TMA4285 Time series models Solution to exercise 7, autumn 2018

November 14, 2018

Problem 6.1

The difference equations are satisfied if $(1-B)^{d}\left(A_{0}+A_{1} t+\cdots+A_{d-1} t^{d-1}\right)=0$.
$(1-B) t^{q}$ is a polynomial of degree $q-1$, and $(1-B) c=c-c=0$. It follows that
$(1-B)^{d}\left(A_{0}+A_{1} t+\cdots+A_{d-1} t^{d-1}\right)=(1-B)^{d} A_{0}+(1-B)^{d} A_{1} t+\ldots(1-B)^{d} A_{d-1} t^{d-1}$,
$\operatorname{and}(1-B)^{d} A_{0}=0,(1-B)^{d} t^{q}=0$ for $q=1, \ldots, d-1$ from which the result follows.

Problem 6.2

We want to verify the representation given in (6.3.4). We start with the equation given in (6.3.4) and insert $\phi_{0}^{*}, \phi_{1}^{*}, \phi_{j}^{*}$ and $\nabla X_{t}=X_{t}-X_{t-1}$,

$$
\begin{aligned}
& X_{t}-X_{t-1}=\phi_{0}^{*}+\phi_{1}^{*} X_{t-1}+\phi_{2}^{*}\left(X_{t-1}-X_{t-2}\right)+\cdots+\phi_{p}^{*}\left(X_{t-p+1}-X_{t-p}\right)+Z_{t} \\
& X_{t}=\mu\left(1-\phi_{1}-\cdots-\phi_{p}\right)+X_{t-1}+\left(\sum_{i=1}^{p} \phi_{i}-1\right) X_{t-1}-\sum_{i=2}^{p} \phi_{i}\left(X_{t-1}-X_{t-2}\right) \\
& -\sum_{i=3}^{p} \phi_{i}\left(X_{t-2}-X_{t-3}\right)-\cdots-\sum_{i=p-1}^{p} \phi_{i}\left(X_{t-p}-X_{t-p-1}\right)-\sum_{i=p}^{p} \phi_{i}\left(X_{t-p+1}-X_{t-p}\right)+Z_{t}
\end{aligned}
$$

Terms will cancel out such that we are left with

$$
\begin{aligned}
& X_{t}-\mu=-\mu\left(\phi_{1}+\cdots+\phi_{p}\right)+\phi_{1} X_{t-1}+\cdots+\phi_{p} X_{t-p}+Z_{t} \\
& X_{t}-\mu=\phi_{1}\left(X_{t-1}-\mu\right)+\cdots+\phi_{p}\left(X_{t-p}-\mu\right)+Z_{t}
\end{aligned}
$$

which is the what we wanted to verify.

Problem 6.11

a)

The first steps in identifying SARIMA models for a (possibly transformed) data set are to find d and D so as to make the differenced observations stationary in appearance. The differencing at lag 12 and lag 1 , suggests $d=D=1$ and $s=12$. Since the ACF at lags of 12 decays slowly, this suggests a seasonal AR part, probably $P=1$ and $Q=0$. Using example 1.4.5, we get that $\Phi=0.8$. The ACF next to lags of 12 has cutoff after 1 lag. This suggests a MA part for the non-seasonal part, $q=1$ and $p=0$. From example 1.4 .4 we see that θ is given by

$$
0.4=\frac{\theta}{1+\theta^{2}}
$$

Solving this gives $\theta_{1}=2$ and $\theta_{2}=0.5$. Choosing $\theta=0.5$ gives an invertible ARMA process for the differenced series.
b)

We want to express the one- and twelve-step ahead linear predictors $P_{n} X_{n+1}$ and $P_{n} X_{n+12}$ for large n.

The linear predictors are given by eq (6.5.11) in Brockwell and Davis

$$
P_{n} X_{n+h}=P_{n} Y_{n+h}+\sum_{j=1}^{d+D s} a_{j} P_{n} X_{n+h-j},
$$

where $P_{n} Y_{n+h}$ is the best linear predictor of the ARMA process $\left\{Y_{t}\right\}$ and $P_{n} X_{n+h}$ can be computed recursively.

