TMA4285 Time series models Solution to exercise 5, autumn 2018

October 16, 2018

Problem A. 7

We want to show that $(\mathbf{X}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu})$ has a chi square distribution with n degrees of freedom. We have that $\mathbf{Z}=\boldsymbol{\Sigma}^{1 / 2}(\mathbf{X}-\boldsymbol{\mu})$ is normal with mean 0 and covariance Σ.

$$
\begin{aligned}
(\mathbf{X}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu}) & =(\mathbf{X}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1 / 2} \boldsymbol{\Sigma}^{-1 / 2}(\mathbf{X}-\boldsymbol{\mu})=\left[\boldsymbol{\Sigma}^{-1 / 2}(\mathbf{X}-\boldsymbol{\mu})\right]^{T} \boldsymbol{\Sigma}^{-1 / 2}(\mathbf{X}-\boldsymbol{\mu}) \\
& =\mathbf{Z}^{T} \mathbf{Z}=Z_{1}^{2}+Z_{2}^{2}+\cdots+Z_{n}^{2} \sim \chi_{n}^{2}
\end{aligned}
$$

where we have used that the sum of squared standard normal stochastic variables are chi square distributed.

Problem 5.8

We begin by taking the natural logarithm of the likelihood L,

$$
\ln L\left(\boldsymbol{\phi}, \boldsymbol{\theta}, \sigma^{2}\right)=-\frac{n}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{1}{2} \ln \left(r_{0} \ldots r_{n-1}\right)-\frac{1}{2 \sigma^{2}} \sum_{j=1}^{n} \frac{\left(X_{j}-\hat{X}_{j}\right)^{2}}{r_{j-1}}
$$

To derive equation (5.2.10), we differentiate $\ln L\left(\boldsymbol{\phi}, \boldsymbol{\theta}, \sigma^{2}\right)$ with respect to σ^{2}

$$
\frac{\partial \ln L\left(\boldsymbol{\phi}, \boldsymbol{\theta}, \sigma^{2}\right)}{\partial \sigma^{2}}=-\frac{n}{2} \frac{1}{\sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{j=1}^{n} \frac{\left(X_{j}-\hat{X}_{j}\right)^{2}}{r_{j-1}}
$$

We set this equal to zero and solve for σ^{2}. This gives

$$
\hat{\sigma}^{2}=n^{-1} S(\hat{\boldsymbol{\phi}}, \hat{\boldsymbol{\theta}})
$$

where $S(\hat{\boldsymbol{\phi}}, \hat{\boldsymbol{\theta}})=\sum_{j=1}^{n} \frac{\left(X_{j}-\hat{X}_{j}\right)^{2}}{r_{j-1}}$ (equation (5.2.11)).
We insert the estimator for σ^{2} into the log likelihood function and get

$$
\begin{aligned}
\ln L\left(\boldsymbol{\phi}, \boldsymbol{\theta}, \sigma^{2}\right) & =-\frac{n}{2} \ln \left(2 \pi n^{-1} S(\boldsymbol{\phi}, \boldsymbol{\theta})\right)-\frac{1}{2} \ln \left(r_{0} \ldots r_{n-1}\right)-\frac{1}{2 n^{-1} S(\boldsymbol{\phi}, \boldsymbol{\theta})} \sum_{j=1}^{n} \frac{\left(X_{j}-\hat{X}_{j}\right)^{2}}{r_{j-1}} \\
& =-\frac{n}{2} \ln \left(2 \pi n^{-1} S(\boldsymbol{\phi}, \boldsymbol{\theta})\right)-\frac{1}{2} \ln \left(r_{0} \ldots r_{n-1}\right)-\frac{n}{2}
\end{aligned}
$$

We see that in order to maximize the last equation with respect to $\boldsymbol{\phi}$ and $\boldsymbol{\theta}$, we must minimize

$$
\ln \left(n^{-1} S(\hat{\boldsymbol{\phi}}, \hat{\boldsymbol{\theta}})\right)+n^{-1} \sum_{j=1}^{n} \ln r_{j-1}
$$

Problem 5.13

The result of Problem A.7: $(\mathbf{X}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu})$ has a chi square distribution with n degrees of freedom. We want to use this and the approximate largesample normal distribution of the maximum likelihood estimator $\hat{\phi}_{p}, \hat{\phi}_{p} \sim$ $\mathcal{N}\left(\phi, n^{-1} \sigma^{2} \Gamma_{p}^{-1}\right)$, to establish (5.5.1).

