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Problem A.7

We want to show that (X — p)TX71(X — p) has a chi square distribution
with n degrees of freedom. We have that Z = 3/2(X — ) is normal with
mean 0 and covariance .

X-p)'S'(X—p) =X -T2 X = p) = [E7(X - )] =X - p)
=L L=+ 25+ 2

where we have used that the sum of squared standard normal stochastic
variables are chi square distributed.



Problem 5.8
We begin by taking the natural logarithm of the likelihood L,

o n o1 1 (X, — X;)?
lnL(qﬁ,O,U)——Eln(Qwa)—iln(ro...rn_l)_Qagjzl j J

To derive equation (5.2.10), we differentiate In L(¢, 8, 0?) with respect to o2

Ol L(¢,0,0%) (X, — X))
Jo? T2 02 04 Z

We set this equal to zero and solve for 0. This gives
&2 =n"15(¢,0),

where S(¢,0) = >" (Xi=Xp)? (equation (5.2.11)).

j=1  rj_
We insert the estimator for o2 into the log likelihood function and get

n

In L(6.8.0) =~ n(2mn ™ $(8.6)) — £ In(rg .1, 1) — 5t Y0 )

2n=15(¢, 0) ‘=

n 1 n
= —§ln(27m S(p,0)) — —ln( e Tpl1) — B

We see that in order to maximize the last equation with respect to ¢ and 6,
we must minimize

In(n"'S(¢,0)) +n~ Zlnrj 1



Problem 5.13

The result of Problem A.7: (X—p)TX7! (X —p) has a chi square distribution
with n degrees of freedom. We want to use this and the approximate large-

sample normal distribution of the maximum likelihood estimator ¢,, ¢, ~
N(¢,n"'o?I', "), to establish (5.5.1).

E(Yo41 — élYn e &pYanp)z =0’ + E[(ﬁgp - (bp)TFp(?gp — &p)]

2 . R 2 . .
= 0* + TEl(6, — 8)" 5Tp(y — 6,)] = 07 + —El(J, — 6,)" (00,1 (S, — )
p
%)

0.2
:0'24‘?]3:02(1%'



Chapter 5

Problem 5.1. We begin by writing the Yule-Walker equations. {Y; : t € Z}
satisfies

Yy — $1Yeo1 — ¢2Yeo = Zy, {Zy:t € Z} ~ WN(0,0%).
Multiplying this equation with Y;_; and take expectation gives

2 p—
W(k)—@bw(k—l)—d)ﬂ(k_g):{ g llz;?

We rewrite the first three equations as

P1v(k—1) + poy(k —2) = { %) — o2 Z z (1) }

Introducing the notation
e (50 30 ) = (G ) o= (5)

we have T'y¢p = 7, and 02 — (0) — ¢T~,. We replace T's by I's and v, by 4, and
solve to get an estimate ¢ for ¢p. That is, we solve

Hence
SRS 1 7(0)  =4(1) A(1)
=T %2 = 35 50 ( (1) 4(0) ) ( 4(2) )
_ 1 ( (0)4(1)  —4(1)A(2) >
(02 =412 \ —4(1)*  4(0)7(2)
We get that
- (500) —4(2)5(Q)
o1 = T 1.32
- A0)5(2) —4(1)2
b2 = SO —3() 0.634
6% =4(0) — $19(1) — $27(2) = 289.18

We also have that ¢ ~ AN(¢, 02I'; ' /n) and approximately ¢ ~ AN(¢, &Qfgl/n).
Here

&21:‘—1/”_289.18 0.0021  —0.0017 \ 0.0060 —0.0048
2 100 —0.0017  0.0021 ~\ —0.0048  0.0060

So we have approximately ¢; ~ N(¢1,0.0060) and by ~ N (¢2,0.0060) and the
confidence intervals are

Is, = &1 % X0.025V0.006 = 1.32 £ 0.15
Iy, = b2 & Xo.025/0.006 = —0.634 £ 0.15.
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Problem 5.3. a) {X; : t € Z} is causal if ¢(z) # 0 for |z| < 1 so let us check for
which values of ¢ this can happen. ¢(z) = 1 — ¢z — ¢?22 so putting this equal to
zero implies

1 1-5 1+5

9 Z
22+ ———==0=> 2 =— and zo = —
¢ @ 2¢ 29
Furthermore |z | > 1if |¢| < (v/5 —1)/2 = 0.61 and |2a| > 1if |¢| < (1 +V5)/2 =
1.61. Hence, the process is causal if |¢| < 0.61.
b) The Yule-Walker equations are

V(k)¢v(k1)¢27(k2){ %2 Z (1)7

(AVAN|

Rewriting the first 3 equations and using v(k) = v(—k) gives
7(1) = ¢*7(2) = o
v(0) — ¢*y(1) =0
(1) = ¢*4(0) = 0.
Multiplying the third equation by ¢2 and adding the first gives
(1) — (1) — $*4(0) +1(0) = o
(1) = ¢7(0) — ¢*4(1) = 0.

