
TMA4285 Time series models
Solution to exercise 7, autumn 2018

November 14, 2018

Problem 6.1

The difference equations are satisfied if (1−B)d(A0 + A1t+ · · ·+ Ad−1t
d−1) = 0.

(1 − B)tq is a polynomial of degree q − 1, and (1 − B)c = c − c = 0. It follows
that

(1−B)d(A0 + A1t+ · · ·+ Ad−1t
d−1) = (1−B)dA0 + (1−B)dA1t+ . . . (1−B)dAd−1t

d−1,

and(1−B)dA0 = 0, (1−B)dtq = 0 for q = 1, ..., d− 1 from which the result follows.

Problem 6.2

We want to verify the representation given in (6.3.4). We start with the equation
given in (6.3.4) and insert φ∗

0, φ
∗
1, φ

∗
j and ∇Xt = Xt −Xt−1,

Xt −Xt−1 = φ∗
0 + φ∗

1Xt−1 + φ∗
2(Xt−1 −Xt−2) + · · ·+ φ∗

p(Xt−p+1 −Xt−p) + Zt

Xt = µ(1− φ1 − · · · − φp) +Xt−1 + (

p∑
i=1

φi − 1)Xt−1 −
p∑

i=2

φi(Xt−1 −Xt−2)

−
p∑

i=3

φi(Xt−2 −Xt−3)− · · · −
p∑

i=p−1

φi(Xt−p −Xt−p−1)−
p∑

i=p

φi(Xt−p+1 −Xt−p) + Zt

Terms will cancel out such that we are left with

Xt − µ = −µ(φ1 + · · ·+ φp) + φ1Xt−1 + · · ·+ φpXt−p + Zt

Xt − µ = φ1(Xt−1 − µ) + · · ·+ φp(Xt−p − µ) + Zt

which is the what we wanted to verify.
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Problem 6.11

a)

The first steps in identifying SARIMA models for a (possibly transformed) data
set are to find d and D so as to make the differenced observations stationary in
appearance. The differencing at lag 12 and lag 1, suggests d = D = 1 and s = 12.
Since the ACF at lags of 12 decays slowly, this suggests a seasonal AR part, proba-
bly P = 1 and Q = 0. Using example 1.4.5, we get that Φ = 0.8. The ACF next to
lags of 12 has cutoff after 1 lag. This suggests a MA part for the non-seasonal part,
q = 1 and p = 0. From example 1.4.4 we see that θ is given by

0.4 =
θ

1 + θ2

Solving this gives θ1 = 2 and θ2 = 0.5. Choosing θ = 0.5 gives an invertible ARMA
process for the differenced series.

b)

We want to express the one- and twelve-step ahead linear predictors PnXn+1 and
PnXn+12 for large n.

The linear predictors are given by eq (6.5.11) in Brockwell and Davis

PnXn+h = PnYn+h +
d+Ds∑
j=1

ajPnXn+h−j,

where PnYn+h is the best linear predictor of the ARMA process {Yt} and PnXn+h

can be computed recursively.
We start with PnXn+1. The ARMA process {Yt} is defined by

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Zt

and with our values from a), we get

(1− ΦB12)Yt = (1− θB)Zt (1)

which is an ARMA(12,1) with Φ1 = ... = Φ11 = 0, Φ12 = Φ and θ from a).
From section 3.3, we find

PnYn+1 = ΦYn−11 + θn,1(Yn − Ŷn)

θn,1 can be found from the innovations algorithm with κ as in (3.3.3).
Then we get

PnXn+1 = ΦYn−11 + θn,1(Yn − Ŷn) +
13∑
j=1

ajXn+h−j (2)
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Next, we find PnXn+h. For the ARMA process {Yt} now need

PnYn+12 = ΦPnYn+11 + θn+11,12(Yn − Ŷn)

Again θn+11,12 can be found from the innovations algorithm with κ as in (3.3.3). We
get

PnXn+12 = ΦPnYn+11 + θn+11,12(Yn − Ŷn) +
13∑
j=1

ajPnXn+12−j (3)

