TMA4285 Time series models
Solution to exercise 7, autumn 2020

October 30, 2020

Problem 6.1

The difference equations are satisfied if (1 — B)¥(Ag + At + -+ + Ag_1t?"1) = 0.
(1 — B)t? is a polynomial of degree ¢ — 1, and (1 — B)c = ¢ — ¢ = 0. It follows
that

(1—=B)(Ag+ At + -+ Ayt = (1= B) A+ (1 —= B)Ait +...(1— B)?A4,_t%!

and(1 — B)?4y =0, (1 — B)¥4 =0 for ¢ = 1,...,d — 1 from which the result follows.

Problem 6.2

We want to verify the representation given in (6.3.4). We start with the equation
given in (6.3.4) and insert ¢, 7, ¢ and VX; = X; — X; 4,

Xi— X1 =0+ 01X +05(Xomg — Xyo) + -+ + ¢;(thp+1 — X ) + Z

p p
Xe=pl=¢r—-—¢p) + X4u1 + (Z ¢ — 1) X1 — Z $i(Xi—1 — Xi—2)
=1 =2
p
- Z ¢l Xt 2 — Xi— 3 - Z ¢z Xt —p — X p— 1 Z ¢i(Xt7p+1 - thp) + Z;
i=p—1 i=p

Terms will cancel out such that we are left with

Xi—p=—plor+-+ )+t Xen+ -+ Xep + 2,
X —p=¢1(Xeo1 —p) + -+ Gp(Xip — 1) + Zi

which is the what we wanted to verify.



Problem 6.11
a)

The first steps in identifying SARIMA models for a (possibly transformed) data
set are to find d and D so as to make the differenced observations stationary in
appearance. The differencing at lag 12 and lag 1, suggests d = D = 1 and s = 12.
Since the ACF at lags of 12 decays slowly, this suggests a seasonal AR part, proba-
bly P =1 and @ = 0. Using example 1.4.5, we get that & = 0.8. The ACF next to
lags of 12 has cutoff after 1 lag. This suggests a MA part for the non-seasonal part,
g =1 and p = 0. From example 1.4.4 we see that 6 is given by

g

04=——
14 62

Solving this gives §; = 2 and 0y = 0.5. Choosing # = 0.5 gives an invertible ARMA
process for the differenced series.

b)

We want to express the one- and twelve-step ahead linear predictors P, X, ; and
P, X, 12 for large n.
The linear predictors are given by eq (6.5.11) in Brockwell and Davis

d+Ds
Pan+h - PnYn+h + Z aanXn+h—j>

J=1

where P,Y,.; is the best linear predictor of the ARMA process {Y;} and P, X, n
can be computed recursively.
We start with P, X,,11. The ARMA process {Y;} is defined by

o(B)®(B*)Y, = 6(B)O(B)Z;
and with our values from a), we get
(1—-®B™)Y; = (1-0B)Z (1)

which is an ARMA(12,1) with &; = ... = &1; =0, &5 = ® and 6 from a).
From section 3.3, we find

A

PnYn—l-l - (I)Yn—ll + en,l(Yn - Yn)

0,1 can be found from the innovations algorithm with x as in (3.3.3).
Then we get

13
Pan+1 = (I)Yn—ll + en,l(Yn - Yn) + Z a'an—i—h—j (2

j=1

~—



Next, we find P, X, 5. For the ARMA process {Y;} now need

~

PnYn+12 = (I)PnYn—i-ll + 9n+11,12(Yn - Yn)
Again 6,,41112 can be found from the innovations algorithm with x as in (3.3.3). We
get

13
P, X120 =0P, Y111 + Ony1112(Y, — ifn) + Z a; P Xpq12—5 (3)

J=1

P, X, 4+12—; can be computed recursively.
The a; in equation (2) and (3) can be found by comparing (6.5.10) in the book
using h = 0

13

Xe=Yi+ ) a;Xe

=0

with our equation for X;. The equation for X; is found solving Y; = (1— B)(1— B'?)
for X;. Doing this gives

X =Y+ X1+ Xm0 — X3
From this we see that a; = a1 = 1, a3 = —1 and the rest must be zero.

¢) The mean square errors of the predictors are given by

h—1
or(h) = o’
5=0
where 11, ...,1; can be computed from
0(2)0(z")

In our case this equation becomes

1—-0z
#z) = (1—®212)(1 — 2)(1 — 212)
Solving this gives ¢p = 1 and ¢y = --- = 1; = 1 — 0. We finally get
73(1) = 430 = o?

11
o7 (12) = Y ¢jo’ =0 + 110°(1 — 0)?

Jj=0



Chapter 6

Problem 6.5. The best linear predictor of Y, 1 in terms of 1, Xy, Y1,...,Y, ie.

