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Problem 5.9

We want to construct the likelihood function of X1, . . . , Xp, Xp+1, . . . , Xn.
We use conditioning to get

L(φ, σ2) = f(X1, . . . , Xp, Xp+1, . . . , Xn|φ, σ2)

= f(Xp+1, . . . , Xn|X1, . . . , Xp, φ, σ
2)f(X1, . . . , Xp|φ, σ2)

where f(Xp+1, . . . , Xn|X1, . . . , Xp, φ, σ
2) = Πn

j=p+1f(Xj|Xj−1, ..., Xp+1, X1, . . . , Xp, φ, σ
2).

For X1, . . . , Xp,

f(X1, . . . , Xp|φ, σ2) = (2φσ2)−p/2(detGp)
−1/2 × exp(− 1

2σ2
XT
pG

−1
p Xp)

Next, we need the expected value and covariance for the conditional dis-
tribution of Xp+1, . . . , Xn.

E(Xj|Xj−1, ..., Xp+1, X1, . . . , Xp) = E(Xj|Xj−1, ..., Xj−p) = X̂j

E((Xj − X̂j)(Xj − X̂j)|Xj−1, . . . , Xp+1, X1, . . . , Xp) = E((Xj − X̂j)
2) = σ2rj−1.

For j > p, rj−1 = 1. This gives

f(Xp+1, . . . , Xn|X1, . . . , Xp, φ, σ
2) = (2φσ2)−(n−p)/2 × exp(− 1

2σ2

n∑
j=p+1

(Xj − X̂j)
2)
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Finally, we get

f(X1, . . . , Xp|φ, σ2) = (2φσ2)−p/2(detGp)
−1/2 × exp(− 1

2σ2
[XT

pG
−1
p Xp+

n∑
j=p+1

(Xj − φ1Xj−1 − · · · − φpXj−p)
2]),

where we have inserted X̂j = φ1Xj−1−· · ·−φpXj−p and used Var(Xj−X̂j) =
σ2forj > p.

Problem 5.10

Using the likelihood function from problem 5.9 we want to minimize

XT
2G

−1
2 X2 +

n∑
t=3

(Xt − φ1Xt−1 − φ2Xt−2)
2

From example 5.2.1 in the book we find that

G−1
2 =

[
1− φ2

2 −φ1(1 + φ2)
−φ1(1 + φ2) 1− φ2

2

]
which gives

XT
2G

−1
2 X2 = (X2

1 +X2
2 )(1− φ2

2)− 2X1X2φ1(1 + φ2)

We take the derivative of

(X2
1 +X2

2 )(1− φ2
2)− 2X1X2φ1(1 + φ2) +

n∑
t=3

(Xt − φ1Xt−1 − φ2Xt−2)
2

with respect to both φ1 and φ2. That gives us

X1X2(1 + φ2) +
n∑
t=3

(XtXt−1 − φ1X
2
t−1 − φ2Xt−2Xt−1) = 0

φ2(X
2
1 +X2

2 ) +X1X2φ1 +
n∑
t=3

(XtXt−2 − φ1Xt−1Xt−2 − φ2Xt−2X
2
t−1) = 0
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which are our two linear equations. If we use the definition of the sample
autocovariance we get

X1X2(1 + φ2)/n+ γ̂(1)− φ1γ̂(0)− φ2γ̂(1) = 0

φ2(X
2
1 +X2

2 )/n+X1X2φ1/n+ γ̂(2)− φ1γ̂(1)− φ2γ̂(0) = 0

These can be expressed as[
γ̂(0) γ̂(1)− X1X2

n

γ̂(1)− X1X2

n
γ̂(0)− X2

1+X
2
2

n

] [
φ1

φ2

]
=

[
γ̂(1) + X1X2

n

γ̂(2)

]
The Yule-Walker equations for the AR(2) model with are derived from

XtXt−h = φXt−1Xt−h + φ2Xt−2Xt−h + ZtXt−h

If we let h = 1 and h = 2 and then taking expectations, we get

γ̂(1)− φ1γ̂(0)− φ2γ̂(1) = 0

γ̂(2)− φ1γ̂(1)− φ2γ̂(0) = 0

which can be expresses as[
γ̂(0) γ̂(1)
γ̂(1) γ̂(0)

] [
φ1

φ2

]
=

[
γ̂(1)
γ̂(2)

]
.