PnXn+12−j can be computed recursively.
The aj in equation (2) and (3) can be found by comparing (6.5.10) in the book

using h = 0

Xt = Yt +
13∑
j=0

ajXt−j

with our equation for Xt. The equation for Xt is found solving Yt = (1−B)(1−B12)
for Xt. Doing this gives

Xt = Yt +Xt−1 +Xt−12 −Xt−13

From this we see that a1 = a12 = 1, a13 = −1 and the rest must be zero.

c) The mean square errors of the predictors are given by

σ2
n(h) =

h−1∑
j=0

ψjσ
2

where ψ1, ..., ψj can be computed from

φ(z) =
θ(z)Θ(zs)

φ(z)Φ(zs)(1− z)d(1− zs)D

In our case this equation becomes

φ(z) =
1− θz

(1− Φz12)(1− z)(1− z12)

Solving this gives ψ0 = 1 and ψ1 = · · · = ψ11 = 1− θ. We finally get

σ2
n(1) = ψ2

0σ
2 = σ2

σ2
n(12) =

11∑
j=0

ψ2
jσ

2 = σ2 + 11σ2(1− θ)2
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Chapter 6

Problem 6.5. The best linear predictor of Yn+1 in terms of 1, X0, Y1, . . . , Yn i.e.

Ŷn+1 = a0 + cX0 + a1Y1 + · · ·+ anYn,

must satisfy the orthogonality relations

Cov(Yn+1 − Ŷn+1, 1) = 0

Cov(Yn+1 − Ŷn+1, X0) = 0

Cov(Yn+1 − Ŷn+1, Yj) = 0, j = 1, . . . , n.

The second equation can be written as

Cov(Yn+1− Ŷn+1, X0) =E[(Yn+1−a0 + cX0 + a1Y1 + · · ·+ anYn)X0] = cE[X2
0 ] = 0

so we must have c = 0. This does not effect the other equations since E[YjX0] = 0
for each j.

Problem 6.6. Put Yt = ∇Xt. Then {Yt : t ∈ Z} is an AR(2) process. We can
rewrite this as Xt+1 = Yt + Xt−1. Putting t = n + h and using the linearity of the
projection operator Pn gives PnXn+h = PnYn+h + PnXn+h−1. Since {Yt : t ∈ Z} is
AR(2) process we have PnYn+1 = φ1Yn +φ2Yn−1, PnYn+2 = φ1PnYn+1 +φ2Yn and
iterating we find PnYn+h = φ1PnYn+h−1 +φ2PnYn+h−2. Let φ∗(z) = (1− z)φ(z) =
1− φ∗1z − φ∗2z

2 − φ∗3z
3. Then

(1− z)φ(z) = 1− φ1z − φ2z − z + φ1z
2 + φ2z

3,

i.e. φ∗1 = φ1 + 1, φ∗2 = φ2 − φ1 and φ∗3 = −φ2. Then

PnXn+h =
3∑

j=1

φ∗jXn+h−j .

This can be verified by first noting that

PnYn+h = φ1PnYn+h−1 + φ2PnYn+h−2

= φ1(PnXn+h−1 − PnXn+h−2) + φ2(PnXn+h−2 − PnXn+h−3)
= φ1PnXn+h−1 + (φ2 − φ1)PnXn+h−2 − φ2PnXn+h−3.

and then

PnXn+h = PnYn+h + PnXn+h−1

= (φ1 + 1)PnXn+h−1 + (φ2 − φ1)PnXn+h−2 − φ2PnXn+h−3

= φ∗1PnXn+h−1 + φ∗2PnXn+h−2 + φ∗3PnXn+h−3.

Hence, we have

g(h) =
{

φ∗1g(h− 1) + φ∗2g(h− 2) + φ∗3g(h− 3), h ≥ 1,
Xn+h, h ≤ 0.

