(Yt+h, Yt) = Cov(Z̃t+h + θ−1Z̃t+h−1, Z̃t + θ−1Z̃t−1)

= γZ̃(h) + θ−1γZ̃(h + 1) + θ−1γZ̃(h− 1) + θ−2γZ̃(h)

=
{

σ2θ2(1 + θ−2) = σ2(1 + θ2), h = 0
σ2θ2θ−1 = σ2θ, |h| = 1.

Hence they are equal.

Problem 3.7. First we show that {Wt : t ∈ Z} is WN
(
0, σ2

w

)
.

E[Wt] = E



∞∑

j=0

(−θ)−jXt−j


 =

∞∑

j=0

(−θ)−jE[Xt−j ] = 0,

since E[Xt−j ] = 0 for each j. Next we compute the ACVF of {Wt : t ∈ Z} for
h ≥ 0.

γW (t + h, t) = E[Wt+hWt] = E



∞∑

j=0

(−θ)−jXt+h−j

∞∑

k=0

(−θ)−kXt−k




=
∞∑

j=0

∞∑

k=0

(−θ)−j(−θ)−kE[Xt+h−jXt−k] =
∞∑

j=0

∞∑

k=0

(−θ)−j(−θ)−kγX(h− j + k)

=
{
γX(r) = σ2(1 + θ2)1{0}(r) + σ2θ1{1}(|r|)

}

=
∞∑

j=0

∞∑

k=0

(−θ)−(j+k)
(
σ2(1 + θ2)1{j−k}(h) + σ2θ1{j−k+1}(h) + σ2θ1{j−k−1}(h)

)

=
∞∑

j=h

(−θ)−(j+j−h)σ2(1 + θ2) +
∞∑

j=h−1,j≥0

(−θ)−(j+j−h+1)σ2θ

+
∞∑

j=h+1

(−θ)−(j+j−h−1)σ2θ

= σ2(1 + θ2)(−θ)−h
∞∑

j=h

(−θ)−2(j−h) + σ2θ(−θ)−(h−1)
∞∑

j=h−1,j≥0

(−θ)−2(j−(h−1))

+ σ2θ(−θ)−(h+1)
∞∑

j=h+1

(−θ)−2(j−(h+1))

= σ2(1 + θ2)(−θ)−h θ2

θ2 − 1
+ σ2θ(−θ)−(h−1) θ2

θ2 − 1
+ σ2θ21{0}(h)

+ σ2θ(−θ)−(h+1) θ2

θ2 − 1

= σ2(−θ)−h θ2

θ2 − 1
(
1 + θ2 − θ2 − 1

)
+ σ2θ21{0}(h)

= σ2θ21{0}(h)
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Hence, {Wt : t ∈ Z} is WN
(
0, σ2

w

)
with σ2

w = σ2θ2. To continue we have that

Wt =
∞∑

j=0

(−θ)−jXt−j =
∞∑

j=0

πjXt−j ,

with πj = (−θ)−j and
∑∞

j=0 |πj | =
∑∞

j=0 θ−j < ∞ so {Xt : t ∈ Z} is invertible and
solves φ(B)Xt = θ(B)Wt with π(z) =

∑∞
j=0 πjz

j = φ(z)/θ(z). This implies that
we must have

∞∑

j=0

πjz
j =

∞∑

j=0

(
−z

θ

)j

=
1

1 + z/θ
=

φ(z)
θ(z)

.

Hence, φ(z) = 1 and θ(z) = 1 + z/θ, i.e. {Xt : t ∈ Z} satisfies Xt = Wt + θ−1Wt−1.

Problem 3.11. The PACF can be computed as α(0) = 1, α(h) = φhh where φhh

comes from that the best linear predictor of Xh+1 has the form

X̂h+1 =
h∑

i=1

φhiXh+1−i.

In particular α(2) = φ22 in the expression

X̂3 = φ21X2 + φ22X1.

The best linear predictor satisfies

Cov(X3 − X̂3, Xi) = 0, i = 1, 2.

This gives us

Cov(X3 − X̂3, X1) = Cov(X3 − φ21X2 − φ22X1, X1)
= Cov(X3, X1)− φ21 Cov(X2, X1)− φ22 Cov(X1, X1)
= γ(2)− φ21γ(1)− φ22γ(0) = 0

and

Cov(X3 − X̂3, X2) = Cov(X3 − φ21X2 − φ22X1, X2)
= γ(1)− φ21γ(0)− φ22γ(1) = 0.

Since we have an MA(1) process it has ACVF

γ(h) =





σ2(1 + θ2), h = 0,
σ2θ, |h| = 1,
0, otherwise.

Thus, we have to solve the equations

φ21γ(1) + φ22γ(0) = 0
(1− φ22)γ(1)− φ21γ(0) = 0.

