TMA4285 Time series models
Solution to exercise 4, autumn 2018

October 2, 2018

Problem 3.1b

We write the ARMA processes as ¢(B)X; = 0(B)Z;. The process {X; : t €
Z} is causal if and only if ¢(z) # 0 for each |z| < 1 and invertible if and only
if 6(z) # 0 for each |z| < 1.

¢(z) =14 1.92 + 0.8822 = 0 is solved by z; = —5/4 and —10/11. Hence
{X;:t e Z} is not causal.

0(z) = 1+ 0.2z +0.72%2 = 0 is solved by z; = —(1 —iv/69)/7 and 2z, =
—(144+/69)/7. Since |z| = |22| = 70/7 > 1, {X, : t € Z} is invertible.

Problem 3.4

We have X; = 0.8X; o + Z;, where {Z; : t € Z} ~ WN(0,0?%). We multiply
each side by X;  and take expected value. Then we get

E[X:, Xi—x] = 0.8E[ X9, Xi—i] + E[Z:, Xi—4],

which gives us



We use that (k) = y(—k) and need to solve
7(0) = 0.89(2) = o
7(1) — 0.8v(1) =0
7(2) = 0.87(0) = 0
First we see that (1) = 0 and therefore (k) = 0 if k is odd. Next we solve

for 4(0) and we get v(0) = 02/(1 —0.82). It follows that v(2) = v(0)0.8, and
that v(4) = v(2)0.8 = 7(0)0.8? and hence the ACF is

1 k=0
p(k) < 0.8%/2 Kk even
0, else

The PACF can be computed as a(0) = 1, a(h) = ¢p, where ¢pj, comes from
that the best linear predictor of X} ,; has the form

h
Xnp1 = Z OniXht1—i-

=1

For an AR(2) process we have X i1 = X5 + 2 X1 where we can identify
a(0) =1, a(1) =0, a(2) = 0.8 and «(h) = 0 for h > 3.

Problem 3.8
We show that {W; : ¢t € Z} is WN(0,02).
1

E(W,) = E(X, — 5XH) =0

we compute the ACVEF.
1 1 1
Yw(h) = yx(h) — g—b’YX(h +1) - q—bVX(h - 1)+ EVX(h)

We use that the AR(1) series {X;} has ACVF ~x(h) = %, h>0.Ifh=0

o? o o 1 o? 1 o?
=i al-r ot 5=l 5) =
1—-9¢ ¢ ¢ ¢ 1—-¢ ¢ ¢
For h > 1, we get yw(h) = 0. Hence {W; : t € Z} is WN(0,02) with

7 = 06"

Yw (0)




Problem 3.12
For an MA(1) process

1L,Lh=0
p(h) = 6/(1+6%), h] = 1,

0, else

Let a = 60/(1 + 6?). The system R,$, = p, becomes

1 «a 0 0 0 0 On1 «
al a 0 0 0 On,2 0
0O a1l a O 0 ; =10
S A : Lo Onn—1 :

0000 ... a1 O 0

By solving this system using Gauss elimination and replacing a by 6/(1+6?%),
we get @pn = —(=0)"/(1 + 62+ --- +0*").



For an AR(2) process we have X1 = ¢1X, + ¢2X,_1 where we can identify
a(0) =1, a(1) =0, a(2) = 0.8 and a(h) =0 for h > 3.

Problem 3.6. The ACVF for {X; :t € Z} is
vx (t+ h,t) = Cov(Xiqn, Xt) = Cov(Zpwn, + 0Zin—1,Z1 + 02, _4)
=7z(h) + 0vz(h + 1) + Oyz(h — 1) + 6%z (h)
B { o2(1+6%), h=0
T 0%, |h| = 1.
On the other hand, the ACVF for {Y; : t € Z} is
Yy (t 4 h,t) = Cov(Yign, Vi) = Cov(Zpsn + 0 Zein1,Zs + 071 Z, 1)
=7z(h) + 607 yz(h+ 1)+ 0 vz (h — 1) + 0>y, (h)
B { o20?(1+072)=02(1+6%), h=0
T 020207 = 0%, |h| = 1.
Hence they are equal.
Problem 3.7. First we show that {W; : t € Z} is WN (0,02).