We start with $P_{n} X_{n+1}$. The ARMA process $\left\{Y_{t}\right\}$ is defined by

$$
\phi(B) \Phi\left(B^{s}\right) Y_{t}=\theta(B) \Theta\left(B^{s}\right) Z_{t}
$$

and with our values from a), we get

$$
\begin{equation*}
\left(1-\Phi B^{12}\right) Y_{t}=(1-\theta B) Z_{t} \tag{1}
\end{equation*}
$$

which is an $\operatorname{ARMA}(12,1)$ with $\Phi_{1}=\ldots=\Phi_{11}=0, \Phi_{12}=\Phi$ and θ from a).
From section 3.3, we find

$$
P_{n} Y_{n+1}=\Phi Y_{n-11}+\theta_{n, 1}\left(Y_{n}-\hat{Y}_{n}\right)
$$

$\theta_{n, 1}$ can be found from the innovations algorithm with κ as in (3.3.3).
Then we get

$$
\begin{equation*}
P_{n} X_{n+1}=\Phi Y_{n-11}+\theta_{n, 1}\left(Y_{n}-\hat{Y}_{n}\right)+\sum_{j=1}^{13} a_{j} X_{n+h-j} \tag{2}
\end{equation*}
$$

Next, we find $P_{n} X_{n+h}$. For the ARMA process $\left\{Y_{t}\right\}$ now need

$$
P_{n} Y_{n+12}=\Phi P_{n} Y_{n+11}+\theta_{n+11,12}\left(Y_{n}-\hat{Y}_{n}\right)
$$

Again $\theta_{n+11,12}$ can be found from the innovations algorithm with κ as in (3.3.3). We get

$$
\begin{equation*}
P_{n} X_{n+12}=\Phi P_{n} Y_{n+11}+\theta_{n+11,12}\left(Y_{n}-\hat{Y}_{n}\right)+\sum_{j=1}^{13} a_{j} P_{n} X_{n+12-j} \tag{3}
\end{equation*}
$$

$P_{n} X_{n+12-j}$ can be computed recursively.
The a_{j} in equation (2) and (3) can be found by comparing (6.5.10) in the book using $h=0$

$$
X_{t}=Y_{t}+\sum_{j=0}^{13} a_{j} X_{t-j}
$$

with our equation for X_{t}. The equation for X_{t} is found solving $Y_{t}=(1-B)\left(1-B^{12}\right)$ for X_{t}. Doing this gives

$$
X_{t}=Y_{t}+X_{t-1}+X_{t-12}-X_{t-13}
$$

From this we see that $a_{1}=a_{12}=1, a_{13}=-1$ and the rest must be zero.
c) The mean square errors of the predictors are given by

$$
\sigma_{n}^{2}(h)=\sum_{j=0}^{h-1} \psi_{j} \sigma^{2}
$$

where $\psi_{1}, \ldots, \psi_{j}$ can be computed from

$$
\phi(z)=\frac{\theta(z) \Theta\left(z^{s}\right)}{\phi(z) \Phi\left(z^{s}\right)(1-z)^{d}\left(1-z^{s}\right)^{D}}
$$

In our case this equation becomes

$$
\phi(z)=\frac{1-\theta z}{\left(1-\Phi z^{12}\right)(1-z)\left(1-z^{12}\right)}
$$

Solving this gives $\psi_{0}=1$ and $\psi_{1}=\cdots=\psi_{11}=1-\theta$. We finally get

$$
\begin{aligned}
& \sigma_{n}^{2}(1)=\psi_{0}^{2} \sigma^{2}=\sigma^{2} \\
& \sigma_{n}^{2}(12)=\sum_{j=0}^{11} \psi_{j}^{2} \sigma^{2}=\sigma^{2}+11 \sigma^{2}(1-\theta)^{2}
\end{aligned}
$$

Chapter 6

Problem 6.5. The best linear predictor of Y_{n+1} in terms of $1, X_{0}, Y_{1}, \ldots, Y_{n}$ i.e.