The least-squares solution is an adjustment of the Yule-Walker equations.

Problem 5.12

The AR(1) model is given by Xt = φXt−1 + Zt, with autocovariance γ(0) =
σ2

1−φ2 . We use the likelihood function stated in problem 5.9 with G1 = 1/(1−
φ2).

L(φ, σ2) = (2πσ2)−n/2(1− φ2)1/2 × exp

(
− 1

2σ2

[
X2

1 (1− φ2) +
n∑
t=2

(Xt − φXt−1)
2

])
By taking the log and taking the derivative with respect to φ, we get

lnL =(−n/2)ln(2πσ2) + (1/2)ln(1− φ2)− 1

2σ2
[X2

1 (1− φ2) +
n∑
t=2

(Xt − φXt−1)
2]

∂lnL

∂φ
=− φ

1− φ2
+
φX2

1

σ2
+

1

σ2

n∑
t=2

(XtXt−1 − φX2
t−1) = 0

− φσ2 + φX2
1 (1− φ2) + (1− φ2)

n∑
t=2

(XtXt−1 − φX2
t−1) = 0.
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Solving this system gives the estimates φ̂1 = 0.2742, φ̂2 = 0.3579 and σ̂2 = 0.8199.
c) We construct a 95% confidence interval for µ to test if we can reject the hypothesis
that µ = 0. We have that X200 ∼ AN(µ, ν/n) with

ν =
∞∑

h=−∞
γ(h) ≈ γ̂(−3) + γ̂(−2) + γ̂(−1) + γ̂(0) + γ̂(1) + γ̂(2) + γ̂(3) = 3.61.

An approximate 95% confidence interval for µ is then

I = xn ± λ0.025

√
ν/n = 3.82± 1.96

√
3.61/200 = 3.82± 0.263.

Since 0 /∈ I we reject the hypothesis that µ = 0.
d) We have that approximately φ̂ ∼ AN(φ, σ̂2Γ̂

−1

2 /n). Inserting the observed values
we get

σ̂2Γ̂
−1

2

n
=

(
0.0050 −0.0021
−0.0021 0.0050

)
,

and hence φ̂1 ∼ AN(φ1, 0.0050) and φ̂2 ∼ AN(φ2, 0.0050). We get the 95% confi-
dence intervals

Iφ1 = φ̂1 ± λ0.025

√
0.005 = 0.274± 0.139

Iφ2 = φ̂2 ± λ0.025

√
0.005 = 0.358± 0.139.

e) If the data were generated from an AR(2) process, then the PACF would be
α(0) = 1, α̂(1) = ρ̂(1) = 0.427, α̂(2) = φ̂2 = 0.358 and α̂(h) = 0 for h ≥ 3.

Problem 5.11. To obtain the maximum likelihood estimator we compute as if the
process were Gaussian. Then the innovations

X1 − X̂1 = X1 ∼ N(0, ν0),

X2 − X̂2 = X2 − φX1 ∼ N(0, ν1),

where ν0 = σ2r0 = E[(X1 − X̂1)2], ν1 = σ2r1 = E[(X2 − X̂2)2]. This implies
ν0 = E[X2

1 ] = γ(0), r0 = 1/(1−φ2) and ν1 = E[(X2−X̂2)2] = γ(0)−2φγ(1)+φ2γ(0)
and hence

r1 =
γ(0)(1 + φ2)− 2φγ(1)

σ2
=

1 + φ2 − 2φ2

1− φ2
= 1.