We solve the second equation to obtain

=2

=
|

<

2 =2
> =
L
<

1 1
o= — + + 1
2p(1) 4p(1)?
Inserting the estimated values of 4(0) and (1) = 4(0)p(1) gives the solutions
¢ = {0.509,—1.965} and we choose the causal solution ¢ = 0.509. Inserting this
value in the expression for o2 we get

6° = —¢*4(1) — $3(1) — *4(0) +4(0) = 2.985.

Problem 5.4. a) Let us construct a test to see if the assumption that {X; — p :
t € Z} is WN (0,0?) is reasonable. To this end suppose that {X; — p : t € Z} is
WN (0,0?). Then, since p(k) = 0 for k > 1 we have that p(k) ~ AN(0,1/n). A
95% confidence interval for p(k) is then I,y = p(k) £ Xo.025/v/200. This gives us

L,y = 0.427 £ 0.139
I(2) = 0.475 £ 0.139

I3y = 0.169 £ 0.139.

Clearly 0 ¢ I, for any of the observed k = 1,2,3 and we conclude that it is not
reasonable to assume that {X; — p : t € Z} is white noise.
b) We estimate the mean by fi = Tagp = 3.82. The Yule-Walker estimates is given
by

¢=R;'p, *=90)1-p, Ry'py),

where



Solving this system gives the estimates ¢, = 0.2742, ¢» = 0.3579 and 62 = 0.8199.
¢) We construct a 95% confidence interval for u to test if we can reject the hypothesis
that y = 0. We have that Xo99 ~ AN(u,v/n) with

oo

v=Y_ v(h)=5(=3) +4(=2) + 4(=1) + 5(0) + 4(1) + 4(2) + 4(3) = 3.61.

h=—o00
An approximate 95% confidence interval for y is then
I =%, £ Xoo2s V/n =3.82+1.96 3.61/200 = 3.82 £ 0.263.

Since 0 ¢ I we reject the hypothesis that p = 0.

d) We have that approximately & ~ AN(¢, 62f‘2_1/n). Inserting the observed values
we get

~—1
62T, [ 0.0050  —0.0021
n ~0.0021 0.0050 )

and hence ¢y ~ AN(¢1,0.0050) and ¢z ~ AN(p2,0.0050). We get the 95% confi-
dence intervals

Iy, = b1 £ Ao.025V/0.005 = 0.274 + 0.139

Iy, = b2 % X.0251/0.005 = 0.358 & 0.139.

e) If the data were generated from an AR(2) process, then the PACF would be
a(0) =1, &(1) = p(1) = 0.427, &(2) = do = 0.358 and G(h) = 0 for h > 3.

Problem 5.11. To obtain the maximum likelihood estimator we compute as if the
process were Gaussian. Then the innovations

X1 — X1 = X1 ~ N(0,1p),

Xo — Xz = Xo — X1 ~ N(0,11),
where vy = o2rg = E[(X1 — X1)?], 11 = o%r; = E[(Xy — X5)2]. This implies

vo = E[X}] =7(0), ro = 1/(1—-¢?) and 11 = E[(X2—X3)?] = 7(0) —2¢7(1) +¢*y(0)
and hence

YO0)(1+¢%) —207(1) _ 1462~ 20" _

= =1.
& o2 1— ¢2

Here we have used that (1) = 0%¢/(1 — ¢®). Since the distribution of the innova-
tions is normal the density for X; — X is

s v o ()
6 =———exp| ———
Xi=X; 2mo%rj_q P 202711

and the likelihood function is

: xy — I1)? Ty — B9)?
L((b’UZ):HfXj—Xj:1exp{—%i2(( : 0 1> +( : 71 2) >}
Jj=1
1

(2mo2)2rgry
1 2 _ 2
_ exp{_2 (mmwn»
(2m02)2rory 202 \ rg 1
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We maximize this by taking logarithm and then differentiate:

To 1

- 7% log(4n®0"/(1 - ¢%)) — %,2(17%(1 — &%) + (22 — ¢11)?)

]. 1 1/'2 To — OT 2
log L(¢, 02) Y IOg(47T204T07“1) - ﬁ( Ly M)

1 1
= —log(2m) — log(0?) + 3 loa(1 — %) — 55 (131~ &%) + (22 — 61)?).
Differentiating yields

(¢, 02 1,1
% =~ + 51 (@1 = 8) + (@2 — 6m1)?),

8l(¢,02)_1
o6 2 1—¢2 ' o2’

Putting these expressions equal to zero gives 02 = %(w%(l — ¢?) + (w9 — d)xl)Q) and
then after some computations ¢ = 2z1x5/(23 + 23). Inserting the expression for ¢
is the equation for o gives the maximum likelihood estimators

52 _ (33% *x%)Q d qu 2219
2(af + 23)