EW] =E [Z(—Q)_th—j] =Y (-0)7E[X, ;] =0,

Jj=0 J=0

since E[X;_;] = 0 for each j. Next we compute the ACVF of {W, : t € Z} for
h > 0.

oo

’7w(t + h, t) = E[WthhWt} =E [Z(_a)_thJrhj i(—@)_kth]

Jj=0

k=0
=3 S O I X i X = 3 3 () (—0) P (h =+ )

0 §=0 k=0
= {x(r) = (1 +0°) 110y (r) + o011y (Ir]) }

= Z Z(—H)_(j+k) (02(1 + 92)1{j—k}(h) + 0'291{j7k+1}(h) + 0291{j—k—1}(h))

7=0 k=0
oo oo
= (=0 UM 14 6%) 4 Y (—0)" U2
j=h j=h—1,j>0
+ Y (=0)" TR
j=h+1
=0?(1+0%)(=0)™" > (=0)7207M 4 6%0(—0)" "N " (—g) 720~ (A1)
j=h j=h—1,5>0
+029(70)7(h+1) Z (70)72(j7(h+1))
j=h+1
_ 2 o 92
=o?(1 4 6%)(-0) h92_1+029(—9) (n 1>ﬁ+ o201y (h)
2 —(h+1) 9*
+0°0(—0) 71

2

02 —1
= 0'2921{0}(/1)

=o2(—f)~" (1+6%—6%—1) + 0?6%1 ) (h)
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Hence, {W; : t € Z} is WN (0,02) with 02 = 626%. To continue we have that

Wt = Z(_G)_th_j = ZTFth_j,
7=0 7=0

with m; = (—6) 7 and Yo lmil =327, 077 < oo so {X; :t € Z} is invertible and
solves ¢(B)X; = (B)W; with m(z) = 7% 72/ = ¢(2)/6(z). This implies that
we must have

- j_oo zZ\7 _ _ 9(2)
;”ﬂ'z -2 (-5) _le/a_ 0(z)

=0
Hence, ¢(z) = 1 and 0(z) = 1+ 2/0, i.e. {X; : t € Z} satisfies X; = W, + 071 W,_;.

Problem 3.11. The PACF can be computed as o(0) = 1, a(h) = ¢pn where ¢pp,
comes from that the best linear predictor of X1 has the form

h
X1 =D bniXni1i
i=1

In particular a(2) = @92 in the expression

X3 = ¢ Xo + 22 X1
The best linear predictor satisfies

Cov(Xs5— X3, X;) =0, i=1,2.

This gives us

COV(Xs - X37X1) = COV(Xs — 21 X9 — ¢22X1,X1)
= Cov(X3, X1) — ¢21 Cov(Xa, X1) — ¢a2 Cov(X1, X1)
=7(2) = P217(1) — P227(0) = 0

and

Cov(X3 — X37X2) = Cov(X3 — 921 X2 — ¢22X1, X2)
=7(1) — ¢217(0) — p227(1) = 0.

Since we have an MA(1) process it has ACVF

02(1+02)7 h =0,
(k) =4 0%, bl =1,
0, otherwise.

Thus, we have to solve the equations

$217(1) + ¢227(0) =
(1= ¢22)7(1) — ¢217(0) =
Solving this system of equations we find
02

bn= g
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GT Exercises

Exercise 4

a The assumption that the process X is, which is an ARMA(2,1) process,
Xi =01 Xo 1 — 02Xy 0 =24+ 0244 (1)

is causal means that there exists a sequence of constants {¢,} such that
> o | < oo and

Xi =Y ;Z_;  forallt
j=0

It also means that ¢(z) = 1 — @12 — ¢92® # 0 for all z such that |z| < 1.
Similarly, the assumption of invertibility means that there exist con-
stants {m;} such that > 7% |m;| < oo and

Zy = Z X for all t
=0
It also means that §(z) = 14 612 # 0 for all z such that |z] < 1.

b For an ARMA process the general expression of the sequence {1} such
that

X =Y ;Z_;  forallt
j=0

is determined by ¥ (z) = Z(é)), which for an ARMA(2,1) process means

(1 — qblzl — ¢222)<'¢0 + 1/112 + .. ) =1+ 012
Thus,

1 =1y
0= —d1o+ 11 = Y1 =01+ P
0="0y =1y — (01 + 1)p1 — P2 = Yo =0y + (01 + ¢1) 1 + @2



For j > 2,
Y = P11 + P20

a linear combination of the two previous elements in the sequence {v;}

If eq. (1) is multiplied on each side by X, and expectation is taken
on both sides, then

E(X X))~ B(Xi 1 Xt — k) =62 E(Xy 2 Xy ) = E(ZXe ) +0.B(Ze1 Xo k)

Y(k) =1y (k=1)=¢oy(k=2) = EQ ;22 4 ) +0E( v Zi1Z0 k)
j=0 Jj=0

which becomes

2
Y(k) = (k= 1) = goy(k—2) =0” Y Oh;  0<k<1
=0

and
(k) = giyk —1) — goy(k—2) =0  k>2

Based on it,

Y(0) — p1y(1) — $2y(2) = 0*(1 + b131)

(1) = 617(0) = ¢2y(1) = o6

7(2) = ¢17(1) — $27(0) =
Thus, X

7(0) = a[(l — ¢2)y(1) — o°61]

with

(1—¢3)01 + ¢1(1 + 61¢)
(1—03)(1 — ¢2) — $3(1 + ¢o)

Based on (1) and v(0) we can compute:

(k) = g1y(k = 1) + g2y (k - 2)

(1) =0

2



for all £k > 2.

