
TMA4285 Time series models
Solution to exercise 5, autumn 2018

October 16, 2018

Problem A.7

We want to show that (X − µ)TΣ−1(X − µ) has a chi square distribution
with n degrees of freedom. We have that Z = Σ1/2(X − µ) is normal with
mean 0 and covariance Σ.

(X− µ)TΣ−1(X− µ) = (X− µ)TΣ−1/2Σ−1/2(X− µ) = [Σ−1/2(X− µ)]TΣ−1/2(X− µ)

= ZTZ = Z2
1 + Z2

2 + · · ·+ Z2
n ∼ χ2

n,

where we have used that the sum of squared standard normal stochastic
variables are chi square distributed.
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Problem 5.8

We begin by taking the natural logarithm of the likelihood L,

lnL(φ,θ, σ2) = −n
2

ln(2πσ2)− 1

2
ln(r0 . . . rn−1)−

1

2σ2

n∑
j=1

(Xj − X̂j)
2

rj−1

.

To derive equation (5.2.10), we differentiate lnL(φ,θ, σ2) with respect to σ2

∂ lnL(φ,θ, σ2)

∂σ2
= −n

2

1

σ2
+

1

2σ4

n∑
j=1

(Xj − X̂j)
2

rj−1

We set this equal to zero and solve for σ2. This gives

σ̂2 = n−1S(φ̂, θ̂),

where S(φ̂, θ̂) =
∑n

j=1
(Xj−X̂j)

2

rj−1
(equation (5.2.11)).

We insert the estimator for σ2 into the log likelihood function and get

lnL(φ,θ, σ2) = −n
2

ln(2πn−1S(φ,θ))− 1

2
ln(r0 . . . rn−1)−

1

2n−1S(φ,θ)

n∑
j=1

(Xj − X̂j)
2

rj−1

= −n
2

ln(2πn−1S(φ,θ))− 1

2
ln(r0 . . . rn−1)−

n

2

We see that in order to maximize the last equation with respect to φ and θ,
we must minimize

ln(n−1S(φ̂, θ̂)) + n−1

n∑
j=1

ln rj−1
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Problem 5.13

The result of Problem A.7: (X−µ)TΣ−1(X−µ) has a chi square distribution
with n degrees of freedom. We want to use this and the approximate large-
sample normal distribution of the maximum likelihood estimator φ̂p, φ̂p ∼
N (φ, n−1σ2Γ−1

p ), to establish (5.5.1).

E(Yn+1 − φ̂1Yn − . . . φ̂pYn+1−p)
2 = σ2 + E[(φ̂p − φp)

TΓp(φ̂p − φp)]

= σ2 +
σ2

n
E[(φ̂p − φp)

T n

σ2
Γp(φ̂p − φp)] = σ2 +

σ2

n
E[(φ̂p − φp)

T (n−1σ2Γ−1
p )−1(φ̂p − φp)]

= σ2 +
σ2

n
p = σ2(1 +

p

n
)
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Chapter 5

Problem 5.1. We begin by writing the Yule-Walker equations. {Yt : t ∈ Z}
satisfies

Yt − φ1Yt−1 − φ2Yt−2 = Zt, {Zt : t ∈ Z} ∼ WN(0, σ2).

Multiplying this equation with Yt−k and take expectation gives

γ(k)− φ1γ(k − 1)− φ2γ(k − 2) =
{

σ2 k = 0,
0 k ≥ 1.

We rewrite the first three equations as

φ1γ(k − 1) + φ2γ(k − 2) =
{

γ(k) k = 1, 2,
γ(0)− σ2 k = 0.

Introducing the notation

Γ2 =
(

γ(0) γ(1)
γ(1) γ(0)

)
, γ2 =

(
γ(1)
γ(2)

)
, φ =

(
φ1

φ2

)

we have Γ2φ = γ2 and σ2 − γ(0)− φT γ2. We replace Γ2 by Γ̂2 and γ2 by γ̂2 and
solve to get an estimate φ̂ for φ. That is, we solve

Γ̂2φ̂ = γ̂2 σ̂2 = γ̂(0)− φ̂
T
γ̂2.