$$
\begin{aligned}
& \mathrm{E}\left(Y_{n+1}-\hat{\phi}_{1} Y_{n}-\ldots \hat{\phi}_{p} Y_{n+1-p}\right)^{2}=\sigma^{2}+\mathrm{E}\left[\left(\hat{\phi}_{p}-\phi_{p}\right)^{T} \Gamma_{p}\left(\hat{\phi}_{p}-\phi_{p}\right)\right] \\
& =\sigma^{2}+\frac{\sigma^{2}}{n} \mathrm{E}\left[\left(\hat{\phi}_{p}-\phi_{p}\right)^{T} \frac{n}{\sigma^{2}} \Gamma_{p}\left(\hat{\phi}_{p}-\phi_{p}\right)\right]=\sigma^{2}+\frac{\sigma^{2}}{n} \mathrm{E}\left[\left(\hat{\phi}_{p}-\phi_{p}\right)^{T}\left(n^{-1} \sigma^{2} \Gamma_{p}^{-1}\right)^{-1}\left(\hat{\phi}_{p}-\phi_{p}\right)\right] \\
& =\sigma^{2}+\frac{\sigma^{2}}{n} p=\sigma^{2}\left(1+\frac{p}{n}\right)
\end{aligned}
$$

Chapter 5

Problem 5.1. We begin by writing the Yule-Walker equations. $\left\{Y_{t}: t \in \mathbb{Z}\right\}$ satisfies

$$
Y_{t}-\phi_{1} Y_{t-1}-\phi_{2} Y_{t-2}=Z_{t}, \quad\left\{Z_{t}: t \in \mathbb{Z}\right\} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

Multiplying this equation with Y_{t-k} and take expectation gives

$$
\gamma(k)-\phi_{1} \gamma(k-1)-\phi_{2} \gamma(k-2)= \begin{cases}\sigma^{2} & k=0 \\ 0 & k \geq 1\end{cases}
$$

We rewrite the first three equations as

$$
\phi_{1} \gamma(k-1)+\phi_{2} \gamma(k-2)= \begin{cases}\gamma(k) & k=1,2 \\ \gamma(0)-\sigma^{2} & k=0\end{cases}
$$

Introducing the notation

$$
\boldsymbol{\Gamma}_{2}=\left(\begin{array}{ll}
\gamma(0) & \gamma(1) \\
\gamma(1) & \gamma(0)
\end{array}\right), \boldsymbol{\gamma}_{2}=\binom{\gamma(1)}{\gamma(2)}, \boldsymbol{\phi}=\binom{\phi_{1}}{\phi_{2}}
$$

we have $\boldsymbol{\Gamma}_{2} \boldsymbol{\phi}=\boldsymbol{\gamma}_{2}$ and $\sigma^{2}-\gamma(0)-\boldsymbol{\phi}^{T} \boldsymbol{\gamma}_{2}$. We replace $\boldsymbol{\Gamma}_{2}$ by $\hat{\boldsymbol{\Gamma}}_{2}$ and $\boldsymbol{\gamma}_{2}$ by $\hat{\boldsymbol{\gamma}}_{2}$ and solve to get an estimate $\hat{\boldsymbol{\phi}}$ for $\boldsymbol{\phi}$. That is, we solve

$$
\hat{\boldsymbol{\Gamma}}_{2} \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\gamma}}_{2} \quad \hat{\sigma}^{2}=\hat{\gamma}(0)-\hat{\boldsymbol{\phi}}^{T} \hat{\boldsymbol{\gamma}}_{2}
$$

Hence

$$
\begin{aligned}
\hat{\boldsymbol{\phi}} & =\hat{\boldsymbol{\Gamma}}_{2}^{-1} \hat{\gamma}_{2}=\frac{1}{\hat{\gamma}(0)^{2}-\hat{\gamma}(1)^{2}}\left(\begin{array}{cc}
\hat{\gamma}(0) & -\hat{\gamma}(1) \\
-\hat{\gamma}(1) & \hat{\gamma}(0)
\end{array}\right)\binom{\hat{\gamma}(1)}{\hat{\gamma}(2)} \\
& =\frac{1}{\hat{\gamma}(0)^{2}-\hat{\gamma}(1)^{2}}\left(\begin{array}{cc}
\hat{\gamma}(0) \hat{\gamma}(1) & -\hat{\gamma}(1) \hat{\gamma}(2) \\
-\hat{\gamma}(1)^{2} & \hat{\gamma}(0) \hat{\gamma}(2)
\end{array}\right)
\end{aligned}
$$