We may suggest a solution of the form g(h) = a+bξ−h
1 +cξ−h

2 , h > −3 where ξ1 and
ξ2 are the solutions to φ(z) = 0 and g(−2) = Xn−2, g(−1) = Xn−1 and g(0) = Xn.
Let us first find the roots ξ1 and ξ2.

φ(z) = 1− 0.8z + 0.25z2 = 1− 4
5
z +

1
4
z2 = 0 ⇒ z2 − 16

5
z + 4 = 0.
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We get that z = 8/5 ±
√

(8/5)2 − 4 = (8 ± 6i)/5. Then ξ−1
1 = 5/(8 + 6i) = · · · =

0.4− 0.3i and ξ−1
2 = 0.4 + 0.3i. Next we find the constants a, b and c by solving

Xn−2 = g(−2) = a + bξ−2
1 + cξ−2

2 ,

Xn−1 = g(−1) = a + bξ−1
1 + cξ−1

2 ,

Xn = g(0) = a + b + c.

Note that (0.4− 0.3i)2 = 0.07− 0.24i and (0.4 + 0.3i)2 = 0.07 + 0.24i so we get the
equations

Xn−2 = a + b(0.07− 0.24i) + c(0.07 + 0.24i),
Xn−1 = a + b(0.4− 0.3i) + c(0.4 + 0.3i),

Xn = a + b + c.

Let a = a1 + a2i, b = b1 + b2i and c = c1 + c2i. Then we split the equations into a
real part and an imaginary part and get

Xn−2 = a1 + 0.07b1 + 0.24b2 + 0.07c1 − 0.24c2,

Xn−1 = a1 + 0.4b1 + 0.3b2 + 0.4c1 − 0.4c2,

Xn = a1 + b1 + c1,

0 = a2 + 0.07b2 − 0.24b1 + 0.07c2 + 0.24c1,

0 = a2 + 0.4b2 − 0.3b1 + 4c2 + 0.3c1,

0 = a2 + b2 + c2.

We can write this as a matrix equation by



1 0 0.07 0.24 0.07 −0.24
1 0 0.4 0.3 0.4 −0.3
1 0 1 0 1 0
0 1 −0.24 0.07 0.24 0.07
0 1 −0.3 0.4 0.3 0.4
0 1 0 1 0 1







a1

a2

b1

b2

c1

c2




=




Xn−2

Xn−1

Xn

0
0
0




,

which has the solution a = 2.22Xn − 1.77Xn−1 + 0.55Xn−2, b = c = −1.1Xn−2 +
0.88Xn−1 + 0.22Xn + (−2.22Xn−2 + 3.44Xn−1 − 1.22Xn)i.
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GT Exercises

Exercise 6

a The general expression for a SARIMA(p, d, q)× (P,D,Q)s model is:

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Zt, {Zt} ∼ WN(0, σ2) (1)

with Yt the differenced time series Yt = (1− B)d(1− Bs)DXt a causal
ARMA process. Hence, (1) becomes:

φ(B)Φ(Bs)(1−B)d(1−Bs)DXt = θ(B)Θ(Bs)Zt, {Zt} ∼ WN(0, σ2)

φS(B)φN(B)Xt = θ(B)Θ(Bs)Zt

(2)

Note that φN(z) = (1−z)d(1−zs)D has zeros only in S = {z : |z| = 1}.
On the other hand, given that the process is causal, φS(z) = (1 −
φ1(z)−φ2z

2− . . .−φpz
p)(1−Φ1z

s−Φ2z
2s− . . .−ΦP z

Ps) has no zeros
in S = {z : |z| = 1} since all of its zeros satisfy |z| > 1.

b Starting from (2), if we assume φN(B)Xt, then we get:

φS(B)Yt = θ(B)Θ(Bs)Zt

(1− φ1B − · · · − φpz
p)(1− Φ1B

s − · · · − ΦP z
Ps)Yt = θ(B)Θ(Bs)Zt

(1− φ1B − · · · − φpΦPsB
p+Ps)Yt = θ(B)Θ(Bs)Zt

(1− φ1B − · · · − φpΦPsB
p+Ps)Yt = (1 + θ1B + · · ·+ φqΦQsB

q+Qs)Zt

Thus, Y is an ARMA(p + Ps, q + Qs) process with some coefficients
constrained to be zero. In the general case with E(Xt) = µ∗,