Hence

φ̂ = Γ̂
−1

2 γ̂2 =
1

γ̂(0)2 − γ̂(1)2

(
γ̂(0) −γ̂(1)
−γ̂(1) γ̂(0)

)(
γ̂(1)
γ̂(2)

)

=
1

γ̂(0)2 − γ̂(1)2

(
γ̂(0)γ̂(1) −γ̂(1)γ̂(2)
−γ̂(1)2 γ̂(0)γ̂(2)

)
.

We get that

φ̂1 =
(γ̂(0)− γ̂(2))γ̂(1)

γ̂(0)2 − γ̂(1)2
= 1.32

φ̂2 =
γ̂(0)γ̂(2)− γ̂(1)2

γ̂(0)2 − γ̂(1)2
= −0.634

σ̂2 = γ̂(0)− φ̂1γ̂(1)− φ̂2γ̂(2) = 289.18.

We also have that φ̂ ∼ AN(φ, σ2Γ−1
2 /n) and approximately φ̂ ∼ AN(φ, σ̂2Γ̂

−1

2 /n).
Here

σ̂2Γ̂
−1

2 /n =
289.18
100

(
0.0021 −0.0017
−0.0017 0.0021

)
=

(
0.0060 −0.0048
−0.0048 0.0060

)

So we have approximately φ̂1 ∼ N(φ1, 0.0060) and φ̂2 ∼ N(φ2, 0.0060) and the
confidence intervals are

Iφ1 = φ̂1 ± λ0.025

√
0.006 = 1.32± 0.15

Iφ2 = φ̂2 ± λ0.025

√
0.006 = −0.634± 0.15.
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Problem 5.3. a) {Xt : t ∈ Z} is causal if φ(z) 6= 0 for |z| ≤ 1 so let us check for
which values of φ this can happen. φ(z) = 1 − φz − φ2z2 so putting this equal to
zero implies

z2 +
z

φ
− 1

φ2
= 0 ⇒ z1 = −1−√5

2φ
and z2 = −1 +

√
5

2φ

Furthermore |z1| > 1 if |φ| < (
√

5− 1)/2 = 0.61 and |z2| > 1 if |φ| < (1 +
√

5)/2 =
1.61. Hence, the process is causal if |φ| < 0.61.
b) The Yule-Walker equations are

γ(k)− φγ(k − 1)− φ2γ(k − 2) =
{

σ2 k = 0,
0 k ≥ 1.

Rewriting the first 3 equations and using γ(k) = γ(−k) gives

γ(0)− φγ(1)− φ2γ(2) = σ2

γ(1)− φγ(0)− φ2γ(1) = 0

γ(2)− φγ(1)− φ2γ(0) = 0.

Multiplying the third equation by φ2 and adding the first gives

−φ3γ(1)− φγ(1)− φ4γ(0) + γ(0) = σ2

γ(1)− φγ(0)− φ2γ(1) = 0.

We solve the second equation to obtain

φ = − 1
2ρ(1)

±
√

1
4ρ(1)2

+ 1.

Inserting the estimated values of γ̂(0) and γ̂(1) = γ̂(0)ρ̂(1) gives the solutions
φ̂ = {0.509,−1.965} and we choose the causal solution φ̂ = 0.509. Inserting this
value in the expression for σ2 we get

σ̂2 = −φ̂3γ̂(1)− φ̂γ̂(1)− φ̂4γ̂(0) + γ̂(0) = 2.985.

Problem 5.4. a) Let us construct a test to see if the assumption that {Xt − µ :
t ∈ Z} is WN

(
0, σ2

)
is reasonable. To this end suppose that {Xt − µ : t ∈ Z} is

WN
(
0, σ2

)
. Then, since ρ(k) = 0 for k ≥ 1 we have that ρ̂(k) ∼ AN(0, 1/n). A

95% confidence interval for ρ(k) is then Iρ(k) = ρ̂(k)± λ0.025/
√

200. This gives us

Iρ(1) = 0.427± 0.139
Iρ(2) = 0.475± 0.139
Iρ(3) = 0.169± 0.139.

