TMA4285 Time series models Solution to exercise 9, autumn 2018

November 14, 2018

Problem 9.1

We begin with equation (9.1.11) and insert recursively

$$
\begin{aligned}
\mathbf{X}_{t} & =F \mathbf{X}_{t-1}+\mathbf{V}_{t-1}=F\left(F \mathbf{X}_{t-2}+\mathbf{V}_{t-2}\right)+\mathbf{V}_{t-1}=F^{2}\left(F \mathbf{X}_{t-3}+\mathbf{V}_{t-3}\right)+F \mathbf{V}_{t-2}+\mathbf{V}_{t-1} \\
& =\cdots=\sum_{j=0}^{\infty} F^{j} \mathbf{V}_{t-1-j}
\end{aligned}
$$

The condition $F^{k} \rightarrow 0$ as $k \rightarrow \infty$ ensures convergence of the infinite series.
Next, we want to deduce that $\left\{\left(\mathbf{X}_{t}^{T}, \mathbf{Y}_{t}^{T}\right)^{T}\right\}$ is a multivariate stationary process. What is needed to deduce this is the vector version of proposition 2.2.1.

Problem 9.3

We want to show that $\operatorname{det}(z I-F)=z^{p} \phi\left(z^{-1}\right)$, and we can do this using induction.
First, we show that $\operatorname{det}(z I-F)=z^{p} \phi\left(z^{-1}\right)$ for $p=1$

$$
\operatorname{det}\left(z-\phi_{1}\right)=z-\phi_{1}=z\left(1-\frac{\phi_{1}}{z}\right)=z \phi\left(z^{-1}\right)
$$

Next we assume that $\operatorname{det}(z I-F)=z^{p} \phi\left(z^{-1}\right)$ holds for $p=k$ and show that then it also holds for $p=k+1$.

$$
\begin{aligned}
& \operatorname{det}(z I-F)=z^{k+1} \phi\left(z^{-1}\right) \\
& \operatorname{det}\left(\begin{array}{ccccc}
z & -1 & 0 & \ldots & 0 \\
0 & z & -1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & z & -1 \\
\phi_{k+1} & \phi_{k} & \cdots & \phi_{2} & z-\phi_{1}
\end{array}\right)=z^{k+1}\left(1-\frac{\phi_{1}}{z}-\cdots-\frac{\phi_{k+1}}{z^{k+1}}\right) \\
& z \cdot \operatorname{det}\left(\begin{array}{ccccc}
z & -1 & \ldots & 0 \\
& \vdots & \ddots & \ddots & \vdots \\
0 & \ldots & z & -1 \\
\phi_{k} & \ldots & \phi_{2} & z-\phi_{1}
\end{array}\right) \pm \phi_{k+1} \cdot \operatorname{det}\left(\begin{array}{cccc}
-1 & 0 & \ldots & 0 \\
z & -1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & z & -1
\end{array}\right)=z^{k+1}\left(1-\frac{\phi_{1}}{z}-\cdots-\frac{\phi_{k}}{z^{k}}\right)-\phi_{k+1} \\
& z \cdot \operatorname{det}\left(\begin{array}{ccccc}
z & -1 & \ldots & 0 \\
& \vdots & \ddots & \ddots & \vdots \\
0 & \ldots & z & -1 \\
\phi_{k} & \cdots & \phi_{2} & z-\phi_{1}
\end{array}\right) \pm \phi_{k+1}(\mp 1)=z^{k+1}\left(1-\frac{\phi_{1}}{z}-\cdots-\frac{\phi_{k}}{z^{k}}\right)-\phi_{k+1} \\
& \operatorname{det}\left(\begin{array}{ccccc}
z & -1 & \ldots & 0 \\
& \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & z & -1 \\
\phi_{k} & \cdots & \phi_{2} & z-\phi_{1}
\end{array}\right)=z^{k}\left(1-\frac{\phi_{1}}{z}-\cdots-\frac{\phi_{k}}{z^{k}}\right) \\
& \operatorname{det}(z I-F)=z^{k} \phi\left(z^{-1}\right),
\end{aligned}
$$

which was our assumption.

Problem 9.11

a) We want to show that if $X S=B$ can be solved for X, then $X=B S^{-1}$ is a solution for any generalized inverse S^{-1} of S.