We get that

$$
\begin{aligned}
& \hat{\phi}_{1}=\frac{(\hat{\gamma}(0)-\hat{\gamma}(2)) \hat{\gamma}(1)}{\hat{\gamma}(0)^{2}-\hat{\gamma}(1)^{2}}=1.32 \\
& \hat{\phi}_{2}=\frac{\hat{\gamma}(0) \hat{\gamma}(2)-\hat{\gamma}(1)^{2}}{\hat{\gamma}(0)^{2}-\hat{\gamma}(1)^{2}}=-0.634 \\
& \hat{\sigma}^{2}=\hat{\gamma}(0)-\hat{\phi}_{1} \hat{\gamma}(1)-\hat{\phi}_{2} \hat{\gamma}(2)=289.18
\end{aligned}
$$

We also have that $\hat{\boldsymbol{\phi}} \sim \operatorname{AN}\left(\boldsymbol{\phi}, \sigma^{2} \boldsymbol{\Gamma}_{2}^{-1} / n\right)$ and approximately $\hat{\boldsymbol{\phi}} \sim \operatorname{AN}\left(\boldsymbol{\phi}, \hat{\sigma}^{2} \hat{\boldsymbol{\Gamma}}_{2}^{-1} / n\right)$. Here

$$
\hat{\sigma}^{2} \hat{\boldsymbol{\Gamma}}_{2}^{-1} / n=\frac{289.18}{100}\left(\begin{array}{cc}
0.0021 & -0.0017 \\
-0.0017 & 0.0021
\end{array}\right)=\left(\begin{array}{cc}
0.0060 & -0.0048 \\
-0.0048 & 0.0060
\end{array}\right)
$$

So we have approximately $\hat{\phi}_{1} \sim N\left(\phi_{1}, 0.0060\right)$ and $\hat{\phi}_{2} \sim N\left(\phi_{2}, 0.0060\right)$ and the confidence intervals are

$$
\begin{aligned}
& I_{\phi_{1}}=\hat{\phi}_{1} \pm \lambda_{0.025} \sqrt{0.006}=1.32 \pm 0.15 \\
& I_{\phi_{2}}=\hat{\phi}_{2} \pm \lambda_{0.025} \sqrt{0.006}=-0.634 \pm 0.15
\end{aligned}
$$

Problem 5.3. a) $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is causal if $\phi(z) \neq 0$ for $|z| \leq 1$ so let us check for which values of ϕ this can happen. $\phi(z)=1-\phi z-\phi^{2} z^{2}$ so putting this equal to zero implies

$$
z^{2}+\frac{z}{\phi}-\frac{1}{\phi^{2}}=0 \Rightarrow z_{1}=-\frac{1-\sqrt{5}}{2 \phi} \text { and } z_{2}=-\frac{1+\sqrt{5}}{2 \phi}
$$

Furthermore $\left|z_{1}\right|>1$ if $|\phi|<(\sqrt{5}-1) / 2=0.61$ and $\left|z_{2}\right|>1$ if $|\phi|<(1+\sqrt{5}) / 2=$ 1.61. Hence, the process is causal if $|\phi|<0.61$.
b) The Yule-Walker equations are

$$
\gamma(k)-\phi \gamma(k-1)-\phi^{2} \gamma(k-2)=\left\{\begin{array}{cc}
\sigma^{2} & k=0 \\
0 & k \geq 1
\end{array}\right.
$$

Rewriting the first 3 equations and using $\gamma(k)=\gamma(-k)$ gives

$$
\begin{aligned}
& \gamma(0)-\phi \gamma(1)-\phi^{2} \gamma(2)=\sigma^{2} \\
& \gamma(1)-\phi \gamma(0)-\phi^{2} \gamma(1)=0 \\
& \gamma(2)-\phi \gamma(1)-\phi^{2} \gamma(0)=0
\end{aligned}
$$

Multiplying the third equation by ϕ^{2} and adding the first gives

$$
\begin{aligned}
-\phi^{3} \gamma(1)-\phi \gamma(1)-\phi^{4} \gamma(0)+\gamma(0) & =\sigma^{2} \\
\gamma(1)-\phi \gamma(0)-\phi^{2} \gamma(1) & =0
\end{aligned}
$$

We solve the second equation to obtain

$$
\phi=-\frac{1}{2 \rho(1)} \pm \sqrt{\frac{1}{4 \rho(1)^{2}}+1}
$$

Inserting the estimated values of $\hat{\gamma}(0)$ and $\hat{\gamma}(1)=\hat{\gamma}(0) \hat{\rho}(1)$ gives the solutions $\hat{\phi}=\{0.509,-1.965\}$ and we choose the causal solution $\hat{\phi}=0.509$. Inserting this value in the expression for σ^{2} we get

$$
\hat{\sigma}^{2}=-\hat{\phi}^{3} \hat{\gamma}(1)-\hat{\phi} \hat{\gamma}(1)-\hat{\phi}^{4} \hat{\gamma}(0)+\hat{\gamma}(0)=2.985
$$

