Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5

Bokmål

LØSNINGSFORSLAG TIL EKSAMENSOPPGAVENE I

EMNE TMA4285 TIDSREKKER OG FILTERTEORI

15. desember 2004 Tid: 09:00-13:00

Oppgave 1

- a) For at X_t skal være en ARMA-prosess må den være stasjonær, og AR- og MA-polynomet kan ikke ha felles røtter. Stasjonaritet sikres ved at $\phi(z) \neq 0$ for |z| = 1 ($z \in \mathbf{C}$ = de komplekse tall).
- b) X_t er en kausal tidsrekke hvis X_t kan uttrykkes på følgende måte som en en-sidig lineær prosess: $X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$, hvor $\sum_{j=0}^{\infty} |\psi_j| < \infty$. Dette er en MA(∞)-modell.

At X_t er invertibel betyr at X_t kan representeres som en $AR(\infty)$ -modell, dvs. $\sum_{j=0}^{\infty} \pi_j X_{t-j} = Z_t$., hvor $\sum_{j=0}^{\infty} |\pi_j| < \infty$.

 X_t er kausal hvis og bare hvis røttene i AR-polynomet $\phi(z)$ ligger utenfor enhetsdisken i C, dvs. $\phi(z) \neq 0$ for $|z| \leq 1$.

Forat X_t skal være invertibel, er det nødvendig og tilstrekkelig at røttene i MA-polynomet $\theta(z)$ ligger utenfor enhetsdisken.

c) AR-polynomet har åpenbart roten $z=1/\phi$. Denne ligger utenfor enhetsdisken hvis og bare hvis $|\phi|<1$.

MA-polynomet er nå $\theta(z) = 1 + \theta z + 0.5z^2$.

Røttene, betegnet med z_1 og z_2 , er gitt ved

$$z_{1,2} = -\theta \pm \sqrt{\theta^2 - 2}$$

Vi ser at for $|\theta| \geq \sqrt{2}$, så er røttene reelle, mens for $|\theta| < \sqrt{2}$, så er røttene kompleks konjugerte.

Ser på det siste tilfellet først. For $|\theta| < \sqrt{2}$, blir $(i = \sqrt{-1})$

$$z_{1,2} = -\theta \pm i\sqrt{2-\theta^2}$$

Det gir

$$|z_{1,2}|^2 = \theta^2 + 2 - \theta^2 = 2$$

Det gir at $|z_{1,2}| > 1$ for $|\theta| < \sqrt{2}$.

Anta så $\theta \geq \sqrt{2}$:

Da er $z_2 < z_1 = -\theta + \sqrt{\theta^2 - 2} < 0$. Må derfor kreve $-\theta + \sqrt{\theta^2 - 2} < -1$, som gir $\theta < 3/2$.

Tilsvarende, for $\theta \leq -\sqrt{2}$ blir $0 < z_2 = -\theta - \sqrt{\theta^2 - 2} < z_1$. Må derfor kreve $-\theta - \sqrt{\theta^2 - 2} > 1$, som gir $\theta > -3/2$.

Dermed ligger røttene i MA-polynomet utenfor enhetsdisken hvis og bare hvis $|\theta| < 3/2$.

Konklusjon: X_t er både kausal og invertibel hvis og bare hvis $|\phi| < 1$ og $|\theta| < 3/2$.

d) For MA(∞)-representasjonen $X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$ kan koeffisientene ψ_j bestemmes av ligningen $\psi(z) = \theta(z)/\phi(z)$, hvor $\psi(z) = \sum_{j=0}^{\infty} \psi_j z^j$, $\phi(z) = 1 - \phi z$ og $\theta(z) = 1 + \theta z + 0.5z^2$. Det gir ligningen

$$\psi_0 + \psi_1 z + \psi_2 z^2 + \dots = \frac{1 + \theta z + 0.5z^2}{1 - \phi z} = (1 + \theta z + 0.5z^2)(1 + \phi z + \phi^2 z^2 + \dots)$$

Sammenligning av koeffisientene foran z^j , j = 0, 1, 2, ..., gir

$$\psi_0 = 1$$

$$\psi_1 = \phi + \theta$$

$$\psi_2 = \phi^2 + \phi\theta + 0.5$$

$$\psi_3 = (\phi^2 + \phi\theta + 0.5) \phi$$

$$\vdots$$

$$\psi_j = (\phi^2 + \phi\theta + 0.5) \phi^{j-2}; \quad j = 2, 3, \dots$$

Herav følger at $\sum_{j=0}^{\infty} |\psi_j| < \infty$ hvis og bare hvis $\sum_{j=0}^{\infty} |\phi|^j < \infty$, og det holder åpenbart siden $|\phi| < 1$.