In short, we insert the solution into the equation and verify that both sides are equal

$$
X S=B \rightarrow B S^{-1} S=B \rightarrow B=B
$$

b) Let $P(\mathbf{X} \mid \mathbf{Y})=\hat{E}(\mathbf{X} \mid \mathbf{Y})=M \mathbf{Y}$, where \mathbf{X} and \mathbf{Y} are vectors of dimension v and w, and M is a matrix of dimension $v \times w$. To find the best linear prediction, we must minimize the mean squared errors $E\left((\mathbf{X}-M \mathbf{Y})^{2}\right)$. This corresponds to solving

$$
\begin{aligned}
E\left((\mathbf{X}-M \mathbf{Y}) \mathbf{Y}^{T}\right) & =0 \\
& \downarrow \\
E\left(\mathbf{X} \mathbf{Y}^{T}\right) & =M E\left(\mathbf{Y} \mathbf{Y}^{T}\right) \\
& \downarrow \\
M & =E\left(\mathbf{X} \mathbf{Y}^{T}\right)\left[E\left(\mathbf{Y} \mathbf{Y}^{T}\right)\right]^{-1}
\end{aligned}
$$

where $\left[E\left(\mathbf{Y} \mathbf{Y}^{T}\right)\right]^{-1}$ is any generalized inverse of $E\left(\mathbf{Y} \mathbf{Y}^{T}\right)$.

Problem 9.12

What we need to do is show the relation in equation (9.4.3). Let \mathcal{H}_{t} be the vector space consisting of all linear combinations of $\mathbf{Y}_{0}, \ldots, \mathbf{Y}_{t}$,

$$
\mathcal{H}_{t}=\left\{\sum_{i=0}^{t} c_{i} \mathbf{Y}_{i} \mid c_{i} \text { matrix }\right\}
$$

Furthermore, let \mathcal{H}_{t-1} be the vector space consisting of all linear combinations of $\mathbf{Y}_{0}, \ldots, \mathbf{Y}_{t-1}$. That is

$$
\mathcal{H}_{t-1}=\left\{\sum_{i=0}^{t-1} c_{i} \mathbf{Y}_{i} \mid c_{i} \text { matrix }\right\}
$$

Next, define the innovations in the same way as in the book, $\mathbf{I}_{t}=\mathbf{Y}_{t}-P_{t-1} \mathbf{Y}_{t}$. Here, \mathbf{Y}_{t} is a vector in \mathcal{H}_{t} and $P_{t-1} \mathbf{Y}_{t}$ is the projection onto \mathcal{H}_{t-1}. The innovation \mathbf{I}_{t} is a linear combination of $\mathbf{Y}_{0}, \ldots, \mathbf{Y}_{t}$ and is orthogonal to \mathcal{H}_{t-1}. This means that

$$
\begin{equation*}
\mathcal{H}_{t}=\mathcal{H}_{t-1} \oplus \mathcal{H}_{I_{t}}, \tag{1}
\end{equation*}
$$

where $\mathcal{H}_{\mathbf{I}_{t}}=\left\{M \mathbf{I}_{t}\right\}$. A consequence of (1) is that

$$
P_{t}=P_{t-1}+P_{I_{t}}
$$

Problem 9.17

a) The two equations we will be using are

$$
\begin{equation*}
\hat{\mathbf{X}}_{t+1}=F_{t} \hat{\mathbf{X}}_{t}+\Theta_{t} \Delta_{t}^{-1}\left(\mathbf{Y}_{t}-G_{t} \hat{\mathbf{X}}_{t}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{t} \mathbf{X}_{t}=P_{t-1} \mathbf{X}_{t}+\Omega_{t} G_{t}^{T} \Delta_{t}^{-1}\left(\mathbf{Y}_{t}-G_{t} \hat{\mathbf{X}}_{t}\right) \tag{3}
\end{equation*}
$$