Solving this system of equations we find

φ22 = − θ2

θ4 + θ2 + 1
.
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GT Exercises

Exercise 4

a The assumption that the process X is, which is an ARMA(2,1) process,

Xt − φ1Xt−1 − φ2Xt−2 = Zt + θtZt−1 (1)

is causal means that there exists a sequence of constants {ψt} such that∑∞
j=0 |ψj| <∞ and

Xt =
∞∑
j=0

ψjZt−j for all t

It also means that φ(z) = 1−φ1z−φ2z
2 6= 0 for all z such that |z| ≤ 1.

Similarly, the assumption of invertibility means that there exist con-
stants {πt} such that

∑∞
j=0 |πj| <∞ and

Zt =
∞∑
j=0

πjXt−j for all t

It also means that θ(z) = 1 + θ1z 6= 0 for all z such that |z| ≤ 1.

b For an ARMA process the general expression of the sequence {ψt} such
that

Xt =
∞∑
j=0

ψjZt−j for all t

is determined by ψ(z) = θ(z)
φ(z)

, which for an ARMA(2,1) process means

(1− φ1z1 − φ2z
2)(ψ0 + ψ1z + . . .) = 1 + θ1z

Thus,

1 = ψ0

θ1 = −φ1ψ0 + ψ1 =⇒ ψ1 = θ1 + φ1

0 = θ2 = ψ2 − (θ1 + φ1)φ1 − φ2 =⇒ ψ2 = θ2 + (θ1 + φ1)φ1 + φ2
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For j ≥ 2,
ψj = φ1ψj−1 + φ2ψj−2

a linear combination of the two previous elements in the sequence {ψj}

c If eq. (1) is multiplied on each side by Xt−k and expectation is taken
on both sides, then

E(XtXt−k)−φ1E(Xt−1Xt− k)−φ2E(Xt−2Xt−k) = E(ZtXt−k)+θtE(Zt−1Xt−k)

γ(k)−φ1γ(k−1)−φ2γ(k−2) = E(
∞∑
j=0

ψjZtZt−k−j)+θtE(
∞∑
j=0

ψjZt−1Zt−k−j)

which becomes

γ(k)− φ1γ(k − 1)− φ2γ(k − 2) = σ2

2∑
j=0

θjψj−k 0 ≤ k ≤ 1

and
γ(k)− φ1γ(k − 1)− φ2γ(k − 2) = 0 k ≥ 2

Based on it,

γ(0)− φ1γ(1)− φ2γ(2) = σ2(1 + θ1ψ1)

γ(1)− φ1γ(0)− φ2γ(1) = σ2θ1

γ(2)− φ1γ(1)− φ2γ(0) = 0

Thus,

γ(0) =
1

φ1

[(1− φ2)γ(1)− σ2θ1]

with

γ(1) = σ2

[
(1− φ2

2)θ1 + φ1(1 + θ1ψ1)

(1− φ2
2)(1− φ2)− φ2

1(1 + φ2)

]
Based on γ(1) and γ(0) we can compute:

γ(k) = φ1γ(k − 1) + φ2γ(k − 2)
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for all k ≥ 2.

From this recurrence ρ(k) can be computed for all k.

d For the zero-mean process {Xt} with E(XiXj) = κ(i, j), the innovation

algorithm states the one step predictors X̂n+1 are given by

X̂n+1 =

{
0 if n = 0∑n

j=1 θnj
(Xn+1−j − X̂n+1−j) if n ≥ 1

where
ν0 = κ(1, 1)

θn,n−k = ν−1
k

(
κ(n+ 1, k + 1)−

∑k−1
j=0 θk,k−jθn,n−jνj

)
, k = 0, 1, . . . , n− 1

νn = κ(n+ 1, n+ 1)−
∑n−1

j=0 θ
2
n,n−jνj

– When n=0, X̂n+1 = X̂1 = 0

– For n = 1 we have:

X̂2 = θ11X1 =
γ(1)

γ(0)
X1

since

θ11 = ν−1
0 κ(1, 0)

=
γ(1)

γ(0)

which can be computed making use of the recursion in part c.