Problem 5.4. a) Let us construct a test to see if the assumption that $\left\{X_{t}-\mu\right.$: $t \in \mathbb{Z}\}$ is $\mathrm{WN}\left(0, \sigma^{2}\right)$ is reasonable. To this end suppose that $\left\{X_{t}-\mu: t \in \mathbb{Z}\right\}$ is WN $\left(0, \sigma^{2}\right)$. Then, since $\rho(k)=0$ for $k \geq 1$ we have that $\hat{\rho}(k) \sim \operatorname{AN}(0,1 / n)$. A 95% confidence interval for $\rho(k)$ is then $I_{\rho(k)}=\hat{\rho}(k) \pm \lambda_{0.025} / \sqrt{200}$. This gives us

$$
\begin{aligned}
I_{\rho(1)} & =0.427 \pm 0.139 \\
I_{\rho(2)} & =0.475 \pm 0.139 \\
I_{\rho(3)} & =0.169 \pm 0.139
\end{aligned}
$$

Clearly $0 \notin I_{\rho(k)}$ for any of the observed $k=1,2,3$ and we conclude that it is not reasonable to assume that $\left\{X_{t}-\mu: t \in \mathbb{Z}\right\}$ is white noise.
b) We estimate the mean by $\hat{\mu}=\bar{x}_{200}=3.82$. The Yule-Walker estimates is given by

$$
\hat{\boldsymbol{\phi}}=\hat{\mathbf{R}}_{2}^{-1} \hat{\boldsymbol{\rho}}_{2}, \quad \hat{\sigma}^{2}=\hat{\gamma}(0)\left(1-\hat{\boldsymbol{\rho}}_{2}^{T} \hat{\mathbf{R}}_{2}^{-1} \hat{\boldsymbol{\rho}}_{2}\right)
$$

where

$$
\hat{\boldsymbol{\phi}}=\binom{\hat{\phi}_{1}}{\hat{\phi}_{2}}, \hat{\mathbf{R}}_{2}=\left(\begin{array}{cc}
\hat{\rho}(0) & \hat{\rho}(1) \\
\hat{\rho}(1) & \hat{\rho}(0)
\end{array}\right), \hat{\boldsymbol{\rho}}_{2}=\binom{\hat{\rho}(1)}{\hat{\rho}(2)} .
$$

Solving this system gives the estimates $\hat{\phi}_{1}=0.2742, \hat{\phi}_{2}=0.3579$ and $\hat{\sigma}^{2}=0.8199$. c) We construct a 95% confidence interval for μ to test if we can reject the hypothesis that $\mu=0$. We have that $\bar{X}_{200} \sim \mathrm{AN}(\mu, \nu / n)$ with

$$
\nu=\sum_{h=-\infty}^{\infty} \gamma(h) \approx \hat{\gamma}(-3)+\hat{\gamma}(-2)+\hat{\gamma}(-1)+\hat{\gamma}(0)+\hat{\gamma}(1)+\hat{\gamma}(2)+\hat{\gamma}(3)=3.61
$$

An approximate 95% confidence interval for μ is then

$$
I=\bar{x}_{n} \pm \lambda_{0.025} \sqrt{\nu / n}=3.82 \pm 1.96 \sqrt{3.61 / 200}=3.82 \pm 0.263
$$

Since $0 \notin I$ we reject the hypothesis that $\mu=0$.
d) We have that approximately $\hat{\boldsymbol{\phi}} \sim \operatorname{AN}\left(\phi, \hat{\sigma}^{2} \hat{\boldsymbol{\Gamma}}_{2}^{-1} / n\right)$. Inserting the observed values we get

$$
\frac{\hat{\sigma}^{2} \hat{\boldsymbol{\Gamma}}_{2}^{-1}}{n}=\left(\begin{array}{ll}
0.0050 & -0.0021 \\
-0.0021 & 0.0050
\end{array}\right)
$$

and hence $\hat{\phi}_{1} \sim \operatorname{AN}\left(\phi_{1}, 0.0050\right)$ and $\hat{\phi}_{2} \sim \operatorname{AN}\left(\phi_{2}, 0.0050\right)$. We get the 95% confidence intervals

$$
\begin{aligned}
& I_{\phi_{1}}=\hat{\phi}_{1} \pm \lambda_{0.025} \sqrt{0.005}=0.274 \pm 0.139 \\
& I_{\phi_{2}}=\hat{\phi}_{2} \pm \lambda_{0.025} \sqrt{0.005}=0.358 \pm 0.139
\end{aligned}
$$

e) If the data were generated from an $\operatorname{AR}(2)$ process, then the PACF would be $\alpha(0)=1, \hat{\alpha}(1)=\hat{\rho}(1)=0.427, \hat{\alpha}(2)=\hat{\phi}_{2}=0.358$ and $\hat{\alpha}(h)=0$ for $h \geq 3$.