We note by definition $P_{t} \mathbf{X}_{t}=\mathbf{X}_{t \mid t}$ and $P_{t-1} \mathbf{X}_{t}=\hat{\mathbf{X}}_{t}$.
We can rewrite equation (3) as

$$
\mathbf{Y}_{t}-G_{t} \hat{\mathbf{X}}_{t}=\left(\Delta_{t}^{-1} G_{t}^{T} \Omega_{t}\right)^{-1}\left(P_{t} \mathbf{X}_{t}-P_{t-1} \mathbf{X}_{t}\right)
$$

and insert this into equation (2). This gives

$$
\begin{aligned}
\hat{\mathbf{X}}_{t+1} & =F_{t} \hat{\mathbf{X}}_{t}+\Theta_{t} \Delta_{t}^{-1}\left(\Delta_{t}^{-1} G_{t}^{T} \Omega_{t}\right)^{-1}\left(P_{t} \mathbf{X}_{t}-P_{t-1} \mathbf{X}_{t}\right) \\
& =F_{t} \hat{\mathbf{X}}_{t}+\Theta_{t}\left(G_{t}^{T} \Omega_{t}\right)^{-1}\left(P_{t} \mathbf{X}_{t}-P_{t-1} \mathbf{X}_{t}\right) \\
& =F_{t} \hat{\mathbf{X}}_{t}+F_{t}\left(\mathbf{X}_{t \mid t}-\hat{\mathbf{X}}_{t}\right) \\
& =F_{t} \mathbf{X}_{t \mid t}
\end{aligned}
$$

where we have used that $\Theta_{t}=F_{t} \Omega_{t} G_{t}^{T}$ from the Kalman prediction.
b) We now have

$$
\begin{equation*}
\hat{\mathbf{X}}_{t+1}=F_{t} \mathbf{X}_{t \mid t} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{X}_{t \mid t}=\hat{\mathbf{X}}_{t}+\Omega_{t} G_{t}^{T} \Delta_{t}^{-1}\left(\mathbf{Y}_{t}-G_{t} \hat{\mathbf{X}}_{t}\right) \tag{5}
\end{equation*}
$$

By inserting (4) into (5) we get

$$
\mathbf{X}_{t \mid t}=F_{t-1} \mathbf{X}_{t-1 \mid t-1}+\Omega_{t} G_{t}^{T} \Delta_{t}^{-1}\left(\mathbf{Y}_{t}-G_{t} F_{t-1} \mathbf{X}_{t-1 \mid t-1}\right)
$$

For $\mathrm{t}=1$, equation (5) gives

$$
\mathbf{X}_{1 \mid 1}=\hat{\mathbf{X}}_{1}+\Omega_{1} G_{1}^{T} \Delta_{1}^{-1}\left(\mathbf{Y}_{1}-G_{1} \hat{\mathbf{X}}_{1}\right)
$$

Problem 8.9. Let \mathbf{Y}_{t} consist of $\mathbf{Y}_{t, 1}$ and $\mathbf{Y}_{t, 2}$, then we can write

$$
\begin{aligned}
\mathbf{Y}_{t} & =\left[\begin{array}{l}
\mathbf{Y}_{t, 1} \\
\mathbf{Y}_{t, 1}
\end{array}\right]=\left[\begin{array}{l}
G_{1} \mathbf{X}_{t, 1}+\mathbf{W}_{t, 1} \\
G_{2} \mathbf{X}_{t, 2}+\mathbf{W}_{t, 2}
\end{array}\right]=\left[\begin{array}{l}
G_{1} \mathbf{X}_{t, 1} \\
G_{2} \mathbf{X}_{t, 2}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{W}_{t, 1} \\
\mathbf{W}_{t, 2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
G_{1} & \mathbf{0} \\
\mathbf{0} & G_{2}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X}_{t, 1} \\
\mathbf{X}_{t, 2}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{W}_{t, 1} \\
\mathbf{W}_{t, 2}
\end{array}\right] .
\end{aligned}
$$

Set

$$
G=\left[\begin{array}{cc}
G_{1} & \mathbf{0} \\
\mathbf{0} & G_{2}
\end{array}\right], \quad \mathbf{X}_{t}=\left[\begin{array}{l}
\mathbf{X}_{t, 1} \\
\mathbf{X}_{t, 1}
\end{array}\right] \quad \text { and } \quad \mathbf{W}_{t}=\left[\begin{array}{l}
\mathbf{W}_{t, 1} \\
\mathbf{W}_{t, 2}
\end{array}\right]
$$

then we have $\mathbf{Y}_{t}=G \mathbf{X}_{t}+\mathbf{W}_{t}$. Similarly we have that