E(Yt) = (1− φ1B − · · · − φpΦPsB
p+Ps)E(Xt)

= µ∗(1− φ1 − · · · − φpΦPs)

= µ
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c From part b we know
φN(B)X = Y (3)

with Y an ARMA(p+Ps,q+Qs) process. Based on (3) we can express
Yt as

Yt = (1−B)d(1−Bs)DXt

= Xt +
N∑
j=1

ajXt−j, t = 1, . . . , n

That is, any linear combination of {X−N+1, . . . , X0, Y1, . . . , Yn} can
be expressed as a linear combination of {X−N+1, . . . , X0, X1, . . . , Xn}.
Similarly,

Xt = Yt −
N∑
j=1

ajXt−j, t = 1, . . . , n

Hence, any linear combination of {X−N+1, . . . , X0, X1, . . . , Xn} can be
expressed as a linear combination of {X−N+1, . . . , X0, Y1, . . . , Yn}. Thus,
the best linear predictor ofXn+1 based on {X−N+1, . . . , X0, X1, . . . , Xn}
given by the projection of Xn+1 on s̄p{X−N+1, . . . , X0, X1, . . . , Xn} is
the same as the best linear predictor ofXn+1 based on {X−N+1, . . . , X0, Y1, . . . , Yn}
since

s̄p{X−N+1, . . . , X0, X1, . . . , Xn} = s̄p{X−N+1, . . . , X0, Y1, . . . , Yn}

d If d,D and s are known, then from {X−N+1, . . . , Xn} we can compute

Yt = φN(B)Xt t = 1, . . . , n

Now, based only on Yt, we are able to fit the ARMA(p + Ps, q + Qs)
process

φS(B)Y = θ(B)Z

through the innovations algorithm outlined in section 5.1.3 of the book,
which depends on

θn,n−k = ν−1
k

(
κ(n+ 1, k + 1)−

k−1∑
j=0

θk,k−jθn,n−jνj

)
which depends only on the ACVF of Y , γY (k), known since the orders
p, q, P and Q are known.
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e The set of observations {X−N+1, . . . , X0} is necessary for computing
the set of differenced observations Y . Let’s remind that in general

Yt = Xt +
N∑
j=1

ajXt−j, t = 1, . . . , n

In addition to these observations are necessary for prediction since the
best linear predictor PnXn+h is found as the projection of Xn+h on the
closed span of {X−N+1, . . . , X0, X1, . . . , Xn} or equivalently the closed
span of {X−N+1, . . . , X0, Y1, . . . , Yn} as shown in part c.

f If we let Z be Gaussian, then the ARMA model associated to Y has
likelihood

(2πσ2)(r0 · r1 · · · rn−1)
−1/2 exp

{
− 1

2σ2

n∑
j=1

(Yj − Ŷj)2/rj−1

}

Now, if we take into account that r0, . . . , rn+1 and Ŷj are given by:

ri−1 =
1

σ2
E(Yi − Ŷi)2

Ŷi+1 =


∑i

j=1 θij(Yi+1−j − Ŷi+1−j) 1 ≤ i < m = max(p+ Ps, q +Qs)

φ1Yi + · · ·+ φp+PsYi+1−p−Ps +
∑q+Qs

j=1 θij(Yi+1−j − Ŷi+1−j) i ≥ m

with θn,n−k = ν−1
k

(
κ(n + 1, k + 1)−

∑k−1
j=0 θk,k−jθn,n−jνj

)
, where νk =

E(Yk+1− Ŷk+1)
2. Hence, given that all the terms involved in the likeli-

hood depend on {Y1, . . . , Yn}, we conclude the information of the model
is contained in {Y1, . . . , Yn}.
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