TMA4285 Time series models
Solution to exercise 1, autumn 2018

August 28, 2018

Problem A .4

We can solve this problem using the moment generating function, My (t) =
E(etX),t € R.
Mx(t) = le/zz—f—u(t) = E(GtT(El/2Z+“) = etT“E(Gthl/2Z)
_ etT“MZ(tT21/2) _ etT;Le%tT(Zl/Q)Qt _ etTu+§tTZt7

which is the moment generating function for a multivariate normal distribu-
tion with mean p and covariance matrix 3.

Note that the standard normal multivariate distribution has Mz(t) = ext' It

Problem A.5

Since Y is a linear combination of a Gaussian vector X (a special case of a
Gaussian process), Y is also Gaussian. We specify the mean and covariance
matrix of Y = a + BX.

E(Y)=FE(a+BX)=FE(a)+BE(X)=a+ Bpu
Cov(Y) = BCou(X)B" = BxB"



Problem A.6

. X, _ M o Y XY
Let X = {XJ = L@]’ and X = {221 222} Let X ~ MV N(u,X).

Proof proposition A.3.1:

i: 35 = 0 — independence: If 15 = 0 then Xy = ¥, = 0, and ¥ =

b 0 T, 14T T 14T T 14T
|: 011 . _ Then Mx(t) = et ptatt Bt _ oty patgty Bt oty pot 5ty Toots
22

Mx, (t1)Mx,(ts), which means that X; and X, are independent.

Independence — 315 = 0: We can use the same argument going backwards.
If we have independence, we must have Mx (t) = Mx, (t1) Mx,(t2), which is

. . . 211 0
only achivelable if 3 = [ 0 222} .

ii: The conditional distribution of X,|X; = x; is N (s + T 277 (1 —
p1), Boo — 91 571 pa).

Proof:

Let A = [I 0] such that AX = X, and let B = [—22121_11 I} such
that BX = —2212;11X1 + X2. Then X2 = BX + Zzlzflle. AX and
BX are independent since AXBT = 0.

Next, find F(BX) and Cov(BX),

E(BX) = ps — X137, i1y
COU(BX) == 222 - 22121_11212

Since AX and BX are independent,
BXl(AX = Xl) =T ~ BX ~ N(ﬂ,g — 22121_11/.1,1, 222 — 22121_11212),
Therefore

Xo| X, =x, ~BX + 22121_11X1|X1 =x; ~N(u2 + E2121_11(5131 — 1), Xgo — 22121_11212).
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Exercise 1.2
a)

Let X = (X1, Xo,...,X,,). Then

E[(Xus1 = B(Xu11X))?1X] 4 2B[(X 11 — B(Xoia| X)) (B(Xoia|X) = F(X))[X]
T E[(E(Xa]X) — F(X))?X] =

E[(Xnt1 — £(X)*|X] = B[(Xn1 — B(Xni1|X) + BE(Xn41|X) — £(X))*|X] =
|X]
))’1x
E[(Xnt1 — BE(Xn41]X))*|X] + 2(B(Xni1|X) = F(X)) E[(Xns1 — E(Xpr1] X)) |X]
+ B[(E(Xnn|X) - £(X))*|X] =

|

E[(Xnt1 — B(Xn1)X))*|X] + B{(E(Xns1|X) — £(X))?|X] > E[(Xp41 — E(Xpp1|X))?[X]

because F(X,,+1|X) is a function of X and F(g(X)X,+1|X) = ¢(X)E(X,+1|X) for any function g such
that E(g(X)X,+1) exists.
It follows that
B[(Xnt1 = B | X))1X] < B[(Xogn = £(0)1X]

for any function f. Hence E[(X,41 — E(Xn+1‘X))2‘X] is minimized when f(X) = E(X,41|X).
b)
Since

E[(Xn41 — E(XnH\X))Q} = E(E[(Xp+1 — E(X"+1|X))2‘X])
< B(B[(Xns1 — F(X)*X]) = B[(Xns1 — £(X))?

it follows immediately that the random variable f(X) that minimizes E[(Xp+1 — f(X ))2] is again
f(X) = E(Xna]X).