$$
\hat{Y}_{n+1}=a_{0}+c X_{0}+a_{1} Y_{1}+\cdots+a_{n} Y_{n}
$$

must satisfy the orthogonality relations

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{n+1}-\hat{Y}_{n+1}, 1\right) & =0 \\
\operatorname{Cov}\left(Y_{n+1}-\hat{Y}_{n+1}, X_{0}\right) & =0 \\
\operatorname{Cov}\left(Y_{n+1}-\hat{Y}_{n+1}, Y_{j}\right) & =0, \quad j=1, \ldots, n
\end{aligned}
$$

The second equation can be written as
$\operatorname{Cov}\left(Y_{n+1}-\hat{Y}_{n+1}, X_{0}\right)=\mathbb{E}\left[\left(Y_{n+1}-a_{0}+c X_{0}+a_{1} Y_{1}+\cdots+a_{n} Y_{n}\right) X_{0}\right]=c \mathbb{E}\left[X_{0}^{2}\right]=0$
so we must have $c=0$. This does not effect the other equations since $\mathbb{E}\left[Y_{j} X_{0}\right]=0$ for each j.

Problem 6.6. Put $Y_{t}=\nabla X_{t}$. Then $\left\{Y_{t}: t \in \mathbb{Z}\right\}$ is an $\operatorname{AR}(2)$ process. We can rewrite this as $X_{t+1}=Y_{t}+X_{t-1}$. Putting $t=n+h$ and using the linearity of the projection operator P_{n} gives $P_{n} X_{n+h}=P_{n} Y_{n+h}+P_{n} X_{n+h-1}$. Since $\left\{Y_{t}: t \in \mathbb{Z}\right\}$ is $\operatorname{AR}(2)$ process we have $P_{n} Y_{n+1}=\phi_{1} Y_{n}+\phi_{2} Y_{n-1}, P_{n} Y_{n+2}=\phi_{1} P_{n} Y_{n+1}+\phi_{2} Y_{n}$ and iterating we find $P_{n} Y_{n+h}=\phi_{1} P_{n} Y_{n+h-1}+\phi_{2} P_{n} Y_{n+h-2}$. Let $\phi^{*}(z)=(1-z) \phi(z)=$ $1-\phi_{1}^{*} z-\phi_{2}^{*} z^{2}-\phi_{3}^{*} z^{3}$. Then

$$
(1-z) \phi(z)=1-\phi_{1} z-\phi_{2} z-z+\phi_{1} z^{2}+\phi_{2} z^{3}
$$

i.e. $\phi_{1}^{*}=\phi_{1}+1, \phi_{2}^{*}=\phi_{2}-\phi_{1}$ and $\phi_{3}^{*}=-\phi_{2}$. Then

$$
P_{n} X_{n+h}=\sum_{j=1}^{3} \phi_{j}^{*} X_{n+h-j}
$$

This can be verified by first noting that

$$
\begin{aligned}
P_{n} Y_{n+h} & =\phi_{1} P_{n} Y_{n+h-1}+\phi_{2} P_{n} Y_{n+h-2} \\
& =\phi_{1}\left(P_{n} X_{n+h-1}-P_{n} X_{n+h-2}\right)+\phi_{2}\left(P_{n} X_{n+h-2}-P_{n} X_{n+h-3}\right) \\
& =\phi_{1} P_{n} X_{n+h-1}+\left(\phi_{2}-\phi_{1}\right) P_{n} X_{n+h-2}-\phi_{2} P_{n} X_{n+h-3}
\end{aligned}
$$

and then

$$
\begin{aligned}
P_{n} X_{n+h} & =P_{n} Y_{n+h}+P_{n} X_{n+h-1} \\
& =\left(\phi_{1}+1\right) P_{n} X_{n+h-1}+\left(\phi_{2}-\phi_{1}\right) P_{n} X_{n+h-2}-\phi_{2} P_{n} X_{n+h-3} \\
& =\phi_{1}^{*} P_{n} X_{n+h-1}+\phi_{2}^{*} P_{n} X_{n+h-2}+\phi_{3}^{*} P_{n} X_{n+h-3} .
\end{aligned}
$$

Hence, we have

$$
g(h)=\left\{\begin{array}{cc}
\phi_{1}^{*} g(h-1)+\phi_{2}^{*} g(h-2)+\phi_{3}^{*} g(h-3), & h \geq 1 \\
X_{n+h}, & h \leq 0
\end{array}\right.
$$

