
TMA4285 Time series models
Solution to exercise 9, autumn 2018

November 14, 2018

Problem 9.1

We begin with equation (9.1.11) and insert recursively

Xt = FXt−1 + Vt−1 = F (FXt−2 + Vt−2) + Vt−1 = F 2(FXt−3 + Vt−3) + FVt−2 + Vt−1

= · · · =
∞∑
j=0

F jVt−1−j

The condition F k → 0 as k →∞ ensures convergence of the infinite series.
Next, we want to deduce that {(XT

t ,Y
T
t )T} is a multivariate stationary process. What is

needed to deduce this is the vector version of proposition 2.2.1.
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Problem 9.3

We want to show that det(zI − F ) = zpφ(z−1), and we can do this using induction.
First, we show that det(zI − F ) = zpφ(z−1) for p = 1

det(z − φ1) = z − φ1 = z(1− φ1

z
) = zφ(z−1)

Next we assume that det(zI − F ) = zpφ(z−1) holds for p = k and show that then it also holds
for p = k + 1.

det(zI − F ) = zk+1φ(z−1)

det


z −1 0 . . . 0
0 z −1 . . . 0
...

...
. . . . . .

...
0 0 . . . z −1

φk+1 φk . . . φ2 z − φ1

 = zk+1(1− φ1

z
− · · · − φk+1

zk+1
)

z·det


z −1 . . . 0

...
. . . . . .

...
0 . . . z −1
φk . . . φ2 z − φ1

± φk+1 · det


−1 0 . . . 0
z −1 . . . 0
...

. . . . . .
...

0 . . . z −1

 = zk+1(1− φ1

z
− · · · − φk

zk
)− φk+1

z·det


z −1 . . . 0

...
. . . . . .

...
0 . . . z −1
φk . . . φ2 z − φ1

± φk+1(∓1) = zk+1(1− φ1

z
− · · · − φk

zk
)− φk+1

det


z −1 . . . 0

...
. . . . . .

...
0 . . . z −1
φk . . . φ2 z − φ1

 = zk(1− φ1

z
− · · · − φk

zk
)

det(zI − F ) = zkφ(z−1),

which was our assumption.
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Problem 9.11

a) We want to show that if XS = B can be solved for X, then X = BS−1 is a solution for any
generalized inverse S−1 of S.

In short, we insert the solution into the equation and verify that both sides are equal

XS = B → BS−1S = B → B = B

b) Let P (X|Y) = Ê(X|Y) = MY, where X and Y are vectors of dimension v and w, and M
is a matrix of dimension v×w. To find the best linear prediction, we must minimize the mean
squared errors E((X−MY)2). This corresponds to solving

E((X−MY)YT ) = 0

↓
E(XYT ) = ME(YYT )

↓
M = E(XYT )[E(YYT )]−1,

where [E(YYT )]−1 is any generalized inverse of E(YYT ).

Problem 9.12

What we need to do is show the relation in equation (9.4.3). Let Ht be the vector space
consisting of all linear combinations of Y0, ...,Yt,

Ht = {
t∑

i=0

ciYi|ci matrix }

Furthermore, let Ht−1 be the vector space consisting of all linear combinations of Y0, ...,Yt−1.
That is

Ht−1 = {
t−1∑
i=0

ciYi|ci matrix }

Next, define the innovations in the same way as in the book, It = Yt − Pt−1Yt. Here, Yt is a
vector in Ht and Pt−1Yt is the projection onto Ht−1. The innovation It is a linear combination
of Y0, ...,Yt and is orthogonal to Ht−1. This means that

Ht = Ht−1 ⊕HIt , (1)

where HIt = {MIt}. A consequence of (1) is that

Pt = Pt−1 + PIt
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Problem 9.17

a) The two equations we will be using are

X̂t+1 = FtX̂t + Θt∆
−1
t (Yt −GtX̂t) (2)

and

PtXt = Pt−1Xt + ΩtG
T
t ∆−1t (Yt −GtX̂t) (3)

