
TMA4285 Time series models
Solution to exercise 1, autumn 2018

August 28, 2018

Problem A.4

We can solve this problem using the moment generating function, MX(t) =
E(etX), t ∈ R.

MX(t) = MΣ1/2Z+µ(t) = E(et
T (Σ1/2Z+µ) = et

TµE(et
T Σ1/2Z)

= et
TµMZ(tTΣ1/2) = et

Tµe
1
2
tT (Σ1/2)2t = et

Tµ+ 1
2
tT Σt,

which is the moment generating function for a multivariate normal distribu-
tion with mean µ and covariance matrix Σ.

Note that the standard normal multivariate distribution has MZ(t) = e
1
2
tT It.

Problem A.5

Since Y is a linear combination of a Gaussian vector X (a special case of a
Gaussian process), Y is also Gaussian. We specify the mean and covariance
matrix of Y = a+ BX.

E(Y ) = E(a+BX) = E(a) +BE(X) = a+Bµ

Cov(Y ) = BCov(X)BT = BΣBT
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Problem A.6

Let X =

[
X1

X2

]
,µ =

[
µ1

µ2

]
, and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. Let X ∼MVN(µ,Σ).

Proof proposition A.3.1:

i: Σ12 = 0 → independence: If Σ12 = 0 then Σ21 = ΣT
12 = 0, and Σ =[

Σ11 0
0 Σ22

]
. Then MX(t) = et

Tµ+ 1
2
tT Σt = et

T
1µ1+

1
2
tT1 Σ11t1et

T
2 µ2+

1
2
tT2 Σ22t2 =

MX1(t1)MX2(t2), which means that X1 and X2 are independent.

Independence → Σ12 = 0: We can use the same argument going backwards.
If we have independence, we must have MX(t) = MX1(t1)MX2(t2), which is

only achivelable if Σ =

[
Σ11 0
0 Σ22

]
.

ii: The conditional distribution of X2|X1 = x1 is N (µ2 + Σ21Σ
−1
11 (x1 −

µ1),Σ22 −Σ21Σ
−1
11 Σ12).

Proof:

Let A =
[
I 0

]
such that AX = X1, and let B =

[
−Σ21Σ

−1
11 I

]
such

that BX = −Σ21Σ
−1
11X1 +X2. Then X2 = BX + Σ21Σ

−1
11X1. AX and

BX are independent since AΣBT = 0.

Next, find E(BX) and Cov(BX),

E(BX) = µ2 −Σ21Σ
−1
11 µ1

Cov(BX) = Σ22 −Σ21Σ
−1
11 Σ12

Since AX and BX are independent,

BX|(AX = X1) = x1 ∼ BX ∼ N (µ2 −Σ21Σ
−1
11 µ1,Σ22 −Σ21Σ

−1
11 Σ12),

Therefore

X2|X1 = x1 ∼ BX + Σ21Σ
−1
11X1|X1 = x1 ∼ N (µ2 + Σ21Σ

−1
11 (x1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12).

2



Time Series Models 2008

Exercise 1.2

a)

Let X = (X1, X2, . . . , Xn). Then

E[
(
Xn+1 − f(X)

)2|X] = E[
(
Xn+1 − E(Xn+1|X) + E(Xn+1|X)− f(X)

)2|X] =

E[
(
Xn+1 − E(Xn+1|X)

)2|X] + 2E[
(
Xn+1 − E(Xn+1|X)

)(
E(Xn+1|X)− f(X)

)
|X]

+ E[
(
E(Xn+1|X)− f(X)

)2|X] =

E[
(
Xn+1 − E(Xn+1|X)

)2|X] + 2
(
E(Xn+1|X)− f(X)

)
E[

(
Xn+1 − E(Xn+1|X)

)
|X]

+ E[
(
E(Xn+1|X)− f(X)

)2|X] =

E[
(
Xn+1 − E(Xn+1|X)

)2|X] + E[
(
E(Xn+1|X)− f(X)

)2|X] ≥ E[
(
Xn+1 − E(Xn+1|X)

)2|X]

because E(Xn+1|X) is a function of X and E(g(X)Xn+1|X) = g(X)E(Xn+1|X) for any function g such
that E(g(X)Xn+1) exists.