From this recurrence p(k) can be computed for all k.

d For the zero-mean process {X;} with E(X;X;) = (i, j), the innovation
algorithm states the one step predictors X,, 1 are given by

X = 0 ifn=0
m Z?:1 enj (Xn+1—j - Xn+1_j) ifn>1

where
2 =r(1,1)
Ot =g (5(n+ 1k +1) = X0 O jibnngry), k=0,1,...
Vp, — KJ(TL + 17 n—+ ]-) - 27;:_01 eg,nijj

— When n=0, X,,.; = X; =0

— For n = 1 we have:

. 1
Xy =01 X, = MXl

7(0)
since
011 = v 'k(1,0)
_ 2
7(0)
which can be computed making use of the recursion in part c.
— When n = 2:

Xs = 091 (Xs — XQ) + 02 ( X7 — Xl)

= 0y (X2 — %Xl) + 650(X1)



051 and 699 are obtained as follows:

v = K(2,2) — 62,1
= (7(0) — 6717(0))
_ (1)
=10~ %0
20— ()
7(0)

Then,

091 = 7/1_1[7(1) — 029611 1)]
- 7(1) @)@

— For n = 3,
X, = 031 (X3 — X:’,) + O32( X5 — Xz) + Os3( X1 — X1)
First, we need to compute 14

vy = K(3,3) — 03,0y — thetas, i
=7(0)(1 — 932) - 931

Then,

033 = ——=

v(3)
(0)’



oy — 7(2) - 9119337(0)
32 =

%1

and

i — V(1) — O220337(0) — 0210321
31 =

Vg

The general expression of the Durbin-Levinson algorithm is
Xn+1 = ¢ Xn+ -+ O Xqforn > 1

where ¢11 = 7(1)/7(0), 1 = ~(0),

n—1
¢nn = |:7(n) - Z ¢n—1,j7(n - .]):| ngll
j=1
¢n1 ¢n—1,1 an—l,n—l
gbn,n—l ¢n—1,n—1 an—l,l
and
Un = 7/71—1[1 - ¢in]
—n=1
XZ = ¢11Xl
1
_ Wy
7(0)

—

since ¢q1 = %
-—n=2

X5 = ¢ Xo + $22 X3



where
(o2 = [7(2) - ¢11’7(0)]V1_1

with vy = [l — ¢%] = %. Then,

1(0)v(2) = 7*(1)

P2 = a0y - (1)
and
P21 = P11(1 — ¢a2)
_ (1) [1 0 (2) - 72(1)]
7(0) 72(0) —~*(1)
-n=3 A
Xy = 931 X3 + 30X + P33X4
with

P33 = {7(3) — $217(2) — ¢22V(1)} vy
where vy = 11[1 — ¢,

¢32 = ¢22 - ¢33¢21

and

¢31 = ¢21 - ¢33¢22

Both the innovations algorithm and Durbin-Watson algorithm are a
recursive way of performing prediction. They also work as a preliminary
estimation of ARMA (p,q) processes. Durbin-Watson algorithm is also
useful as a way to compute the Partial Autocorrelation Function as
seen in part e.

e Based on chapter 8 from Brockwell, Davids (1991),

a(k) = ¢, k=>1



Then,

a3 = ¢33 = {7(3) — P217(2) — ga2v(1) Vz_l

and in general

k—1 =

W = Pk = {V(k) - Z G157 (k= ) | vy

j=1 -

f For this case, the model parameter © is

@ = (¢17 ¢2701702)

The parameter space depends on the causality and invertibility of the
ARMA(2,1) process.

— Q,2 = [0,00).

— The invertibility of the ARMA(2,1) process means 1+ 6,z # 0 for
all |z| < 1. Then,

1
0, #—— forall 2| <1
2

which implies
Q91 = (_17 1)

— For the parameters ¢; and ¢,, the causality condition means 1 —
G12 — a2 # 0 for all |z| < 1. Thus, considering the solutions:

Zl:¢1—\/¢%+4¢2
2

22:¢1+\/¢%+4¢2
2 )




they must satisfy |21] > 1 and |25 > 1. That is:

SR I
P14+ /01 + 4o o1
2

1=/ $3+4¢2

2

Thus, Qg,.40) = {<¢1,¢2> : Cha Al

> 1;

g

So,
Q@ = Q(¢>1:¢>2) X le X ng

g Based on the commutative diagram of statistics we can affirm that the
covariance function ~(h) is a parameter since it is unkown and, from
part ¢, ¥(0), v(1) and v(k); k > 2 can all be expressed as functions of
@ - (¢1, ¢2, 91, 0'2).