We may suggest a solution of the form $g(h)=a+b \xi_{1}^{-h}+c \xi_{2}^{-h}, h>-3$ where ξ_{1} and ξ_{2} are the solutions to $\phi(z)=0$ and $g(-2)=X_{n-2}, g(-1)=X_{n-1}$ and $g(0)=X_{n}$. Let us first find the roots ξ_{1} and ξ_{2}.

$$
\phi(z)=1-0.8 z+0.25 z^{2}=1-\frac{4}{5} z+\frac{1}{4} z^{2}=0 \Rightarrow z^{2}-\frac{16}{5} z+4=0
$$

We get that $z=8 / 5 \pm \sqrt{(8 / 5)^{2}-4}=(8 \pm 6 i) / 5$. Then $\xi_{1}^{-1}=5 /(8+6 i)=\cdots=$ $0.4-0.3 i$ and $\xi_{2}^{-1}=0.4+0.3 i$. Next we find the constants a, b and c by solving

$$
\begin{aligned}
X_{n-2} & =g(-2)=a+b \xi_{1}^{-2}+c \xi_{2}^{-2} \\
X_{n-1} & =g(-1)=a+b \xi_{1}^{-1}+c \xi_{2}^{-1} \\
X_{n} & =g(0)=a+b+c
\end{aligned}
$$

Note that $(0.4-0.3 i)^{2}=0.07-0.24 i$ and $(0.4+0.3 i)^{2}=0.07+0.24 i$ so we get the equations

$$
\begin{aligned}
X_{n-2} & =a+b(0.07-0.24 i)+c(0.07+0.24 i) \\
X_{n-1} & =a+b(0.4-0.3 i)+c(0.4+0.3 i) \\
X_{n} & =a+b+c
\end{aligned}
$$

Let $a=a_{1}+a_{2} i, b=b_{1}+b_{2} i$ and $c=c_{1}+c_{2} i$. Then we split the equations into a real part and an imaginary part and get

$$
\begin{aligned}
X_{n-2} & =a_{1}+0.07 b_{1}+0.24 b_{2}+0.07 c_{1}-0.24 c_{2} \\
X_{n-1} & =a_{1}+0.4 b_{1}+0.3 b_{2}+0.4 c_{1}-0.4 c_{2} \\
X_{n} & =a_{1}+b_{1}+c_{1} \\
0 & =a_{2}+0.07 b_{2}-0.24 b_{1}+0.07 c_{2}+0.24 c_{1} \\
0 & =a_{2}+0.4 b_{2}-0.3 b_{1}+4 c_{2}+0.3 c_{1} \\
0 & =a_{2}+b_{2}+c_{2}
\end{aligned}
$$

We can write this as a matrix equation by

$$
\left(\begin{array}{cccccc}
1 & 0 & 0.07 & 0.24 & 0.07 & -0.24 \\
1 & 0 & 0.4 & 0.3 & 0.4 & -0.3 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & -0.24 & 0.07 & 0.24 & 0.07 \\
0 & 1 & -0.3 & 0.4 & 0.3 & 0.4 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
b_{1} \\
b_{2} \\
c_{1} \\
c_{2}
\end{array}\right)=\left(\begin{array}{c}
X_{n-2} \\
X_{n-1} \\
X_{n} \\
0 \\
0 \\
0
\end{array}\right)
$$

which has the solution $a=2.22 X_{n}-1.77 X_{n-1}+0.55 X_{n-2}, b=\bar{c}=-1.1 X_{n-2}+$ $0.88 X_{n-1}+0.22 X_{n}+\left(-2.22 X_{n-2}+3.44 X_{n-1}-1.22 X_{n}\right) i$.