)

By b) the minimum mean-squared error predictor of X,,;+1 in terms of X = (X1, Xo,...,X,,) when
X ~ IID(pu,0?) is
E(Xn1]X) = E(Xn41) = p

d)

Suppose that Y ;" ; @;X; is an unbiased estimator for y, that is, ;" ; & = 1. Then
n

ZaZX p)° Zazx X))+ 2B Y Xy - X) (X = )]+ E[(X = 1)*] = B[(X — )]
i=1

since the second term is zero: E[( Y1, a; Xi—X) (X ,u)] =Cov(} 7, ;i Xi—X, X) =Cov(3 1| i Xy, D0y +Xi)—
COU(Z?ln Z’Zz— 012%‘2’02 Zz 1n2‘7 =0.
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e)

Again, suppose that Y ; @;X; is an unbiased estimator for g, that is, Y ;" ; & = 1. Then

E[(Xni1 — Z @, X)) = El(Xps1 — X) %] 4+ 2B[(Xnt1 — X) (X - Z @i X;)] + B[(X - Z aiX;)?
> Bl(Xn1 - X))

since the second term is zero: Cov(Xp41—X, X =311 0, X;) = —Cov(X, X)+Cov(X, > 1, a; X;) =0
as in d).

f)

E(Sn+1|S1,...,Sn) = E(Sn+Xn+1|Sl, ,Sn) =S, +E(Xn+1|S1,... ,Sn) =S, +u

since Xp,41 is independent of Sy,...,S,.

Exercise 1.3

i)

E(X}) is independent of ¢ since the distribution of X; is independent of ¢ and F(X;) exists.
ii)

Since E[X 15 Xi]?> < E[X},,]E[X?] for all integers ¢, h, and the joint distribution of X,y and X; is
independent of ¢, it follows that F[X;,,X;| exists and is independent of ¢ for every integer h.

Combining i) and ii) it follows that X; is weakly stationary.

Exercise 1.4
a)
E(X}) = a is independent of ¢.

(b*+c2o? 5 h=

0 i h =41
Cov(Xon, Xi) = beo? : h=4+2
0 ; |h]>2

which is independent of ¢. That is, X; is stationary.

b)
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E(X:) =0 is independent of t.

Cov (Xt+h, Xt) = Cov (Z1 cosc(t + h) + Zysine(t + h), Z cos ¢t + Za sin ct)
=02 (cosc(t + h)cosct + sinc(t + h) sinct) = o2 cosch

which is independent of ¢t. That is, X; is stationary.
c)

E(X;) =0 is independent of ¢.

Cov(Xi41,Xy) = o2 cosc(t 4 1) sinct

which is not independent of ¢. That is, X; is not stationary (except in the special case when ¢ is an
integer multiple of 27).

d)

E(X}) = a is independent of ¢.

Cov(Xyin, Xi) = b%0”
which is independent of ¢. That is, X; is stationary.
e)

E(X:) =0 is independent of ¢.

Cov(Xyin, Xi) = 0” cosc(t + h) cosct

which is not independent of ¢. That is, X; is not stationary (except in the special case when ¢ is an
integer multiple of 27).

f)
E(X:) =0 is independent of ¢.

ot 7 h=0

Cov(Xitn, Xt) = B[ X0 Xt) = E[ZysnZiyn1Z4Zp—1] = { 0 : [h>0

which is independent of ¢. That is, X; is stationary, and it is seen that in fact X; ~ WN(0,0%).