Yn—i—l =ap + CXO + CL1Y1 + -+ afnYna

must satisfy the orthogonality relations

COV(YTL+1 — 5}“4,17 1)

0
COV(Yn+1 — Yn+17X0) =0
0,

COV(Yn-H - KL+17 Yj)

7=1...,n.
The second equation can be written as
Cov(Yni1 —Yn+17 Xo)=E[(Yo11—ao+cXo+ a1y 4+ a,Y,) Xo] =cE[X3] = 0

so we must have ¢ = 0. This does not effect the other equations since E[Y;X(] =0
for each j.

Problem 6.6. Put Y; = VX;. Then {Y; : t € Z} is an AR(2) process. We can
rewrite this as Xy41 = Y; + Xy—1. Putting ¢ = n + h and using the linearity of the
projection operator P, gives P, Xp+n = PoYnin + PoXpnin—1. Since {Y; : t € Z} is
AR(2) process we have P, Y11 = 1Y + d2Y_1, PuYnio = 1P, Y11 + @2Y, and
iterating we find P,Y,1n = o1 P Yoin—1+ 02 P Ynin—o. Let ¢0*(2) = (1 —2)¢(2) =
1 — @iz — 522 — 523, Then

(1—2)p(2) =1 — ¢p12 — oz — 2 + $12° + po2?,
ie. ¢] = ¢1+ 1, ¢5 = ¢2 — ¢1 and ¢3 = —¢3. Then

3

PoXnin =Y _ ¢ Xnin_j.
j=1

This can be verified by first noting that
PnYn+h - (i)lpnYnJrhfl + ¢2Pnyn+h72

= Cbl (Pan+h—1 - Pan+h—2) + ¢2(Pan+h—2 - Pan+h—3)
= 01 P Xpin—1+ (92 — ¢1) PaXin—2 — p2Pn X3

and then

Pan+h - PnYn+h + Pan+h71
= (1 + )P Xnin—1+ (92 — ¢1) PaXnin—2 — p2PnXnin—3
= (bTPan—&-h—l + d);PTLXTL-’r}L—Q + ¢§Pan+h—3~

Hence, we have

o(h) = { ¢1g9(h —1) + ¢39(h —2) + ¢39(h =3), h =1,
Xnths h <0.

We may suggest a solution of the form g(h) = a—i—bgfh—l—c{{h, h > —3 where & and

& are the solutions to ¢(z) = 0 and g(—2) = X,,_2, g(—1) = X,,_1 and g(0) = X,,.
Let us first find the roots & and &;.

4 1 1
ti)(z):1—0.82+0.25z2:1—5z+122:0:>22—36z+4:(),

23



We get that z = 8/5+ 1/(8/5)2 — 4 = (8 £6i)/5. Then &, =5/(8 4 6i) = --- =
0.4 —0.3¢ and 52_1 = 0.4 + 0.3i. Next we find the constants a, b and ¢ by solving
Xn—2=9g(=2) = a+0§ 7" + e,
Xn1=g(-1) =a+b§" + 65,
X,=9(0)=a+b+ec.

Note that (0.4 — 0.34)% = 0.07 — 0.24i and (0.4 + 0.3i)% = 0.07 + 0.24i so we get the
equations

Xp—2 =a+b(0.07 — 0.247) + ¢(0.07 + 0.243),
Xo1 = a+b(0.4— 0.3i) + ¢(0.4+ 0.30),
X,=a+b+ec

Let a = a1 + agi, b = by + bai and ¢ = ¢; + coi. Then we split the equations into a
real part and an imaginary part and get

X9 =ay +0.07by + 0.24by + 0.07¢c; — 0.24c¢,,
X,_1=a1+0.4by + 0.3b5 + 0.4¢; — 0.4c¢o,
Xn=a1 +b+ci,
0 =as +0.07b5 — 0.24b1 + 0.07c + 0.24c¢;,
0 = ag + 0.4by — 0.3by + 4co + 0.3¢4,
0=ag+ bs + ca.