– When n = 2:

X̂3 = θ21(X2 − X̂2) + θ22(X1 − X̂1)

= θ21

(
X2 −

γ(1)

γ(0)
X1

)
+ θ22(X1)
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θ21 and θ22 are obtained as follows:

ν1 = κ(2, 2)− θ2
11ν0

= (γ(0)− θ2
11γ(0))

= γ(0)− γ2(1)

γ(0)

=
γ2(0)− γ2(1)

γ(0)

Then,

θ22 =
γ(2)

ν0

=
γ(2)

γ(0)

θ21 = ν−1
1 [γ(1)− θ22θ11ν0]

=
γ(1)− γ(2)γ(1)

γ(0)

γ2(0)−γ2(1)
γ(0)

=
γ(1)[γ(0)− γ(2)]

γ2(0)− γ2(1)

– For n = 3,

X̂4 = θ31(X3 − X̂3) + θ32(X2 − X̂2) + θ33(X1 − X̂1)

First, we need to compute ν2

ν2 = κ(3, 3)− θ2
22ν0 − theta2

21ν1

= γ(0)(1− θ2
22)− θ2

21

Then,

θ33 =
γ(3)

γ(0)
,
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θ32 =
γ(2)− θ11θ33γ(0)

ν1

and

θ31 =
γ(1)− θ22θ33γ(0)− θ21θ32ν1

ν2

The general expression of the Durbin-Levinson algorithm is

X̂n+1 = φn1Xn + · · ·+ φnnX1for n ≥ 1

where φ11 = γ(1)/γ(0), ν0 = γ(0),

φnn =

[
γ(n)−

n−1∑
j=1

φn−1,jγ(n− j)
]
ν−1
n−1

 φn1
...

φn,n−1

 =

 φn−1,1
...

φn−1,n−1

− φnn
φn−1,n−1

...
φn−1,1


and

νn = νn−1[1− φ2
nn]

– n = 1

X̂2 = φ11X1

=
γ(1)

γ(0)
X1

since φ11 = γ(1)
γ(0)

– n = 2

X̂3 = φ21X2 + φ22X1
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where

φ22 =
[
γ(2)− φ11γ(0)

]
ν−1

1

with ν1 = ν0[1− φ2
11] = γ2(0)−γ2(1)

γ(0)
. Then,

φ22 =
γ(0)γ(2)− γ2(1)

γ2(0)− γ2(1)

and

φ21 = φ11(1− φ22)

=
γ(1)

γ(0)

[
1− γ(0)γ(2)− γ2(1)

γ2(0)− γ2(1)

]
– n = 3

X̂4 = φ31X3 + φ32X2 + φ33X1

with

φ33 =

[
γ(3)− φ21γ(2)− φ22γ(1)

]
ν−1

2

where ν2 = ν1[1− φ2
22],

φ32 = φ22 − φ33φ21

and
φ31 = φ21 − φ33φ22

Both the innovations algorithm and Durbin-Watson algorithm are a
recursive way of performing prediction. They also work as a preliminary
estimation of ARMA(p,q) processes. Durbin-Watson algorithm is also
useful as a way to compute the Partial Autocorrelation Function as
seen in part e.

e Based on chapter 8 from Brockwell, Davids (1991),

α(k) = φkk, k ≥ 1
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Then,

α1 = φ11 =
γ(1)

γ(0)

α2 = φ22 =
γ(0)γ(2)− γ2(1)

γ2(0)− γ2(1)

α3 = φ33 =

[
γ(3)− φ21γ(2)− φ22γ(1)

]
ν−1

2

and in general

αk = φkk =

[
γ(k)−

k−1∑
j=1

φk−1,jγ(k − j)
]
ν−1
k−1

f For this case, the model parameter Θ is

Θ = (φ1, φ2, θ1, σ
2)

The parameter space depends on the causality and invertibility of the
ARMA(2,1) process.

– Ωσ2 = [0,∞).

– The invertibility of the ARMA(2,1) process means 1 + θ1z 6= 0 for
all |z| ≤ 1. Then,

θ1 6= −
1

z
for all |z| ≤ 1

which implies
Ωθ1 = (−1, 1)

– For the parameters φ1 and φ2, the causality condition means 1−
φ1z − φ2z

2 6= 0 for all |z| ≤ 1. Thus, considering the solutions:

z1 =
φ1 −

√
φ2

1 + 4φ2

2

z2 =
φ1 +

√
φ2

1 + 4φ2

2
,
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they must satisfy |z1| > 1 and |z2| > 1. That is:∣∣∣∣φ1 −
√
φ2

1 + 4φ2

2

∣∣∣∣ > 1 and

∣∣∣∣φ1 +
√
φ2

1 + 4φ2

2

∣∣∣∣ > 1

Thus, Ω(φ1,φ2) =

{
(φ1, φ2) :

∣∣∣∣φ1−√φ21+4φ2

2

∣∣∣∣ > 1;

∣∣∣∣φ1+
√
φ21+4φ2

2

∣∣∣∣ > 1

}
So,

ΩΘ = Ω(φ1,φ2) × Ωθ1 × Ωσ2

g Based on the commutative diagram of statistics we can affirm that the
covariance function γ(h) is a parameter since it is unkown and, from
part c, γ(0), γ(1) and γ(k); k ≥ 2 can all be expressed as functions of
Θ = (φ1, φ2, θ1, σ

2).
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