Exercise 11f August 27, 2008 Side 4



Time Series Models 2008

Exercise 1.5
a)

The autocovariance function
146> ; h=0

x(h)=4q ¢ ; h==£2
0 ;  otherwise
The autocorrelation function
1 ;i h=0
px(h) =19 15z ; h=+2

0 ;  otherwise
For 8 = 0.8 it is obtained that

vx(h)=<¢ 0.8 ; h==£2
0 ;  otherwise

1 ; h=0
px(h) =< 0488 ; h==+2
0 ;  otherwise

|
|
|

b)
Let Y;; = i(Xl +...+ X4). Then
4 4

Var(X,) = COU(Y4,Y4) = % Z Z Cov(Xi,Xj)

i=1 i=1

(1.64+0.8) = 0.61

| =

(vx(0) +vx(2)) =

| =

(1.64—0.8) = 0.21

=

Var(X,) = Cov (X4, X4) = %(VX(O) +x(2)) =

The negative lag 2 correlation in ¢) means that positive deviations of X; from zero tend to be
followed two time units later by a compensating negative deviation, resulting in smaller variability in
the sample mean than in b) (and also smaller than if the time series X; were IID(0, 1.64) in which case

Var(Xy) = 0.41).

Side 5
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Exercise 1.8

a.In order to show that X; is WN(0,1) two thing needs to be verified:

1 ifh=0
b. Cov(Xy, Xiqpn) = 1
0 ifh#0
a. E[X;]=0
E|Z)] if t is even
E[Xt} —

E {(Zf—jé”] if t is odd

— E[Z]=0

B E{(Z?:/%U] =0 since E[Z2 ] =1

1 ifth=0

b. COU(Xt,XtJrh) = {0 if h # 0

Ifh=0,

Var(Z,) if t is even

ov( Xy, Xy) ar(Xy) {%Var(Zfl—l) if t is odd

— Var(Z,) =1

~ War(Z2, 1) = 1 since Var(Z} ) =2

Var(Z},) = BE(Zy) — [E(Z]))
=3—1 (Remind kurtosis of N(0,1) r.v’s)
=2



If h 7é O, COU(Xt, Xt-i—h) = E(XtXt-i-h))

(E(ZtZtJrh) if t is even and t-+h is even
E(X:Xpin) = E(\%Zt(Zerhl - 1)) if t is even and t+h is odd

E(%(Zf —)(Z} 1 — 1)) if t is odd and t+h is odd
\

o E(Z:Zun) = E(Z)E(Zy) =0

o E(5(Zi(Znr— 1) = 5E(Z)E(ZE ), 1 —1) =0

b E(%(Zf—l - 1)(Zt2+h—1 -1)) = %E(Zf—l - 1>E(Zt2+h—1 -1)=0

In order to determine if X, is I1D(0,1) we need to see if X; and X, are
independent when h # 0.
Let’s assume t is odd, then:

72 —1 X2, -1
E(X;) = B(-— =) = B(-—
Which means X; depends on X;_;. Thus, X; is not 77/D(0, 1) noise.
b.
If n is odd:

E(Xp1| X1, X0n) = E(Zns1|Zo, Zay Zay - ooy Znyr) =0

If n is even:

72 -1 72 -1

T Zgs oo Z) = 21
Vg (P ta ) = = s

E(Xn+1|X1’ e 7Xn> — E(



Chapter 2

Problem 2.1. We find the best linear predictor Xn+h = aX, + b of X, by

finding @ and b such that E[X,,4n, — Xp4n] =0 and E[(Xyqp — Xptn)Xn] = 0. We
have

E[Xpin — Xnsn] = E[Xpin —aX, — b = E[X,p] —aB[X,] —b=p(1—a) —b
and

E[(Xntn — Xngn) Xn] = E[(Xn4n — aXy — b) X))
= E[X, 11 X,] — aE[X?] — DE[X,,]
= E[Xn+1hXn] — E[Xn4n]E[Xp] + E[ X4 E[X]
—a (]E[szz] - E[XHP =+ E[XHF) - bE[X,J
= Cov(Xpyn, Xp) + 1 —a (COV(Xn,Xn) + ,u2) —bu
=(h) + 1 = a ((0) + p?) — by,

which implies that

y(h) + p* —bp

b=pllma), o= e

Solving this system of equations we get a = y(h)/v(0) = p(h) and b = u(1 — p(h))
ie. Xpin = p(h) X, + 1(1 = p(h)).