2 2
Ty + x5
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GT Exercises

Exercise 4

a Let
Yi=p+oYi1+ 2

It can be rewritten as:
Y =9oY 1+ 2 (1)

with V" =Y, — .
Making use of the Durbin-Levinson algorithm for Y; with

) ) —g
PTT50) T A0 e

Let’s remember that according to the properties of the prediction op-
Y. . + p. Based on the expression for 4y (0) we

erator, P,Y,.1 = P,
find

: (1) = i\
52 = in = (1 — %) = (3 (0) — ji2 {1—(L>



b We start by removing p from Y; for all ¢, i.e. Y* =Y, — p. It means
that for every all ¢ the innovations
Y= Y=Y - P,
:}/;*—F/IL_Pt—I}/;*_,U/

— }/;* o Pt_]_Y;*

Before stating the likelihood function when Gaussian errors are as-

sumed, let’s compute some useful terms for it. Based on the innovations
algorithm Y}, = ¢Y*,¢ > 1 and (remind that for AR(1), v(0) = o

2 1—¢*
and (1) = =5 )

=£%
vo=0)=ry-0% =1 1
o= "7YW)=To 0—1_¢2
* Crx\ 2 2 2 O'2 1—¢2
= BlYy = Y5)T =9(0) = 209() + 97 (0) =r-0” mm = 5175
* k) 2 2 2 o’ 1_¢2
= BI(Y; = V) = 9(0) = 269(1) 4 69 (0) = 0?1 = 5[ 125
Then, ry = # and r, = 1, t > 1. The log-likelihood is given by:
I(¢,0%) = _§ln(27T02) _ 5111(7’0 STy o) — o ; %

For this case it becomes

16,0%) = 5 (2 tin(1-6%) 5o (" (1= (-7,

=2

2



Now we compute the estimates of o2 and ¢
ol n 1
— = Y )
do? 202 T o0t 20 ( )+ Z —¢ > 0

ol (b 1 %2 - * * *
96 1-4 + ;(bel - Z(YZ - ¢Yi—1)(—y;—1)) =0

Then,
o YP(1—¢%) + 350, (Y; — ¢Yi)®

g = ) )
n

and ¢ is the solution of the cubic equation:

1= EY} -2 n) g Vv

n—1 n
+¢[Yf2 +(n+1)) Y +Yf] —n{ZY:Yi:} —0 (2)
1=2 1=2

Obtained from

0 _ OV - FL00 - V) (V)
L=¢* Y (- 02) + KLY - oY)

Finally,

o Y= 0% + Fa(Y = oY)

n

c Now let’s explore the implications of having ¢ = 1. Were that the case,
the AR(1) model would become:

P =Y+ 7



It has an effect on the ACVF of Y;* since for every k:

k
E(YiYix) = E(YY,) + 1 = E<Yt*7 Y+ Z Zt+i) + 4
i=1

=(0) + p*
In addition to it,

t—1

E(Y,) = EM)+ Y E(Zi11i) = EM) =

1=1

Thus, the information of the process is reduced to E(Y;) and 7(0),
estimated by & and 4(0).

Our process is:
Y =2 +0Z,

Now, we need to follow the innovations algorithm to both fit the process
and to express the likelihood function in terms of § and o2. Let’s begin
the algorithm with vy = ~(0). Then,

O = vy ' [Y(1)] = p(1)

v1 = v(0) — 6%y

k—1
Ot =13 " ('y(n — k) — Z ekyk;_jgrhn_jl/j), 0<k<n
=0

n—1
Up = ’7(0) - Z ei,n—jyj
j=0

Given that for an MA(1) process (k) = 0 for k£ > 2, then for each n



only 0,1 # 0. Thus, for all n > 1:

On1 = v, 1 [v(D)]

Up = 7(0) - 07211V1

We will focus on estimating § and o2 using the innovations algorithm.
Let R
Y =Z +0uZ_; {Zj}~WN(,v)

Then,
) — @ 5 Ay (1) — i?
8 = 9 = * 1 _ - > 7 -
11 = Py ( ) '?Y(O)—/:LZ
and
52— g = O = (1) _ (Gr(0) = i) = By (1) = )’

By-(0) W (0) — 2
Based on the expression for the likelihood in part b and on the inde-
pendence of r; and (Y;* — Y;*) from o2, we get:

oy T
=1 N Tiz1

On the other hand, given that r; is not as easy to express as in the
AR(1) case, we can say that 6 is the value that minimizes (see exercise

5.8) A
1(0) = In (Z (Yi —rYl) ) i 1;1@“)

with Y* = 011V, — YV ,),i>1and riy = “3t. This problem can
be solved numerically.

Finally, in case § = 1, our process becomes:
Y;* - Zt + Zt—l

meaning this that the process is the addition of two zero-mean white
noise terms with variance 202. The ACVF of Y] is:

202+ pu? k=0

E(Y YY) =
(Vi¥irr) {02+u2 k=1

5



And
E(Y,) = B(Y; + 1) = p

Then, all the information of the process ends up contained in i and 0.
It also affects the innovations algorithm since every #;; and 14, become
functions of v(0). Thus, 62 depends on 7(0) as well. Making all the
information of the process contained in i and 4(0)