Problem 5.11. To obtain the maximum likelihood estimator we compute as if the process were Gaussian. Then the innovations

$$
\begin{aligned}
& X_{1}-\hat{X}_{1}=X_{1} \sim N\left(0, \nu_{0}\right) \\
& X_{2}-\hat{X}_{2}=X_{2}-\phi X_{1} \sim N\left(0, \nu_{1}\right)
\end{aligned}
$$

where $\nu_{0}=\sigma^{2} r_{0}=\mathbb{E}\left[\left(X_{1}-\hat{X}_{1}\right)^{2}\right], \nu_{1}=\sigma^{2} r_{1}=\mathbb{E}\left[\left(X_{2}-\hat{X}_{2}\right)^{2}\right]$. This implies $\nu_{0}=\mathbb{E}\left[X_{1}^{2}\right]=\gamma(0), r_{0}=1 /\left(1-\phi^{2}\right)$ and $\nu_{1}=\mathbb{E}\left[\left(X_{2}-\hat{X}_{2}\right)^{2}\right]=\gamma(0)-2 \phi \gamma(1)+\phi^{2} \gamma(0)$ and hence

$$
r_{1}=\frac{\gamma(0)\left(1+\phi^{2}\right)-2 \phi \gamma(1)}{\sigma^{2}}=\frac{1+\phi^{2}-2 \phi^{2}}{1-\phi^{2}}=1
$$

Here we have used that $\gamma(1)=\sigma^{2} \phi /\left(1-\phi^{2}\right)$. Since the distribution of the innovations is normal the density for $X_{j}-\hat{X}_{j}$ is

$$
f_{X_{j}-\hat{X}_{j}}=\frac{1}{\sqrt{2 \pi \sigma^{2} r_{j-1}}} \exp \left(-\frac{x^{2}}{2 \sigma^{2} r_{j-1}}\right)
$$

and the likelihood function is

$$
\begin{aligned}
& L\left(\phi, \sigma^{2}\right)=\prod_{j=1}^{2} f_{X_{j}-\hat{X}_{j}}=\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)^{2} r_{0} r_{1}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\frac{\left(x_{1}-\hat{x}_{1}\right)^{2}}{r_{0}}+\frac{\left(x_{2}-\hat{x}_{2}\right)^{2}}{r_{1}}\right)\right\} \\
& \quad=\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)^{2} r_{0} r_{1}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\frac{x_{1}^{2}}{r_{0}}+\frac{\left(x_{2}-\phi x_{1}\right)^{2}}{r_{1}}\right)\right\}
\end{aligned}
$$

We maximize this by taking logarithm and then differentiate:

$$
\begin{aligned}
& \log L\left(\phi, \sigma^{2}\right)=-\frac{1}{2} \log \left(4 \pi^{2} \sigma^{4} r_{0} r_{1}\right)-\frac{1}{2 \sigma^{2}}\left(\frac{x_{1}^{2}}{r_{0}}+\frac{\left(x_{2}-\phi x_{1}\right)^{2}}{r_{1}}\right) \\
& \quad=-\frac{1}{2} \log \left(4 \pi^{2} \sigma^{4} /\left(1-\phi^{2}\right)\right)-\frac{1}{2 \sigma^{2}}\left(x_{1}^{2}\left(1-\phi^{2}\right)+\left(x_{2}-\phi x_{1}\right)^{2}\right) \\
& \quad=-\log (2 \pi)-\log \left(\sigma^{2}\right)+\frac{1}{2} \log \left(1-\phi^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{1}^{2}\left(1-\phi^{2}\right)+\left(x_{2}-\phi x_{1}\right)^{2}\right)
\end{aligned}
$$

Differentiating yields

$$
\begin{aligned}
& \frac{\partial l\left(\phi, \sigma^{2}\right)}{\partial \sigma^{2}}=-\frac{1}{\sigma^{2}}+\frac{1}{2 \sigma^{4}}\left(x_{1}^{2}\left(1-\phi^{2}\right)+\left(x_{2}-\phi x_{1}\right)^{2}\right) \\
& \frac{\partial l\left(\phi, \sigma^{2}\right)}{\partial \phi}=\frac{1}{2} \cdot \frac{-2 \phi}{1-\phi^{2}}+\frac{x_{1} x_{2}}{\sigma^{2}}
\end{aligned}
$$