Oppgave 2

a) $E[X_t] = 0$ siden $E[Z_t] = 0$.

$$\sigma_t^2 = \operatorname{Var}(X_t) = \operatorname{E}[X_t^2] = \operatorname{E}[(\phi X_{t-1} + Z_t)(\phi X_{t-1} + Z_t)]$$

$$= \phi^2 E[X_{t-1}^2] + \sigma^2$$

$$= \phi^2 \sigma_{t-1}^2 + \sigma^2 = \phi^2 (\phi^2 \sigma_{t-2}^2 + \sigma^2) + \sigma^2$$

$$= \phi^4 \sigma_{t-2}^2 + \sigma^2 (1 + \phi^2)$$

$$\vdots$$

$$= \phi^{2(t-1)} \sigma_1^2 + \sigma^2 (1 + \phi^2 + \dots + \phi^{2(t-2)})$$

$$= \sigma^2 (1 + \phi^2 + \dots + \phi^{2(t-1)})$$

$$= \sigma^2 \frac{1 - \phi^{2t}}{1 - \phi^2}$$

siden $\sigma_1 = \sigma$.

Et følgeresultat av stasjonaritet er at variansen er konstant, dvs. uavhengig av tident t. Det er åpenbart ikke tilfelle her, og X_t er derfor ikke stasjonær.

La $h \ge 0$ og $t \ge 1$. Da er

$$Cov(X_{t+h}, X_t) = E[X_t X_{t+h}] = E[X_t (\phi X_{t+h-1} + Z_{t+h})] = \phi E[X_t X_{t+h-1}] = \dots$$

$$= \phi^h E[X_t^2] = \phi^h \sigma_t^2$$

$$= \sigma^2 \frac{1 - \phi^{2t}}{1 - \phi^2} \phi^h$$
(1)

b) Vi ser av ligning (1) ovenfor at

$$\operatorname{Cov}(X_{t+h}, X_t) \xrightarrow[t \to \infty]{} \sigma^2 \frac{\phi^h}{1 - \phi^2}$$

Siden grenseverdien for store t eksisterer og er bare avhengig av h, kan vi tilnærmet si at X_t er stasjonær for store t.

Siden Z_t er IID N(0,1), blir X_t en gaussisk tidsrekke. For store t blir derfor X_t tilnærmet en stasjonær gaussisk tidsrekke som tilfredsstiller ligning (4), dvs. X_t blir tilnærmet en gaussisk AR(1)-prosess for store t.

En praktisk simulering av n observasjoner fra en gaussisk AR(1)-prosess (med $|\phi| < 1$) kan da oppnås ved å simulere fra den gitte modellen over et tidsintervall med lengde T slik at $|\phi|^{T-n} < \varepsilon$, hvor ε er en valgt nøyaktighet. (Dvs. tall mindre enn ε blir betraktet som null.)

c) Ligning (5) gir at

$$\sigma_1^2 = \operatorname{Var}(X_1) = \frac{\sigma^2}{1 - \phi^2}$$

Anta $\sigma_t^2 = \sigma_1^2$. Vi har

$$\begin{split} \sigma_{t+1}^2 &= \phi^2 \sigma_t^2 + \sigma^2 = \phi^2 \sigma_1^2 + \sigma^2 \\ &= \phi^2 \frac{\sigma^2}{1 - \phi^2} + \sigma^2 \\ &= \frac{\sigma^2}{1 - \phi^2} \end{split}$$

Per induksjon følger at $\sigma_t^2 = \sigma_1^2$ for alle t. Siden $\text{Cov}(X_{t+h}, X_t) = \sigma_t^2 \phi^h$ $(h \ge 0)$, følger at

$$Cov(X_{t+h}, X_t) = \sigma^2 \frac{\phi^h}{1 - \phi^2}$$

Dermed er X_t stasjonær.