It follows that
E[

(
Xn+1 − E(Xn+1|X)

)2|X] ≤ E[
(
Xn+1 − f(X)

)2|X]

for any function f . Hence E[
(
Xn+1 − E(Xn+1|X)

)2|X] is minimized when f(X) = E(Xn+1|X).

b)

Since

E[
(
Xn+1 − E(Xn+1|X)

)2] = E
(
E[

(
Xn+1 − E(Xn+1|X)

)2|X]
)

≤ E
(
E[

(
Xn+1 − f(X)

)2|X]
)

= E[
(
Xn+1 − f(X)

)2]

it follows immediately that the random variable f(X) that minimizes E[
(
Xn+1 − f(X)

)2] is again
f(X) = E(Xn+1|X).

c)

By b) the minimum mean-squared error predictor of Xn+1 in terms of X = (X1, X2, . . . , Xn) when
Xt ∼ IID(µ, σ2) is

E(Xn+1|X) = E(Xn+1) = µ

d)

Suppose that
∑n

i=1 αiXi is an unbiased estimator for µ, that is,
∑n

i=1 αi = 1. Then

E[
( n∑

i=1

αiXi − µ
)2] = E[

( n∑
i=1

αiXi −X
)2] + 2E[

( n∑
i=1

αiXi −X
)(

X − µ
)
] + E[

(
X − µ

)2] ≥ E[
(
X − µ

)2]

since the second term is zero: E[
( ∑n

i=1 αiXi−X
)(

X−µ
)
] = Cov(

∑n
i=1 αiXi−X,X) = Cov(

∑n
i=1 αiXi,

∑n
i=1

1
nXi)−

Cov(
∑n

i=1
1
nXi,

∑n
i=1

1
nXi) =

∑n
i=1

αi
n σ2 −

∑n
i=1

1
n2 σ2 = 0.
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e)

Again, suppose that
∑n

i=1 αiXi is an unbiased estimator for µ, that is,
∑n

i=1 αi = 1. Then

E[
(
Xn+1 −

n∑
i=1

αiXi

)2] = E[
(
Xn+1 −X

)2] + 2E[
(
Xn+1 −X

)(
X −

n∑
i=1

αiXi

)
] + E[

(
X −

n∑
i=1

αiXi

)2]

≥ E[
(
Xn+1 −X

)2]

since the second term is zero: Cov
(
Xn+1−X,X−

∑n
i=1 αiXi

)
= −Cov(X,X)+Cov(X,

∑n
i=1 αiXi) = 0

as in d).

f)

E
(
Sn+1|S1, . . . , Sn

)
= E

(
Sn + Xn+1|S1, . . . , Sn

)
= Sn + E

(
Xn+1|S1, . . . , Sn

)
= Sn + µ

since Xn+1 is independent of S1, . . . , Sn.

Exercise 1.3

i)

E(Xt) is independent of t since the distribution of Xt is independent of t and E(Xt) exists.

ii)

Since E[Xt+hXt]2 ≤ E[X2
t+h]E[X2

t ] for all integers t, h, and the joint distribution of Xt+h and Xt is
independent of t, it follows that E[Xt+hXt] exists and is independent of t for every integer h.

Combining i) and ii) it follows that Xt is weakly stationary.

Exercise 1.4

a)

E(Xt) = a is independent of t.

Cov
(
Xt+h, Xt

)
=


(b2 + c2)σ2 ; h = 0
0 ; h = ±1
bcσ2 ; h = ±2
0 ; |h| > 2

which is independent of t. That is, Xt is stationary.

b)
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E(Xt) = 0 is independent of t.

Cov
(
Xt+h, Xt

)
= Cov

(
Z1 cos c(t + h) + Z2 sin c(t + h), Z1 cos ct + Z2 sin ct

)
= σ2

(
cos c(t + h) cos ct + sin c(t + h) sin ct

)
= σ2 cos ch

which is independent of t. That is, Xt is stationary.

c)

E(Xt) = 0 is independent of t.

Cov
(
Xt+1, Xt

)
= σ2 cos c(t + 1) sin ct

which is not independent of t. That is, Xt is not stationary (except in the special case when c is an
integer multiple of 2π).

d)

E(Xt) = a is independent of t.

Cov
(
Xt+h, Xt

)
= b2σ2

which is independent of t. That is, Xt is stationary.

e)

E(Xt) = 0 is independent of t.

Cov
(
Xt+h, Xt

)
= σ2 cos c(t + h) cos ct

which is not independent of t. That is, Xt is not stationary (except in the special case when c is an
integer multiple of 2π).

f)

E(Xt) = 0 is independent of t.