Putting these expressions equal to zero gives $\sigma^{2}=\frac{1}{2}\left(x_{1}^{2}\left(1-\phi^{2}\right)+\left(x_{2}-\phi x_{1}\right)^{2}\right)$ and then after some computations $\phi=2 x_{1} x_{2} /\left(x_{1}^{2}+x_{2}^{2}\right)$. Inserting the expression for ϕ is the equation for σ gives the maximum likelihood estimators

$$
\hat{\sigma}^{2}=\frac{\left(x_{1}^{2}-x_{2}^{2}\right)^{2}}{2\left(x_{1}^{2}+x_{2}^{2}\right)} \text { and } \hat{\phi}=\frac{2 x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}}
$$

GT Exercises

Exercise 4

a Let

$$
Y_{t}=\mu+\phi Y_{t-1}+Z_{t}
$$

It can be rewritten as:

$$
\begin{equation*}
Y_{t}^{*}=\phi Y_{t-1}^{*}+Z_{t} \tag{1}
\end{equation*}
$$

with $Y_{t}^{*}=Y_{t}-\mu$.
Making use of the Durbin-Levinson algorithm for Y_{t} with

$$
\begin{aligned}
& \hat{\nu}_{0}=E\left[Y_{1}^{*}+\hat{\mu}-P_{0} Y_{1}^{*}-\hat{\mu}\right]^{2}=\hat{\gamma}_{Y^{*}}(0)=\hat{\gamma}_{Y}(0)-\hat{\mu}^{2}=\frac{\hat{\sigma}^{2}}{1-\hat{\phi}^{2}} \\
& \hat{\phi}=\hat{\phi}_{11}=\frac{\hat{\gamma}_{Y^{*}}(1)}{\hat{\gamma}_{Y^{*}}(0)}=\frac{\hat{\gamma}_{Y}(1)-\hat{\mu}^{2}}{\hat{\gamma}_{Y}(0)-\hat{\mu}^{2}}
\end{aligned}
$$

Let's remember that according to the properties of the prediction operator, $P_{n} Y_{n+1}=P_{n} Y_{n+1}^{*}+\mu$. Based on the expression for $\hat{\gamma}_{Y}(0)$ we find

$$
\hat{\sigma}^{2}=\hat{\nu}_{1}=\hat{\nu}_{0}\left(1-\hat{\phi}^{2}\right)=\left(\hat{\gamma}_{Y}(0)-\hat{\mu}^{2}\right)\left[1-\left(\frac{\hat{\gamma}_{Y}(1)-\hat{\mu}^{2}}{\hat{\gamma}_{Y}(0)-\hat{\mu}^{2}}\right)^{2}\right]
$$

b We start by removing μ from Y_{t} for all t, i.e. $Y_{t}^{*}=Y_{t}-\mu$. It means that for every all t the innovations

$$
\begin{aligned}
Y_{t}-\hat{Y}_{t} & =Y_{t}-P_{t-1} Y_{t} \\
& =Y_{t}^{*}+\mu-P_{t-1} Y_{t}^{*}-\mu \\
& =Y_{t}^{*}-P_{t-1} Y_{t}^{*} \\
& =Y_{t}^{*}-\hat{Y}_{t}^{*}
\end{aligned}
$$

Before stating the likelihood function when Gaussian errors are assumed, let's compute some useful terms for it. Based on the innovations algorithm $\hat{Y}_{t+1}^{*}=\phi Y_{t}^{*}, t \geq 1$ and (remind that for $\operatorname{AR}(1), \gamma(0)=\frac{\sigma^{2}}{1-\phi^{2}}$ and $\left.\gamma(1)=\frac{\sigma^{2} \phi}{1-\phi^{2}}\right)$

$$
\begin{gathered}
\nu_{0}=\gamma(0)=r_{0} \cdot \sigma^{2} \rightarrow r_{0}=\frac{1}{1-\phi^{2}} \\
\nu_{1}=E\left[\left(Y_{2}^{*}-\hat{Y}_{2}^{*}\right)^{2}\right]=\gamma(0)-2 \phi \gamma(1)+\phi^{2} \gamma(0)=r_{1} \cdot \sigma^{2} \rightarrow r_{1}=\frac{\sigma^{2}}{\sigma^{2}}\left[\frac{1-\phi^{2}}{1-\phi^{2}}\right]=1 \\
\vdots \\
\nu_{n}=E\left[\left(Y_{n}^{*}-\hat{Y}_{n}^{*}\right)^{2}\right]=\gamma(0)-2 \phi \gamma(1)+\phi^{2} \gamma(0)=r_{n} \cdot \sigma^{2} \rightarrow r_{n}=\frac{\sigma^{2}}{\sigma^{2}}\left[\frac{1-\phi^{2}}{1-\phi^{2}}\right]=1
\end{gathered}
$$