Clearly 0 /∈ Iρ(k) for any of the observed k = 1, 2, 3 and we conclude that it is not
reasonable to assume that {Xt − µ : t ∈ Z} is white noise.
b) We estimate the mean by µ̂ = x200 = 3.82. The Yule-Walker estimates is given
by

φ̂ = R̂−1
2 ρ̂2, σ̂2 = γ̂(0)(1− ρ̂2

T R̂−1
2 ρ̂2),

where

φ̂ =
(

φ̂1

φ̂2

)
, R̂2 =

(
ρ̂(0) ρ̂(1)
ρ̂(1) ρ̂(0)

)
, ρ̂2 =

(
ρ̂(1)
ρ̂(2)

)
.

20



Solving this system gives the estimates φ̂1 = 0.2742, φ̂2 = 0.3579 and σ̂2 = 0.8199.
c) We construct a 95% confidence interval for µ to test if we can reject the hypothesis
that µ = 0. We have that X200 ∼ AN(µ, ν/n) with

ν =
∞∑

h=−∞
γ(h) ≈ γ̂(−3) + γ̂(−2) + γ̂(−1) + γ̂(0) + γ̂(1) + γ̂(2) + γ̂(3) = 3.61.

An approximate 95% confidence interval for µ is then

I = xn ± λ0.025

√
ν/n = 3.82± 1.96

√
3.61/200 = 3.82± 0.263.

Since 0 /∈ I we reject the hypothesis that µ = 0.
d) We have that approximately φ̂ ∼ AN(φ, σ̂2Γ̂

−1

2 /n). Inserting the observed values
we get

σ̂2Γ̂
−1

2

n
=

(
0.0050 −0.0021
−0.0021 0.0050

)
,

and hence φ̂1 ∼ AN(φ1, 0.0050) and φ̂2 ∼ AN(φ2, 0.0050). We get the 95% confi-
dence intervals

Iφ1 = φ̂1 ± λ0.025

√
0.005 = 0.274± 0.139

Iφ2 = φ̂2 ± λ0.025

√
0.005 = 0.358± 0.139.

e) If the data were generated from an AR(2) process, then the PACF would be
α(0) = 1, α̂(1) = ρ̂(1) = 0.427, α̂(2) = φ̂2 = 0.358 and α̂(h) = 0 for h ≥ 3.

Problem 5.11. To obtain the maximum likelihood estimator we compute as if the
process were Gaussian. Then the innovations

X1 − X̂1 = X1 ∼ N(0, ν0),

X2 − X̂2 = X2 − φX1 ∼ N(0, ν1),

where ν0 = σ2r0 = E[(X1 − X̂1)2], ν1 = σ2r1 = E[(X2 − X̂2)2]. This implies
ν0 = E[X2

1 ] = γ(0), r0 = 1/(1−φ2) and ν1 = E[(X2−X̂2)2] = γ(0)−2φγ(1)+φ2γ(0)
and hence

r1 =
γ(0)(1 + φ2)− 2φγ(1)

σ2
=

1 + φ2 − 2φ2

1− φ2
= 1.

Here we have used that γ(1) = σ2φ/(1− φ2). Since the distribution of the innova-
tions is normal the density for Xj − X̂j is

fXj−X̂j
=

1√
2πσ2rj−1

exp
(
− x2

2σ2rj−1

)

and the likelihood function is

L(φ, σ2) =
2∏

j=1

fXj−X̂j
=

1√
(2πσ2)2r0r1

exp
{
− 1

2σ2

(
(x1 − x̂1)2

r0
+

(x2 − x̂2)2

r1

)}

=
1√

(2πσ2)2r0r1

exp
{
− 1

2σ2

(
x2

1

r0
+

(x2 − φx1)2

r1

)}
.
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We maximize this by taking logarithm and then differentiate:

log L(φ, σ2) = −1
2

log(4π2σ4r0r1)− 1
2σ2

(x2
1

r0
+

(x2 − φx1)2

r1

)

= −1
2

log(4π2σ4/(1− φ2))− 1
2σ2

(
x2

1(1− φ2) + (x2 − φx1)2
)

= − log(2π)− log(σ2) +
1
2

log(1− φ2)− 1
2σ2

(
x2

1(1− φ2) + (x2 − φx1)2
)
.

Differentiating yields

∂l(φ, σ2)
∂σ2

= − 1
σ2

+
1

2σ4

(
x2

1(1− φ2) + (x2 − φx1)2
)
,

∂l(φ, σ2)
∂φ

=
1
2
· −2φ

1− φ2
+

x1x2

σ2
.