GT Exercises

Exercise 6

a The general expression for a $\operatorname{SARIMA}(p, d, q) \times(P, D, Q)_{s}$ model is:

$$
\begin{equation*}
\phi(B) \Phi\left(B^{s}\right) Y_{t}=\theta(B) \Theta\left(B^{s}\right) Z_{t}, \quad\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right) \tag{1}
\end{equation*}
$$

with Y_{t} the differenced time series $Y_{t}=(1-B)^{d}\left(1-B^{s}\right)^{D} X_{t}$ a causal ARMA process. Hence, (1) becomes:

$$
\begin{align*}
\phi(B) \Phi\left(B^{s}\right)(1-B)^{d}\left(1-B^{s}\right)^{D} X_{t} & =\theta(B) \Theta\left(B^{s}\right) Z_{t}, \quad\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right) \\
\phi_{S}(B) \phi_{N}(B) X_{t} & =\theta(B) \Theta\left(B^{s}\right) Z_{t} \tag{2}
\end{align*}
$$

Note that $\phi_{N}(z)=(1-z)^{d}\left(1-z^{s}\right)^{D}$ has zeros only in $S=\{z:|z|=1\}$. On the other hand, given that the process is causal, $\phi_{S}(z)=(1-$ $\left.\phi_{1}(z)-\phi_{2} z^{2}-\ldots-\phi_{p} z^{p}\right)\left(1-\Phi_{1} z^{s}-\Phi_{2} z^{2 s}-\ldots-\Phi_{P} z^{P s}\right)$ has no zeros in $S=\{z:|z|=1\}$ since all of its zeros satisfy $|z|>1$.
b Starting from (2), if we assume $\phi_{N}(B) X_{t}$, then we get:

$$
\begin{aligned}
\phi_{S}(B) Y_{t} & =\theta(B) \Theta\left(B^{s}\right) Z_{t} \\
\left(1-\phi_{1} B-\cdots-\phi_{p} z^{p}\right)\left(1-\Phi_{1} B^{s}-\cdots-\Phi_{P} z^{P s}\right) Y_{t} & =\theta(B) \Theta\left(B^{s}\right) Z_{t} \\
\left(1-\phi_{1} B-\cdots-\phi_{p} \Phi_{P s} B^{p+P s}\right) Y_{t} & =\theta(B) \Theta\left(B^{s}\right) Z_{t} \\
\left(1-\phi_{1} B-\cdots-\phi_{p} \Phi_{P s} B^{p+P s}\right) Y_{t} & =\left(1+\theta_{1} B+\cdots+\phi_{q} \Phi_{Q s} B^{q+Q s}\right) Z_{t}
\end{aligned}
$$

Thus, Y is an $A R M A(p+P s, q+Q s)$ process with some coefficients constrained to be zero. In the general case with $E\left(X_{t}\right)=\mu^{*}$,

$$
\begin{aligned}
E\left(Y_{t}\right) & =\left(1-\phi_{1} B-\cdots-\phi_{p} \Phi_{P s} B^{p+P s}\right) E\left(X_{t}\right) \\
& =\mu^{*}\left(1-\phi_{1}-\cdots-\phi_{p} \Phi_{P s}\right) \\
& =\mu
\end{aligned}
$$

c From part b we know

$$
\begin{equation*}
\phi_{N}(B) X=Y \tag{3}
\end{equation*}
$$

with Y an ARMA($\mathrm{p}+\mathrm{Ps}, \mathrm{q}+\mathrm{Qs})$ process. Based on (3) we can express Y_{t} as

$$
\begin{aligned}
Y_{t} & =(1-B)^{d}\left(1-B^{s}\right)^{D} X_{t} \\
& =X_{t}+\sum_{j=1}^{N} a_{j} X_{t-j}, \quad t=1, \ldots, n
\end{aligned}
$$

That is, any linear combination of $\left\{X_{-N+1}, \ldots, X_{0}, Y_{1}, \ldots, Y_{n}\right\}$ can be expressed as a linear combination of $\left\{X_{-N+1}, \ldots, X_{0}, X_{1}, \ldots, X_{n}\right\}$. Similarly,