Then, $r_{0}=\frac{1}{1-\phi^{2}}$ and $r_{t}=1, t \geq 1$. The log-likelihood is given by:
$l\left(\phi, \sigma^{2}\right)=-\frac{n}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{1}{2} \ln \left(r_{0} \cdot r_{1} \cdots \cdot r_{n-1}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} \frac{\left(Y_{i}^{*}-\hat{Y}_{i}^{*}\right)^{2}}{r_{i-1}}$
For this case it becomes
$l\left(\phi, \sigma^{2}\right)=-\frac{n}{2} \ln \left(2 \pi \sigma^{2}\right)+\ln \left(1-\phi^{2}\right)-\frac{1}{2 \sigma^{2}}\left(Y_{1}^{*^{2}}\left(1-\phi^{2}\right)+\sum_{i=2}^{n}\left(Y_{i}^{*}-\phi Y_{i-1}^{*}\right)^{2}\right)$

Now we compute the estimates of σ^{2} and ϕ

$$
\begin{aligned}
\frac{\partial l}{\partial \sigma^{2}} & =-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}\left(Y_{1}^{*^{2}}\left(1-\phi^{2}\right)+\sum_{i=2}^{n}\left(Y_{i}^{*}-\phi Y_{i-1}^{*}\right)^{2}\right)=0 \\
\frac{\partial l}{\partial \phi} & =-\frac{\phi}{1-\phi^{2}}+\frac{1}{\sigma^{2}}\left(\phi Y_{1}^{*^{2}}-\sum_{i=2}^{n}\left(Y_{i}^{*}-\phi Y_{i-1}^{*}\right)\left(-Y_{i-1}^{*}\right)\right)=0
\end{aligned}
$$

Then,

$$
\sigma^{2}=\frac{Y_{1}^{2}\left(1-\phi^{2}\right)+\sum_{i=2}^{n}\left(Y_{i}-\phi Y_{i-1}\right)^{2}}{n},
$$

and $\hat{\phi}$ is the solution of the cubic equation:

$$
\begin{align*}
\phi^{3}[(1-n) & \left.\sum_{i=2}^{n-1} Y_{i}^{*^{2^{2}}}\right]-\phi^{2}\left[(2-n) \sum_{i=2}^{n} Y_{i}^{*} Y_{i-1}^{*}\right] \\
& +\phi\left[Y_{1}^{*^{2}}+(n+1) \sum_{i=2}^{n-1} Y_{i}^{*^{2}}+Y_{n}^{*^{2}}\right]-n\left[\sum_{i=2}^{n} Y_{i}^{*} Y_{i-1}^{*}\right]=0 \tag{2}
\end{align*}
$$

Obtained from

$$
\frac{\phi}{1-\phi^{2}}=n \frac{\phi Y_{1}^{*^{2}}-\sum_{i=2}^{n}\left(Y_{i}^{*}-\phi Y_{i-1}^{*}\right)\left(-Y_{i-1}^{*}\right)}{Y_{1}^{*^{2}}\left(1-\phi^{2}\right)+\sum_{i=2}^{n}\left(Y_{i}^{*}-\phi Y_{i-1}^{*}\right)^{2}}
$$

Finally,

$$
\hat{\sigma}^{2}=\frac{Y_{1}^{*^{2}}\left(1-\hat{\phi}^{2}\right)+\sum_{i=2}^{n}\left(Y_{i}^{*}-\hat{\phi} Y_{i-1}^{*}\right)^{2}}{n}
$$

c Now let's explore the implications of having $\phi=1$. Were that the case, the $\operatorname{AR}(1)$ model would become:

$$
Y_{t}^{*}=Y_{t-1}^{*}+Z_{t}
$$

It has an effect on the ACVF of Y_{t}^{*} since for every k :

$$
\begin{gathered}
E\left(Y_{t} Y_{t+k}\right)=E\left(Y_{t}^{*} Y_{t+k}^{*}\right)+\mu^{2}=E\left(Y_{t}^{*}, Y_{t}^{*}+\sum_{i=1}^{k} Z_{t+i}\right)+\mu^{2} \\
=\gamma(0)+\mu^{2}
\end{gathered}
$$

In addition to it,

$$
E\left(Y_{t}\right)=E\left(Y_{1}\right)+\sum_{i=1}^{t-1} E\left(Z_{1+i}\right)=E\left(Y_{1}\right)=\mu
$$