Putting these expressions equal to zero gives σ2 = 1
2

(
x2

1(1−φ2) + (x2−φx1)2
)

and
then after some computations φ = 2x1x2/(x2

1 + x2
2). Inserting the expression for φ

is the equation for σ gives the maximum likelihood estimators

σ̂2 =
(x2

1 − x2
2)

2

2(x2
1 + x2

2)
and φ̂ =

2x1x2

x2
1 + x2

2
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GT Exercises

Exercise 4

a Let
Yt = µ+ φYt−1 + Zt

It can be rewritten as:

Y ∗
t = φY ∗

t−1 + Zt (1)

with Y ∗
t = Yt − µ.

Making use of the Durbin-Levinson algorithm for Yt with

ν̂0 = E[Y ∗
1 + µ̂− P0Y

∗
1 − µ̂]2 = γ̂Y ∗(0) = γ̂Y (0)− µ̂2 =

σ̂2

1− φ̂2

φ̂ = φ̂11 =
γ̂Y ∗(1)

γ̂Y ∗(0)
=
γ̂Y (1)− µ̂2

γ̂Y (0)− µ̂2

Let’s remember that according to the properties of the prediction op-
erator, PnYn+1 = PnY

∗
n+1 + µ. Based on the expression for γ̂Y (0) we

find

σ̂2 = ν̂1 = ν̂0(1− φ̂2) = (γ̂Y (0)− µ̂2)

[
1−

(
γ̂Y (1)− µ̂2

γ̂Y (0)− µ̂2

)2]

1



b We start by removing µ from Yt for all t, i.e. Y ∗
t = Yt − µ. It means

that for every all t the innovations

Yt − Ŷt = Yt − Pt−1Yt

= Y ∗
t + µ− Pt−1Y

∗
t − µ

= Y ∗
t − Pt−1Y

∗
t

= Y ∗
t − Ŷ ∗

t

Before stating the likelihood function when Gaussian errors are as-
sumed, let’s compute some useful terms for it. Based on the innovations
algorithm Ŷ ∗

t+1 = φY ∗
t , t ≥ 1 and (remind that for AR(1), γ(0) = σ2

1−φ2

and γ(1) = σ2φ
1−φ2 )

ν0 = γ(0) = r0 · σ2 → r0 =
1

1− φ2

ν1 = E[(Y ∗
2 − Ŷ ∗

2 )2] = γ(0)− 2φγ(1) + φ2γ(0) = r1 · σ2 → r1 =
σ2

σ2

[
1− φ2

1− φ2

]
= 1

...

νn = E[(Y ∗
n − Ŷ ∗

n )2] = γ(0)− 2φγ(1) + φ2γ(0) = rn · σ2 → rn =
σ2

σ2

[
1− φ2

1− φ2

]
= 1

Then, r0 = 1
1−φ2 and rt = 1, t ≥ 1. The log-likelihood is given by:

l(φ, σ2) = −n
2

ln(2πσ2)− 1

2
ln(r0 · r1 · · · · · rn−1)−

1

2σ2

n∑
i=1

(Y ∗
i − Ŷ ∗

i )2

ri−1

For this case it becomes

l(φ, σ2) = −n
2

ln(2πσ2)+ln(1−φ2)− 1

2σ2

(
Y ∗2
1 (1−φ2)+

n∑
i=2

(Y ∗
i −φY ∗

i−1)
2

)

2



Now we compute the estimates of σ2 and φ

∂l

∂σ2
= − n

2σ2
+

1

2σ4

(
Y ∗2
1 (1− φ2) +

n∑
i=2

(Y ∗
i − φY ∗

i−1)
2

)
= 0

∂l

∂φ
= − φ

1− φ2
+

1

σ2

(
φY ∗2

1 −
n∑
i=2

(Y ∗
i − φY ∗

i−1)(−Y ∗
i−1)

)
= 0

Then,

σ2 =
Y 2
1 (1− φ2) +

∑n
i=2(Yi − φYi−1)

2

n
, ,

and φ̂ is the solution of the cubic equation:

φ3

[
(1− n)

n−1∑
i=2

Y ∗2
i

]
− φ2

[
(2− n)

n∑
i=2

Y ∗
i Y

∗
i−1

]