Here we have used that γ(1) = σ2φ/(1− φ2). Since the distribution of the innova-
tions is normal the density for Xj − X̂j is

fXj−X̂j
=

1√
2πσ2rj−1

exp
(
− x2

2σ2rj−1

)

and the likelihood function is

L(φ, σ2) =
2∏

j=1

fXj−X̂j
=

1√
(2πσ2)2r0r1

exp
{
− 1

2σ2

(
(x1 − x̂1)2

r0
+

(x2 − x̂2)2

r1

)}

=
1√

(2πσ2)2r0r1

exp
{
− 1

2σ2

(
x2

1

r0
+

(x2 − φx1)2

r1

)}
.
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We maximize this by taking logarithm and then differentiate:

log L(φ, σ2) = −1
2

log(4π2σ4r0r1)− 1
2σ2

(x2
1

r0
+

(x2 − φx1)2

r1

)

= −1
2

log(4π2σ4/(1− φ2))− 1
2σ2

(
x2

1(1− φ2) + (x2 − φx1)2
)

= − log(2π)− log(σ2) +
1
2

log(1− φ2)− 1
2σ2

(
x2

1(1− φ2) + (x2 − φx1)2
)
.

Differentiating yields

∂l(φ, σ2)
∂σ2

= − 1
σ2

+
1

2σ4

(
x2

1(1− φ2) + (x2 − φx1)2
)
,

∂l(φ, σ2)
∂φ

=
1
2
· −2φ

1− φ2
+

x1x2

σ2
.

Putting these expressions equal to zero gives σ2 = 1
2

(
x2

1(1−φ2) + (x2−φx1)2
)

and
then after some computations φ = 2x1x2/(x2

1 + x2
2). Inserting the expression for φ

is the equation for σ gives the maximum likelihood estimators

σ̂2 =
(x2

1 − x2
2)

2

2(x2
1 + x2

2)
and φ̂ =

2x1x2

x2
1 + x2

2
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GT Exercises

Exercise 5

a The process is
Yt = φ1Yt−1 + φ2Yt−2 + Zt

and we will estimate the model parameters through:

(i) Yule-Walker Estimation: By multiplying on both sides of the
equation

(1− φ1B − φ2B
2)Yt = Zt

by Yt, Yt−1 and Yt−2, we get the system of equations:[
γ(0) γ(1)
γ(1) γ(0)

] [
φ1

φ2

]
=

[
γ(1)
γ(2)

]
and σ2 = γ(0)− φ1γ(1)− φ2γ(2).

This system is solved, replacing γ(k) by γ̂(k), by

φ̂1 =
γ̂(1)[γ̂(0)− γ̂(2)]

γ̂2(0)− γ̂2(1)

φ̂2 =
γ̂(2)γ̂(0)− γ̂2(1)

γ̂2(0)− γ̂2(1)
, and

σ̂2 = (γ̂(0)− γ̂(2))

[
γ̂(0)(γ̂(0) + γ̂(2))− 2γ̂2(1)

γ̂2(0)− γ̂2(1)

]
(ii) Durbin-Levinson Algorithm: According to this algorithm the

process can be expressed as:

Yt − φ̂21Yt−1 − φ̂22Yt−2 = Zt, {Zt} ∼ WN(0, ν̂2)

with:
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ν̂0 = γ̂(0)

φ̂11 =
γ̂(1)

γ̂(0)

ν̂1 = γ̂(0)[1− φ̂2
11]

φ̂22 =
1

ν̂1
[γ̂(2)− φ̂11γ̂(1)] = φ̂2 (as in Yule-Walker)

φ̂21 = φ̂11 − φ̂22φ̂11 = φ̂1 (as in Yule-Walker), and

ν̂2 = ν̂1(1− φ̂2
22) = σ̂2 (as in Yule-Walker)

(iii) Hannan-Rissanen Algorithm - Step 2: All we need to do in
this case is to regress Yt onto (Yt−1, Yt−2), t = 3, . . . , n as Ordi-
nary Least Squares. It means the vector [φ1, φ2]

T is estimated by
(ZTZ)−1ZTYn, with:

Z =


Y3 Y2
Y4 Y3
...