Problem 2.4. a) Put X; = (—1)"Z where Z is random variable with E[Z] = 0 and
Var(Z) = 1. Then
vx (t + h,t) = Cov((=1)"""Z, (-1)'Z) = (=1)***" Cov(Z, Z) = (=1)" = cos(wh).

b) Recall problem 1.4 b) where X; = Z; cos(ct) + Zs sin(ct) implies that vx (h) =
cos(ch). If welet Zy, Zy, Z3, Z4, W be independent random variables with zero mean
and unit variance and put

™ . s ™ . ™
X; = Zj cos (515) + Z5sin (§t> + Z3 cos (Zt) + Z4sin (Zt> + W.

Then we see that vx (h) = k(h).
c) Let {Z, : t € Z} be WN (0,0?) and put X; = Z; + 6Z,_;. Then E[X,] = 0 and

’YX(t + h, t) = COV(Zt+h + 92t+h71; Zt + Qthl)
= COV(Zt+h7 Zt) + 0 COV(Z,H_}L, Zt_l) + 0 COV(Zt_;'_h_l, Zt)
+ 60> Cov(Zysn-1,Zs-1)

a2(1+6% ifh=0,
=< 0?0 if |h| =1,
0 otherwise.

If we let 02 = 1/(146?) and choose 6 such that 020 = 0.4, then we get vx (h) = k(h).
Hence, we choose 6 so that 6/(1 + 6%) = 0.4, which implies that § = 1/2 or 6 = 2.

Problem 2.8. Assume that there exists a stationary solution {X; : t € Z} to

Xy = X1+ Zp,  t=0,£1,...



GT exercises

Problem 1
Part a

e The best linear approximation X = E(X |Y), which can be expressed
as

X = ag + Z Yy
is characterized by the projection onto the space

{XxecL*: X* :ao—i—ZatYQ}

teTl

The existence of oy and oy, ¢ € T is guaranteed by the projection
theorem. These values can be found making use of the orthogonality
of the residuals as stated in the projection. That is,

E(Yi(X —ap— > aY))=0 VkeT

teT

E(X —ag— Y oY) =0

teT

e As stated in definition 2.7.3 (Time Series: Theory and Methods), X =
E(X]Y) can be understood as the projection on the closed subspace of
L* M(Y), of all the random variables in L? that can be written in the
form ¢(Y') with ¢ : R" — R, a Borel function. That is:

E(X|Y) = Eyp X = Py X

It can be proved that it accomplishes all the properties of a projection.
Based on these properties we can say:

X = Puwn)X + (X — PupX)
Which implies, E(X (X — X)) = 0 according to the projection theorem.

3



Part b

Given that X and Y are simple random variables defined on the prob-
ability space (2, F, P), they can be expressed in the form:

X = i GilAi
i=1

with 1 the indicator function and A; € A with A4; = {X = ¢;} (Simi-
larly Y is defined). It can be proved that P(X|Y =y) = Q,(X) is a
probability measure. Then,

n

E(X|Y =y) =) a,Qy(X = a;)

=1

Now, let b; = ¢(a;). Then,
E(¢(X)|Y =y) Zb Qy(X
- ZbiP(X =Y =)
( =a;,Y = y)
Y’
Z PY =y)

B fxy(ai,y)
- Z" O

= Z bz'fX\Y(az‘|y)
i=1

— Z o(a;) fxpy (aily)

Thus,

E(@X)Y =y) = 32, ¢(x) fxpy (x]y)
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