$$
\begin{aligned}
& \mathbf{X}_{t+1}=\left[\begin{array}{l}
\mathbf{X}_{t+1,1} \\
\mathbf{X}_{t+1,1}
\end{array}\right]=\left[\begin{array}{l}
F_{1} \mathbf{X}_{t, 1}+\mathbf{V}_{t, 1} \\
F_{2} \mathbf{X}_{t, 2}+\mathbf{V}_{t, 2}
\end{array}\right]=\left[\begin{array}{l}
F_{1} \mathbf{X}_{t, 1} \\
F_{2} \mathbf{X}_{t, 2}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{V}_{t, 1} \\
\mathbf{V}_{t, 2}
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
F_{1} & \mathbf{0} \\
\mathbf{0} & F_{2}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X}_{t, 1} \\
\mathbf{X}_{t, 2}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{V}_{t, 1} \\
\mathbf{V}_{t, 2}
\end{array}\right]
\end{aligned}
$$

and set

$$
F=\left[\begin{array}{cc}
F_{1} & \mathbf{0} \\
\mathbf{0} & F_{2}
\end{array}\right] \quad \text { and } \quad \mathbf{V}_{t}=\left[\begin{array}{c}
\mathbf{V}_{t, 1} \\
\mathbf{V}_{t, 2}
\end{array}\right]
$$

Finally we have the state-space representation

$$
\begin{aligned}
\mathbf{Y}_{t} & =G \mathbf{X}_{t}+\mathbf{W}_{t} \\
\mathbf{X}_{t+1} & =F \mathbf{X}_{t}+\mathbf{V}_{t}
\end{aligned}
$$

Problem 8.13. We have to solve

$$
\Omega+\sigma_{v}^{2}-\frac{\Omega^{2}}{\Omega+\sigma_{w}^{2}}=\Omega
$$

which is equivalent to

$$
\frac{\Omega^{2}}{\Omega+\sigma_{w}^{2}}-\sigma_{v}^{2}=0
$$

Multiplying with $\Omega+\sigma_{w}^{2}$ we get

$$
\Omega^{2}-\Omega \sigma_{v}^{2}-\sigma_{w}^{2} \sigma_{v}^{2}=0
$$

which has the solutions

$$
\Omega=\frac{1}{2} \sigma_{v}^{2} \pm \sqrt{\frac{\sigma_{v}^{4}}{4}+\sigma_{w}^{2} \sigma_{v}^{2}}=\frac{\sigma_{v}^{2} \pm \sqrt{\sigma_{v}^{4}+4 \sigma_{w}^{2} \sigma_{v}^{2}}}{2}
$$

Since $\Omega \geq 0$ we have the positive root which is the solution we wanted.
Problem 8.14. We have that

$$
\Omega_{t+1}=\Omega_{t}+\sigma_{v}^{2}-\frac{\Omega_{t}^{2}}{\Omega_{t}+\sigma_{w}^{2}}
$$

and since $\sigma_{v}^{2}=\Omega^{2} /\left(\Omega+\sigma_{w}^{2}\right)$ substracting Ω yields

$$
\begin{aligned}
& \Omega_{t+1}-\Omega=\Omega_{t}+\frac{\Omega^{2}}{\Omega+\sigma_{w}^{2}}-\frac{\Omega_{t}^{2}}{\Omega_{t}+\sigma_{w}^{2}}-\Omega \\
& \quad=\frac{\Omega_{t}\left(\Omega_{t}+\sigma_{w}^{2}\right)-\Omega_{t}^{2}}{\Omega_{t}+\sigma_{w}^{2}}-\frac{\Omega\left(\Omega+\sigma_{w}^{2}\right)-\Omega^{2}}{\Omega+\sigma_{w}^{2}} \\
& \quad=\frac{\Omega_{t} \sigma_{w}^{2}}{\Omega_{t}+\sigma_{w}^{2}}-\frac{\Omega \sigma_{w}^{2}}{\Omega+\sigma_{w}^{2}} \\
& \quad=\sigma_{w}^{2}\left(\frac{\Omega_{t}}{\Omega_{t}+\sigma_{w}^{2}}-\frac{\Omega}{\Omega+\sigma_{w}^{2}}\right)
\end{aligned}
$$