Cov
(
Xt+h, Xt

)
= E[Xt+hXt] = E[Zt+hZt+h−1ZtZt−1] =

{
σ4 ; h = 0
0 ; |h| > 0

which is independent of t. That is, Xt is stationary, and it is seen that in fact Xt ∼ WN(0, σ4).
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Exercise 1.5

a)

The autocovariance function

γX(h) =


1 + θ2 ; h = 0
θ ; h = ±2
0 ; otherwise

The autocorrelation function

ρX(h) =


1 ; h = 0

θ
1+θ2 ; h = ±2
0 ; otherwise

For θ = 0.8 it is obtained that

γX(h) =


1.64 ; h = 0
0.8 ; h = ±2
0 ; otherwise

ρX(h) =


1 ; h = 0
0.488 ; h = ±2
0 ; otherwise

b)
Let X4 = 1

4(X1 + . . . + X4). Then

V ar(X4) = Cov
(
X4, X4

)
=

1
16

4∑
i=1

4∑
i=1

Cov
(
Xi, Xj

)
=

1
4
(
γX(0) + γX(2)

)
=

1
4
(
1.64 + 0.8

)
= 0.61

c)

V ar(X4) = Cov
(
X4, X4

)
=

1
4
(
γX(0) + γX(2)

)
=

1
4
(
1.64− 0.8

)
= 0.21

The negative lag 2 correlation in c) means that positive deviations of Xt from zero tend to be
followed two time units later by a compensating negative deviation, resulting in smaller variability in
the sample mean than in b) (and also smaller than if the time series Xt were IID(0, 1.64) in which case
V ar(X4) = 0.41).
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Exercise 1.8

a.In order to show that Xt is WN(0,1) two thing needs to be verified:

b. Cov(Xt, Xt+h) =

{
1 if h = 0

0 if h 6= 0

a. E[Xt] = 0

E[Xt] =


E[Zt] if t is even

E

[
(Z2

t−1−1)√
2

]
if t is odd

– E[Zt] = 0

– E

[
(Z2

t−1−1)√
2

]
= 0 since E[Z2

t−1] = 1

b. Cov(Xt, Xt+h) =

{
1 if h = 0

0 if h 6= 0

If h = 0,

Cov(Xt, Xt) = V ar(Xt) =

{
V ar(Zt) if t is even
1
2
V ar(Z2

t−1 − 1) if t is odd

– V ar(Zt) = 1

– 1
2
V ar(Z2

t−1 − 1) = 1 since V ar(Z2
t−1) = 2:

V ar(Z2
t−1) = E(Z4

t−1)− [E(Z2
t−1)]

2

= 3− 1 (Remind kurtosis of N(0,1) r.v’s)

= 2

1



If h 6= 0, Cov(Xt, Xt+h) = E(XtXt+h),

E(XtXt+h) =



E(ZtZt+h) if t is even and t+h is even

E

(
1√
2
Zt(Z

2
t+h−1 − 1)

)
if t is even and t+h is odd

E

(
1
2
(Z2

t − 1)(Z2
t+h−1 − 1)

)
if t is odd and t+h is odd

• E(ZtZt+h) = E(Zt)E(Zt+h) = 0

• E( 1√
2
(Zt(Z

2
t+h−1 − 1))) = 1√

2
E(Zt)E(Z2

t+h−1 − 1) = 0

• E(1
2
(Z2

t−1 − 1)(Z2
t+h−1 − 1)) = 1

2
E(Z2

t−1 − 1)E(Z2
t+h−1 − 1) = 0

In order to determine if Xt is IID(0, 1) we need to see if Xt and Xt+h are
independent when h 6= 0.

Let’s assume t is odd, then:

E(Xt) = E(
Z2

t−1 − 1√
2

) = E(
X2

t−1 − 1√
2

)

Which means Xt depends on Xt−1. Thus, Xt is not IID(0, 1) noise.
b.
If n is odd:

E(Xn+1|X1, . . . , Xn) = E(Zn+1|Z0, Z2, Z4, . . . , Zn+1) = 0

If n is even:

E(Xn+1|X1, . . . , Xn) = E(
Z2

n − 1√
2
|Z0, Z2, . . . , Zn) =

Z2
n − 1√

2

2



Chapter 2

Problem 2.1. We find the best linear predictor X̂n+h = aXn + b of Xn+h by
finding a and b such that E[Xn+h − X̂n+h] = 0 and E[(Xn+h − X̂n+h)Xn] = 0. We
have

E[Xn+h − X̂n+h] = E[Xn+h − aXn − b] = E[Xn+h]− aE[Xn]− b = µ (1− a)− b

and

E[(Xn+h − X̂n+h)Xn] = E[(Xn+h − aXn − b)Xn]

= E[Xn+hXn]− aE[X2
n]− bE[Xn]

= E[Xn+hXn]− E[Xn+h]E[Xn] + E[Xn+h]E[Xn]

− a
(
E[X2

n]− E[Xn]2 + E[Xn]2
)− bE[Xn]

= Cov(Xn+h, Xn) + µ2 − a
(
Cov(Xn, Xn) + µ2

)− bµ

= γ(h) + µ2 − a
(
γ(0) + µ2

)− bµ,

which implies that

b = µ (1− a) , a =
γ(h) + µ2 − bµ

γ(0) + µ2
.