We note by definition PtXt = Xt|t and Pt−1Xt = X̂t.
We can rewrite equation (3) as

Yt −GtX̂t = (∆−1t GT
t Ωt)

−1(PtXt − Pt−1Xt)

and insert this into equation (2). This gives

X̂t+1 = FtX̂t + Θt∆
−1
t (∆−1t GT

t Ωt)
−1(PtXt − Pt−1Xt)

= FtX̂t + Θt(G
T
t Ωt)

−1(PtXt − Pt−1Xt)

= FtX̂t + Ft(Xt|t − X̂t)

= FtXt|t

where we have used that Θt = FtΩtG
T
t from the Kalman prediction.

b) We now have

X̂t+1 = FtXt|t (4)

and

Xt|t = X̂t + ΩtG
T
t ∆−1t (Yt −GtX̂t) (5)

By inserting (4) into (5) we get

Xt|t = Ft−1Xt−1|t−1 + ΩtG
T
t ∆−1t (Yt −GtFt−1Xt−1|t−1)

For t=1, equation (5) gives

X1|1 = X̂1 + Ω1G
T
1 ∆−11 (Y1 −G1X̂1)
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Problem 8.9. Let Yt consist of Yt,1 and Yt,2, then we can write

Yt =
[

Yt,1

Yt,1

]
=

[
G1Xt,1 + Wt,1

G2Xt,2 + Wt,2

]
=

[
G1Xt,1

G2Xt,2

]
+

[
Wt,1

Wt,2

]

=
[

G1 0
0 G2

] [
Xt,1

Xt,2

]
+

[
Wt,1

Wt,2

]
.

Set

G =
[

G1 0
0 G2

]
, Xt =

[
Xt,1

Xt,1

]
and Wt =

[
Wt,1

Wt,2

]

then we have Yt = GXt + Wt. Similarly we have that

Xt+1 =
[

Xt+1,1

Xt+1,1

]
=

[
F1Xt,1 + Vt,1

F2Xt,2 + Vt,2

]
=

[
F1Xt,1

F2Xt,2

]
+

[
Vt,1

Vt,2

]

=
[

F1 0
0 F2

] [
Xt,1

Xt,2

]
+

[
Vt,1

Vt,2

]

and set

F =
[

F1 0
0 F2

]
and Vt =

[
Vt,1

Vt,2

]
.

Finally we have the state-space representation

Yt = GXt + Wt

Xt+1 = FXt + Vt.

Problem 8.13. We have to solve

Ω + σ2
v −

Ω2

Ω + σ2
w

= Ω

which is equivalent to

Ω2

Ω + σ2
w

− σ2
v = 0.

Multiplying with Ω + σ2
w we get

Ω2 − Ωσ2
v − σ2

wσ2
v = 0,

which has the solutions

Ω =
1
2
σ2

v ±
√

σ4
v

4
+ σ2

wσ2
v =

σ2
v ±

√
σ4

v + 4σ2
wσ2

v

2
.

Since Ω ≥ 0 we have the positive root which is the solution we wanted.

Problem 8.14. We have that

Ωt+1 = Ωt + σ2
v −

Ω2
t

Ωt + σ2
w

and since σ2
v = Ω2/(Ω + σ2

w) substracting Ω yields

Ωt+1 − Ω = Ωt +
Ω2

Ω + σ2
w

− Ω2
t

Ωt + σ2
w

− Ω

=
Ωt

(
Ωt + σ2

w

)− Ω2
t

Ωt + σ2
w

− Ω
(
Ω + σ2

w

)− Ω2

Ω + σ2
w

=
Ωtσ

2
w

Ωt + σ2
w

− Ωσ2
w

Ω + σ2
w

= σ2
w

(
Ωt

Ωt + σ2
w

− Ω
Ω + σ2

w

)
.

29