...
Yn−1 Yn−2

 and Yn =


Y4
Y5
...
Yn


Finally,

σ̂2 =
1

n− 3

n∑
t=4

(Yt − φ̂1Yt−1 − φ̂2Yt−2)
2

b (i) Yule-Walker Estimation: We aim to find the PnYn+1 = a0 +∑n
i=1 aiYn+1−i so that

E

[(
Yn+1 − a0 −

n∑
i=1

aiYn+1−i

)2]
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is minimized. Taking partial derivatives with respect to a0, a1, . . . , an
we find

a0 = 0

E

[(
Yn+1 −

n∑
i=1

aiYn+1−i

)
Yn+1−j

]
= 0, j = 1, . . . , n

Which becomes the Yule-Walker system of equations:

Γnan = γ(n)

with Γnij
= [γ(i−j)]ni,j=1, an = [a1, . . . , an]T and γn = [γ(1), . . . , γ(n)]T .

This system is solved by an = Γ−1
n γn. Finally, its mean square

prediction error is given by:

MSPE = E

[(
Yn+1 −

n∑
i=1

aiYn+1−i

)2]
= γ(0)− aT

nγn

= γ(0)− γT
nΓ−1

n γn

(ii) Durbin Levinson algorithm: The one-step predictor can be
expressed as:

PnYn+1 = φ̂n1Yn + · · ·+ φ̂nnY1

with

φ̂nn =

[
γ̂(n)−

n−1∑
j=1

φ̂n−1,j γ̂(n− j)
]
ν̂−1
n−1

 φ̂n1
...

φ̂n,n−1

 =

 φ̂n−1,1
...

φ̂n−1,n−1

− φ̂nn

φ̂n−1,n−1
...

φ̂n−1,1


In this case the prediction error is νn = νn−1[1 − φ2

nn], which is
exactly the same as for the Yule-Walker estimation as proven in
proof 1, page 61 of the book.
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(iii) Hannan-Rissanen Algorithm - Step 2: Given that what is
performed in step 2 of this algorithm is a linear regression fitted
by OLS, we can find PnYn+1 as:

PnYn+1 = φ̂1Yn + φ̂2Yn−1

Its associated prediction error is

E(Yn+1−φ1Yn−φ2Yn−1)
2 = (1+φ2

1+φ
2
2)γ(0)−2φ1(1−φ2)γ(1)−2φ2γ(2)

c Given that all the one-step predictors are linear combinations of {Yn, . . . , Y1},
and the process is zero-mean, then all the one-step predictors are un-
biased.

Now we’ll try to compare the three predictors in terms of mean square
error. As mentioned in part b the Yule-Walker estimation and thee
Durbin-Levinson algorithm produce the same one-step predictor with
the same mean square error, which is the minimum for a linear pre-
dictor. It also means that the MSE of the one-step predictor obtained
through the Hannan-Rissanen algorithm is larger than the one obtained
through the other two approaches.

d For the AR(2) process we model Yt in function of Yt−1 and Yt−2. That
is, the likelihood we expect to maximize is

L2(θ) = f(Y3, . . . , Yn|Y1, Y2,θ)

which resembles the likelihood in a regular regression model.

Making use of the Bayes’ theorem and the law of total probability,
we can see that the full likelihood f(Y1, Y2, . . . , Yn,θ) can be obtained
from the conditional likelihood through

f(Y1, Y2, . . . , Yn,θ) = f(Y3, . . . , Yn|Y1, Y2,θ) · f(Y1, Y2,θ)

If it is taken to the logarithmic scale we can say that the full likelihood
can be computed as the addition of the conditional likelihood and the
marginal likelihood of the initial values.

The estimates of the parameters in the AR(2) process can be obtained
using the conditional or the full likelihood. As n increases there is no
big difference in the estimates, given that the estimates based on these
likelihoods have the same limiting distribution.
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