+ φ

[
Y ∗2
1 + (n+ 1)

n−1∑
i=2

Y ∗2
i + Y ∗2

n

]
− n

[ n∑
i=2

Y ∗
i Y

∗
i−1

]
= 0 (2)

Obtained from

φ

1− φ2
= n

φY ∗2
1 −

∑n
i=2(Y

∗
i − φY ∗

i−1)(−Y ∗
i−1)

Y ∗2
1 (1− φ2) +

∑n
i=2(Y

∗
i − φY ∗

i−1)
2

Finally,

σ̂2 =
Y ∗2
1 (1− φ̂2) +

∑n
i=2(Y

∗
i − φ̂Y ∗

i−1)
2

n

c Now let’s explore the implications of having φ = 1. Were that the case,
the AR(1) model would become:

Y ∗
t = Y ∗

t−1 + Zt

3



It has an effect on the ACVF of Y ∗
t since for every k:

E(YtYt+k) = E(Y ∗
t Y

∗
t+k) + µ2 = E

(
Y ∗
t , Y

∗
t +

k∑
i=1

Zt+i

)
+ µ2

= γ(0) + µ2

In addition to it,

E(Yt) = E(Y1) +
t−1∑
i=1

E(Z1+i) = E(Y1) = µ

Thus, the information of the process is reduced to E(Y1) and γ(0),
estimated by µ̂ and γ̂(0).

d Our process is:
Y ∗
t = Zt + θZt−1

Now, we need to follow the innovations algorithm to both fit the process
and to express the likelihood function in terms of θ and σ2. Let’s begin
the algorithm with ν0 = γ(0). Then,

θ11 = ν−1
0 [γ(1)] = ρ(1)

ν1 = γ(0)− θ2ν0

...

θn,n−k = ν−1
k

(
γ(n− k)−

k−1∑
j=0

θk,k−jθn,n−jνj

)
, 0 ≤ k < n

νn = γ(0)−
n−1∑
j=0

θ2n,n−jνj

Given that for an MA(1) process γ(k) = 0 for k ≥ 2, then for each n

4



only θn1 6= 0. Thus, for all n ≥ 1:

θn1 = ν−1
n−1[γ(1)]

νn = γ(0)− θ2n1ν1

We will focus on estimating θ and σ2 using the innovations algorithm.
Let

Y ∗
t = Zt + θ̂11Zt−1; {Zt} ∼ WN(0, ν̂1)

Then,

θ̂ = θ̂11 = ρ̂Y ∗(1) =
γ̂Y (1)− µ̂2

γ̂Y (0)− µ̂2

and

σ̂2 = ν̂1 =
γ̂2Y ∗(0)− γ̂2Y ∗(1)

γ̂Y ∗(0)
=

(γ̂Y (0)− µ̂2)2 − (γ̂Y (1)− µ̂2)2

γ̂Y (0)− µ̂2

Based on the expression for the likelihood in part b and on the inde-
pendence of ri and (Y ∗

i − Ŷ ∗
i ) from σ2, we get:

σ2 =
n∑
i=1

(Y ∗
i − Ŷ ∗

i )2

n · ri−1

On the other hand, given that ri is not as easy to express as in the
AR(1) case, we can say that θ is the value that minimizes (see exercise
5.8)

l(θ) = ln

( n∑
i=1

(Y ∗
i − Ŷ ∗

i )2

n · ri−1

)
+

∑n
i=1 ln(ri−1)

n

with Ŷ ∗
i = θi−1,1(Y

∗
i−1 − Ŷ ∗

i−1), i ≥ 1 and ri−1 = νi−1

σ2 . This problem can
be solved numerically.

Finally, in case θ = 1, our process becomes:

Y ∗
t = Zt + Zt−1

meaning this that the process is the addition of two zero-mean white
noise terms with variance 2σ2. The ACVF of Yt is:

E(YtYt+k) =

{
2σ2 + µ2 k = 0

σ2 + µ2 k = 1

5



And
E(Yt) = E(Y ∗

t + µ) = µ

Then, all the information of the process ends up contained in µ̂ and σ2.
It also affects the innovations algorithm since every θi1 and ν1 become
functions of γ(0). Thus, σ̂2 depends on γ(0) as well. Making all the
information of the process contained in µ̂ and γ̂(0)
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