Solving this system of equations we get a = γ(h)/γ(0) = ρ(h) and b = µ(1− ρ(h))
i.e. X̂n+h = ρ(h)Xn + µ(1− ρ(h)).

Problem 2.4. a) Put Xt = (−1)tZ where Z is random variable with E[Z] = 0 and
Var(Z) = 1. Then

γX(t + h, t) = Cov((−1)t+hZ, (−1)tZ) = (−1)2t+h Cov(Z, Z) = (−1)h = cos(πh).

b) Recall problem 1.4 b) where Xt = Z1 cos(ct) + Z2 sin(ct) implies that γX(h) =
cos(ch). If we let Z1, Z2, Z3, Z4,W be independent random variables with zero mean
and unit variance and put

Xt = Z1 cos
(π

2
t
)

+ Z2 sin
(π

2
t
)

+ Z3 cos
(π

4
t
)

+ Z4 sin
(π

4
t
)

+ W.

Then we see that γX(h) = κ(h).
c) Let {Zt : t ∈ Z} be WN

(
0, σ2

)
and put Xt = Zt + θZt−1. Then E[Xt] = 0 and

γX(t + h, t) = Cov(Zt+h + θZt+h−1, Zt + θZt−1)
= Cov(Zt+h, Zt) + θ Cov(Zt+h, Zt−1) + θ Cov(Zt+h−1, Zt)

+ θ2 Cov(Zt+h−1, Zt−1)

=





σ2(1 + θ2) if h = 0,
σ2θ if |h| = 1,
0 otherwise.

If we let σ2 = 1/(1+θ2) and choose θ such that σ2θ = 0.4, then we get γX(h) = κ(h).
Hence, we choose θ so that θ/(1 + θ2) = 0.4, which implies that θ = 1/2 or θ = 2.

Problem 2.8. Assume that there exists a stationary solution {Xt : t ∈ Z} to

Xt = φXt−1 + Zt, t = 0,±1, . . .
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GT exercises

Problem 1

Part a

• The best linear approximation X̃ = Ê(X|Y ), which can be expressed
as

X̃ = α0 +
∑
t∈T

αtYt

is characterized by the projection onto the space

{X∗ ∈ L2 : X∗ = α0 +
∑
t∈T

αtYt}

The existence of α0 and αt, t ∈ T is guaranteed by the projection
theorem. These values can be found making use of the orthogonality
of the residuals as stated in the projection. That is,

E(Yk(X − α0 −
∑
t∈T

αtYt)) = 0 ∀k ∈ T

E((X − α0 −
∑
t∈T

αtYt)) = 0

• As stated in definition 2.7.3 (Time Series: Theory and Methods), X̂ =
E(X|Y ) can be understood as the projection on the closed subspace of
L2, M(Y ), of all the random variables in L2 that can be written in the
form φ(Y ) with φ : Rn → R, a Borel function. That is:

E(X|Y ) = EM(Y )X = PM(Y )X

It can be proved that it accomplishes all the properties of a projection.
Based on these properties we can say:

X = PM(Y )X + (X − PM(Y )X)

Which implies, E(X̂(X−X̂)) = 0 according to the projection theorem.

3



Part b

Given that X and Y are simple random variables defined on the prob-
ability space (Ω,F , P ), they can be expressed in the form:

X =
n∑

i=1

ai1Ai

with 1 the indicator function and Ai ∈ A with Ai = {X = ai} (Simi-
larly Y is defined). It can be proved that P (X|Y = y) = Qy(X) is a
probability measure. Then,

E(X|Y = y) =
n∑

i=1

aiQy(X = ai)

Now, let bi = φ(ai). Then,

E(φ(X)|Y = y) =
n∑

i=1

biQy(X = ai)

=
n∑

i=1

biP (X = ai|Y = y)

=
n∑

i=1

bi
P (X = ai, Y = y)

P (Y = y)

=
n∑

i=1

bi
fX,Y (ai, y)

fY (y)

=
n∑

i=1

bifX|Y (ai|y)

=
n∑

i=1

φ(ai)fX|Y (ai|y)

Thus,

E(φ(X)|Y = y) =
∑

x φ(x)fX|Y (x|y)
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