Thus, the information of the process is reduced to $E\left(Y_{1}\right)$ and $\gamma(0)$, estimated by $\hat{\mu}$ and $\hat{\gamma}(0)$.
d Our process is:

$$
Y_{t}^{*}=Z_{t}+\theta Z_{t-1}
$$

Now, we need to follow the innovations algorithm to both fit the process and to express the likelihood function in terms of θ and σ^{2}. Let's begin the algorithm with $\nu_{0}=\gamma(0)$. Then,

$$
\begin{aligned}
\theta_{11} & =\nu_{0}^{-1}[\gamma(1)]=\rho(1) \\
\nu_{1} & =\gamma(0)-\theta^{2} \nu_{0} \\
\vdots & \\
\theta_{n, n-k} & =\nu_{k}^{-1}\left(\gamma(n-k)-\sum_{j=0}^{k-1} \theta_{k, k-j} \theta_{n, n-j} \nu_{j}\right), \quad 0 \leq k<n \\
\nu_{n} & =\gamma(0)-\sum_{j=0}^{n-1} \theta_{n, n-j}^{2} \nu_{j}
\end{aligned}
$$

Given that for an MA(1) process $\gamma(k)=0$ for $k \geq 2$, then for each n
only $\theta_{n 1} \neq 0$. Thus, for all $n \geq 1$:

$$
\begin{aligned}
\theta_{n 1} & =\nu_{n-1}^{-1}[\gamma(1)] \\
\nu_{n} & =\gamma(0)-\theta_{n 1}^{2} \nu_{1}
\end{aligned}
$$

We will focus on estimating θ and σ^{2} using the innovations algorithm. Let

$$
Y_{t}^{*}=Z_{t}+\hat{\theta}_{11} Z_{t-1} ; \quad\left\{Z_{t}\right\} \sim W N\left(0, \hat{\nu_{1}}\right)
$$

Then,

$$
\hat{\theta}=\hat{\theta}_{11}=\hat{\rho}_{Y^{*}}(1)=\frac{\hat{\gamma}_{Y}(1)-\hat{\mu}^{2}}{\hat{\gamma}_{Y}(0)-\hat{\mu}^{2}}
$$

and

$$
\hat{\sigma}^{2}=\hat{\nu}_{1}=\frac{\hat{\gamma}_{Y^{*}}^{2}(0)-\hat{\gamma}_{Y^{*}}^{2}(1)}{\hat{\gamma}_{Y^{*}}(0)}=\frac{\left(\hat{\gamma}_{Y}(0)-\hat{\mu}^{2}\right)^{2}-\left(\hat{\gamma}_{Y}(1)-\hat{\mu}^{2}\right)^{2}}{\hat{\gamma}_{Y}(0)-\hat{\mu}^{2}}
$$

Based on the expression for the likelihood in part b and on the independence of r_{i} and $\left(Y_{i}^{*}-\hat{Y}_{i}^{*}\right)$ from σ^{2}, we get:

$$
\sigma^{2}=\sum_{i=1}^{n} \frac{\left(Y_{i}^{*}-\hat{Y}_{i}^{*}\right)^{2}}{n \cdot r_{i-1}}
$$

On the other hand, given that r_{i} is not as easy to express as in the $\operatorname{AR}(1)$ case, we can say that θ is the value that minimizes (see exercise 5.8)

$$
l(\theta)=\ln \left(\sum_{i=1}^{n} \frac{\left(Y_{i}^{*}-\hat{Y}_{i}^{*}\right)^{2}}{n \cdot r_{i-1}}\right)+\frac{\sum_{i=1}^{n} \ln \left(r_{i-1}\right)}{n}
$$

with $\hat{Y}_{i}^{*}=\theta_{i-1,1}\left(Y_{i-1}^{*}-\hat{Y}_{i-1}^{*}\right), i \geq 1$ and $r_{i-1}=\frac{\nu_{i-1}}{\sigma^{2}}$. This problem can be solved numerically.
Finally, in case $\theta=1$, our process becomes:

$$
Y_{t}^{*}=Z_{t}+Z_{t-1}
$$

meaning this that the process is the addition of two zero-mean white noise terms with variance $2 \sigma^{2}$. The ACVF of Y_{t} is:

$$
E\left(Y_{t} Y_{t+k}\right)= \begin{cases}2 \sigma^{2}+\mu^{2} & k=0 \\ \sigma^{2}+\mu^{2} & k=1\end{cases}
$$

And

$$
E\left(Y_{t}\right)=E\left(Y_{t}^{*}+\mu\right)=\mu
$$

Then, all the information of the process ends up contained in $\hat{\mu}$ and σ^{2}. It also affects the innovations algorithm since every $\theta_{i 1}$ and ν_{1} become functions of $\gamma(0)$. Thus, $\hat{\sigma}^{2}$ depends on $\gamma(0)$ as well. Making all the information of the process contained in $\hat{\mu}$ and $\hat{\gamma}(0)$