Oppgave 3

a) Ligning (6) gir relasjonen

$$\gamma_Y(h) - \phi \gamma_Y(h-1) = 0; \quad h = 2, 3, \dots$$

Det medfører at $\gamma_Y(h) = \gamma(1) \phi^{h-1}$.

Tilsvarende finner vi at

$$\gamma_Y(0) = \phi \, \gamma_Y(1) + \sigma^2 \left(1 + \phi \theta + \theta^2 \right)$$

og

$$\gamma_Y(1) = \phi \, \gamma_Y(0) + \sigma^2 \, \theta$$

Ved å løse de to siste ligningene, finner vi at

$$\gamma_Y(0) = \sigma^2 \frac{1 + 2\phi\theta + \theta^2}{1 - \phi^2}$$

og

$$\gamma_Y(1) = \sigma^2 \frac{(1 + \phi \theta)(\phi + \theta)}{1 - \phi^2}$$

Dermed er $\gamma_Y(h)$ fullstendig bestemt, og vi finner at ACF er gitt ved

$$\rho_Y(h) = \frac{(1+\phi\theta)(\phi+\theta)}{1+2\phi\theta+\theta^2} \phi^{h-1}$$

b) Fra ligning (9) og resultatene i punkt a) (eller Oppgave 2) finner vi at

$$\gamma_X(h) = \sigma_W^2 \frac{\phi^h}{1 - \phi^2}; \quad h = 0, 1, 2, \dots$$

Ligning (8) gir at

$$\gamma_Y(0) = \text{Var}(Y_t) = \text{Var}(X_t + V_t) = \frac{\sigma_W^2}{1 - \phi^2} + \sigma_V^2$$

og for $h \ge 1$

$$\gamma_Y(h) = \text{Cov}(Y_{t+h}, Y_t) = \text{Cov}(X_{t+h} + V_{t+h}, X_t + V_t) = \gamma_X(h)$$

Herav følger at for $h \geq 1$ er ACF til Y_t gitt ved

$$\rho_Y(h) = \frac{\sigma_W^2 \frac{\phi^h}{1 - \phi^2}}{\frac{\sigma_W^2}{1 - \phi^2} + \sigma_V^2} = \left(1 + \frac{\sigma_V^2}{\sigma_W^2} (1 - \phi^2)\right)^{-1} \phi^h$$

c) Vi ser at ACF til Y_t blir identisk i de to tilfellene når

$$\left(1 + \frac{\sigma_V^2}{\sigma_W^2} (1 - \phi^2)\right)^{-1} \phi = \frac{(1 + \phi \theta)(\phi + \theta)}{1 + 2\phi\theta + \theta^2}$$

Dermed, hvis likhet kan oppnås i denne ligningen, og variansen er den samme, dvs.

$$\frac{\sigma_W^2}{1 - \phi^2} + \sigma_V^2 = \sigma^2 \frac{1 + 2\phi\theta + \theta^2}{1 - \phi^2}$$

så er åpenbart de to ACVFene identiske.

Løser vi den første ligningen over, får vi at

$$\frac{\sigma_V^2}{\sigma_W^2} = \frac{-\theta}{(1+\phi\,\theta)(\phi+\theta)}$$

Ved å bruke den andre ligningen, finner vi at

$$\sigma_W^2 = \sigma^2 (1 + \phi \,\theta) (1 + \theta/\phi)$$

og til slutt

$$\sigma_V^2 = -\sigma^2 \frac{\theta}{\phi}$$

 $\sigma_V^2 > 0$ krever at $\theta < 0$. Fra utrykket for σ_W^2 ser vi at $\sigma_W^2 > 0$ for $\theta < -1/\phi$ og $\theta > -\phi$. Dermed blir det tillatte verdiområdet for θ : $-\infty < \theta < -1/\phi$ og $-\phi < \theta < 0$. For slike verdier på θ kan vi alltid finne passende verdier for σ_V og σ_W slik at de to ACVFene blir identiske.