$$
X_{t}=Y_{t}-\sum_{j=1}^{N} a_{j} X_{t-j}, \quad t=1, \ldots, n
$$

Hence, any linear combination of $\left\{X_{-N+1}, \ldots, X_{0}, X_{1}, \ldots, X_{n}\right\}$ can be expressed as a linear combination of $\left\{X_{-N+1}, \ldots, X_{0}, Y_{1}, \ldots, Y_{n}\right\}$. Thus, the best linear predictor of X_{n+1} based on $\left\{X_{-N+1}, \ldots, X_{0}, X_{1}, \ldots, X_{n}\right\}$ given by the projection of X_{n+1} on $\overline{s p}\left\{X_{-N+1}, \ldots, X_{0}, X_{1}, \ldots, X_{n}\right\}$ is the same as the best linear predictor of X_{n+1} based on $\left\{X_{-N+1}, \ldots, X_{0}, Y_{1}, \ldots, Y_{n}\right\}$ since

$$
\overline{s p}\left\{X_{-N+1}, \ldots, X_{0}, X_{1}, \ldots, X_{n}\right\}=\overline{s p}\left\{X_{-N+1}, \ldots, X_{0}, Y_{1}, \ldots, Y_{n}\right\}
$$

d If d, D and s are known, then from $\left\{X_{-N+1}, \ldots, X_{n}\right\}$ we can compute

$$
Y_{t}=\phi_{N}(B) X_{t} \quad t=1, \ldots, n
$$

Now, based only on Y_{t}, we are able to fit the $A R M A(p+P s, q+Q s)$ process

$$
\phi_{S}(B) Y=\theta(B) Z
$$

through the innovations algorithm outlined in section 5.1.3 of the book, which depends on

$$
\theta_{n, n-k}=\nu_{k}^{-1}\left(\kappa(n+1, k+1)-\sum_{j=0}^{k-1} \theta_{k, k-j} \theta_{n, n-j} \nu_{j}\right)
$$

which depends only on the ACVF of $Y, \gamma_{Y}(k)$, known since the orders p, q, P and Q are known.
e The set of observations $\left\{X_{-N+1}, \ldots, X_{0}\right\}$ is necessary for computing the set of differenced observations Y. Let's remind that in general

$$
Y_{t}=X_{t}+\sum_{j=1}^{N} a_{j} X_{t-j}, \quad t=1, \ldots, n
$$

In addition to these observations are necessary for prediction since the best linear predictor $P_{n} X_{n+h}$ is found as the projection of X_{n+h} on the closed span of $\left\{X_{-N+1}, \ldots, X_{0}, X_{1}, \ldots, X_{n}\right\}$ or equivalently the closed span of $\left\{X_{-N+1}, \ldots, X_{0}, Y_{1}, \ldots, Y_{n}\right\}$ as shown in part c.
f If we let Z be Gaussian, then the ARMA model associated to Y has likelihood

$$
\left(2 \pi \sigma^{2}\right)\left(r_{0} \cdot r_{1} \cdots r_{n-1}\right)^{-1 / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{j=1}^{n}\left(Y_{j}-\hat{Y}_{j}\right)^{2} / r_{j-1}\right\}
$$

Now, if we take into account that r_{0}, \ldots, r_{n+1} and \hat{Y}_{j} are given by:
$r_{i-1}=\frac{1}{\sigma^{2}} E\left(Y_{i}-\hat{Y}_{i}\right)^{2}$
$\hat{Y}_{i+1}= \begin{cases}\sum_{j=1}^{i} \theta_{i j}\left(Y_{i+1-j}-\hat{Y}_{i+1-j}\right) & 1 \leq i<m=\max (p+P s, q+Q s) \\ \phi_{1} Y_{i}+\cdots+\phi_{p+P s} Y_{i+1-p-P s}+\sum_{j=1}^{q+Q s} \theta_{i j}\left(Y_{i+1-j}-\hat{Y}_{i+1-j}\right) \quad i \geq m\end{cases}$
with $\theta_{n, n-k}=\nu_{k}^{-1}\left(\kappa(n+1, k+1)-\sum_{j=0}^{k-1} \theta_{k, k-j} \theta_{n, n-j} \nu_{j}\right)$, where $\nu_{k}=$ $E\left(Y_{k+1}-\hat{Y}_{k+1}\right)^{2}$. Hence, given that all the terms involved in the likelihood depend on $\left\{Y_{1}, \ldots, Y_{n}\right\}$, we conclude the information of the model is contained in $\left\{Y_{1}, \ldots, Y_{n}\right\}$.