We can write this as a matrix equation by

1 0 007 024 007 —0.24 ay X2
10 04 03 04 —03 as X1
10 1 0o 1 0 b | | Xa
0 1 —024 007 024 0.07 by |~ o |’
01 —03 04 03 04 ¢ 0
01 0 10 1 Co 0

which has the solution a = 2.22X,, — 1.77X,,_1 + 0.55X,, o, b=¢= —-1.1X,,_o +
0.88X,—1 +0.22X,, + (—-2.22X,,_o + 3.44X,,_; — 1.22X,,)1.
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GT Exercises

Exercise 6

a The general expression for a SARIMA(p,d, q) x (P, D, Q)s model is:
S(B)O(B)Y, = 0(B)O(B)Z,  {Z} ~WN(0,0) (1)

with ¥; the differenced time series Y; = (1 — B)¥(1 — B*)P X, a causal
ARMA process. Hence, (1) becomes:

#(B)®(B*)(1 — B)Y(1 — B*)P X, = (B)O(B*)Z,, {Z,} ~WN(0,0%)
¢s(B)on(B) X, = 6(B)O(B*) Z,
(2)
Note that ¢n(2) = (1—2)%(1—2°)? has zeros only in S = {z : |z| = 1}.
On the other hand, given that the process is causal, ¢g(z) = (1 —

$1(2) — Paz? — ... — $p2P) (1 — Py 2° — Dz — ... — Pp2"*) has no zeros
in S={z:|z| =1} since all of its zeros satisfy |z| > 1.

b Starting from (2), if we assume ¢n(B)X;, then we get:
¢s(B)Y; = 0(B)O(B°)Z;

(1—¢B—--—¢,B")(1—® B~ —dpB*)Y, = 0(B)O(B*)Z,
(1—¢B— - — ¢,®p,B"T)Y, = 0(B)O(B*)Z,
(1—¢1B—--—¢p®@p B )Y, = (1+6,B+--+0,00,B7%) 7,

Thus, Y is an ARMA(p + Ps,q + Qs) process with some coefficients
constrained to be zero. In the general case with E(X;) = u*,

BE(Y;) = (1 - ¢:B — - — 6,5, B E(X,)
= M*<1 — 1 — - — ¢pq’Ps)
=W



¢ From part b we know

on(B)X =Y (3)

with Y an ARMA (p+Ps,q+Qs) process. Based on (3) we can express
Y, as

Y, = (1 - B)41 - B"X,

N
:Xt+zant—j7 t:]_,...,n

j=1
That is, any linear combination of {X_ni1,...,X0,Y1,...,Y,} can
be expressed as a linear combination of {X_ni1,..., X0, X1,..., X}
Similarly,

N

X, =Y,=> a;X,j, t=1,....n

j=1
Hence, any linear combination of {X_y.1,..., X0, Xi,...,X,,} can be
expressed as a linear combination of { X _xn1,..., X0, Y7, ..., Y,}. Thus,

the best linear predictor of X,, .1 based on {X_ny1,..., X0, X1,..., X0}
given by the projection of X1 on sp{X_ni1,..., X0, X1,..., X} is

the same as the best linear predictor of X, ;1 based on {X_n.1,..., X0, Y1,...

since

S_p{X,N+1, c. 7X07X17 . 7Xn} = S_]){X,NJA, . ,Xo,}/l, . 7Yn}

d If d,D and s are known, then from {X_y,1,...,X,} we can compute
Y, = on(B)X, t=1,....n

Now, based only on Y;, we are able to fit the ARMA(p + Ps,q+ Qs)
process
¢s(B)Y =6(B)Z

through the innovations algorithm outlined in section 5.1.3 of the book,
which depends on

k—1
Qnyn,k = ykfl </1(n + 1, k + 1) — Z Gk,kﬂn,njyj>
7=0

which depends only on the ACVF of Y, vy (k), known since the orders
p, q, P and @) are known.

7Yn}



e The set of observations {X_n.i1,...,Xo} is necessary for computing
the set of differenced observations Y. Let’s remind that in general

N
Vi=X,+Y) ;X t=1....n

=1

In addition to these observations are necessary for prediction since the
best linear predictor P, X, is found as the projection of X, on the
closed span of {X_ny1,..., X0, X1,...,X,} or equivalently the closed
span of {X_ny1,...,X0,Y1,...,Y,} as shown in part c.

If we let Z be Gaussian, then the ARMA model associated to Y has
likelihood

. 1 < -
(27T02)(r0 AT Tn,1> 1/2 exp { — ﬁ Z(Y; — Y}')Q/le}
j=1
Now, if we take into account that rg,...,r,+; and )A/] are given by:
1 o\ 2
Ti-1 = ;EOfi - Y;)

R Z;=1 0ij(Yis1—j = Yir1y) 1 <i<m=max(p+ Ps,q+ Qs)

Yivr =
01Yi+ o+ OpypsYit1—p-ps + Z?i?s 0i(Yisr—j — Yiqi—y)  i>m

with 0,k = I/k_l (/i(n +1L,k+1)— Zf;é kak_ﬂn’n_‘ji/j) , where v, =
E(Yi1 — YkH)Q. Hence, given that all the terms involved in the likeli-

hood depend on {Y7, ..., Y, }, we conclude the information of the model
is contained in {Y7,...,Y,}.



