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English

Contact person during exam:
John Tyssedal 73593534/41645376

EXAM IN TMA4285 TIME SERIES MODELS

Friday December 7th 2012
Time: 09:00 – 13:00

Permitted aids: Calculator HP30S, CITIZEN SR-270X or CITIZEN SR-270X College.
Statistiske tabeller og formler, Tapir forlag.
K. Rottman: Matematisk formelsamling.
One yellow, stamped A5 sheet with own handwritten formulas and notes.

The results of the exam are available Monday January 7th 2013.

Note: You should give reasons for all your answers!

Note: The Kalman filter equations are given in the last page of this problem set.

Problem 1

Consider an ARMA(1,2) model with zero mean,

(1− ϕ1B)zt = (1− θ1B − θ2B
2)at,

where ϕ1, θ1 and θ2 are parameters, B denotes the backshift operator, i.e. Bkzt = zt−k, and
{at} is a white noise process with zero mean and Var(at) = σ2

a.

a) What does it mean that {zt} is invertible?
Is {zt} invertible when ϕ1 =

1

2
, θ1 =

1

2
and θ2 = −1

4
?

What does it mean that {zt} is covariance stationary?
Is {zt} covariance stationary when ϕ1 =

1

2
, θ1 =

1

2
and θ2 = −1

4
?
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In the following we assume {zt} to be both invertible and covariance stationary. As you know
this imply in particular that {zt} has an MA(∞) representation, zt = ψ(B)at.

b) Derive formulas for the coefficients {ψj}
∞

j=0 and show that they can be expressed as

ψ0 = 1, ψ1 = θ1 − ϕ1 and ψj = ϕ
j−2

1 ((θ1 − ϕ1)ϕ1 + θ2) for j = 2, 3, . . ..

c) From the MA(∞) representation of {zt} given above, show that the variance of zt is
given by

γ0 = σ2

a

[

1 + (θ1 − ϕ1)
2 +

((θ1 − ϕ1)ϕ1 + θ2)
2

1− ϕ2
1

]

.

From the same MA(∞) representation derive also a corresponding formula for γ1.

Problem 2

A plot of an observed time series zt is given in the upper left corner of Figure 1. In the
same figure the estimated autocorrelation function and partial autocorrelation function for the
observed time series are shown. The observed time series after differencing and corresponding
estimated autocorrelation function and partial autocorrelation function for the differenced time
series are given in the lower row of the same figure. In the following we assume that we want
to fit an ARIMA(p,d,q) model to zt.

a) From the plots in Figure 1 discuss what (tentative) values you find it reasonable to use
for p, d and q.

If you conclude that you want to try with a model with d > 0, discuss based on the plots
in Figure 1 whether or not you will include a deterministic trend parameter, θ0, in the
model.

Remember to give reasons for you choices!

Independent of your answers to the above questions, assume one chooses to fit as much as six
models: ARIMA(1,1,0), ARIMA(2,1,0), ARIMA(3,1,0), ARIMA(1,1,1), ARIMA(1,1,2) and
ARIMA(1,1,3), all without a deterministic trend parameter. Estimated parameter values and
corresponding standard deviations for the six models are given in Table 1 and plots of the
estimated residuals and estimated autocorrelation functions for the estimated residuals are
shown in Figure 2.

b) Based on the results in Table 1 and Figure 2, discuss briefly for each of the six ARIMA
models whether or not the corresponding estimated model is a reasonable model for the
observed time series.

Which of the six ARIMA models would you use for the observed time series?
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Figure 1: Upper row: Observed time series zt and corresponding estimated autocorrelation
function and partial autocorrelation function. Lower row: The differenced version of the
observed time series zt and corresponding estimated autocorrelation function and partial au-
tocorrelation function.
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ARIMA(1,1,0) ARIMA(2,1,0) ARIMA(3,1,0)
value s.e. value s.e. value s.e.

ϕ1 0.794 0.042 0.993 0.068 1.007 0.071
ϕ2 -0.251 0.069 -0.304 0.099
ϕ3 0.054 0.071
σ2
a 1.084 1.016 1.013

log-like -292.36 -285.94 -285.66
AIC 588.71 577.89 579.32

ARIMA(1,1,1) ARIMA(1,1,2) ARIMA(1,1,3)
value s.e. value s.e. value s.e.

ϕ1 0.673 0.064 0.690 0.084 0.609 0.123
θ1 0.350 0.084 0.330 0.107 0.398 0.130
θ2 -0.0267 0.093 0.078 0.136
θ3 0.105 0.101
σ2
a 1.008 1.007 1.002

log-like -285.14 -285.10 -284.60
AIC 576.29 578.20 579.21

Table 1: Estimated parameter values with corresponding standard deviations, and optimal log-
likelihood and AIC values for the six models: ARIMA(1,1,0), ARIMA(2,1,0), ARIMA(3,1,0),
ARIMA(1,1,1), ARIMA(1,1,2) and ARIMA(1,1,3).
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Figure 2: Estimated residuals and corresponding estimated autocorrelation functions for the
six models: ARIMA(1,1,0), ARIMA(2,1,0), ARIMA(3,1,0), ARIMA(1,1,1), ARIMA(1,1,2) and
ARIMA(1,1,3).
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Problem 3

In this problem we will consider a state-space model in the form

xt+1 = Φxt + wt+1 and yt = Axt + vt for t = 0, 1, . . ., (1)

where x0 ∼ N(µ0,Σ0), wt ∼ N(0, Q) and vt ∼ N(0, R), and where x0, wt, t = 1, 2, . . . and
vt, t = 0, 1, . . . are all assumed to be independent.

a) Reformulate the following state-space models to the form in equation (1), i.e. for each
of the two models specify the vectors and matrices xt, yt, Φ, A, Q and R,

1) zt = 0.9zt−1 + at, ut = 0.5(zt + zt−1) + bt,

2) zt = 0.9zt−1 + 0.5zt−2 + at, rt = 0.5(rt−1 + zt−1) + bt, ut = 0.5(rt + zt) + ct.

Here zt, at, ut, bt, rt and ct are all scalar quantities, {at}, {bt} and {ct} are independent
normal white-noise processes with zero mean and variances equal to σ2

a, σ
2
b and σ2

c ,
respectively, and in both cases one only observes the process {ut}.

In the following we will assume that we have a scalar state-space model in the form given by
equation (1), so that xt, yt, Φ, wt, Q, A, vt, R, µ0 and Σ0 are all scalar.

b) Assume in this item that Φ = 1

2
, A = 2 and R = 1, and that P = limt→∞ P t

t exists,
where P t

t = Var[xt|y0, . . . , yt].

Use the Kalman filter equations given in the last page of this problem set to show that

P = −

(

2Q+
3

8

)

+

√

Q+

(

2Q+
3

8

)2

.

Make a sketch of P as a function of Q. Explain why the qualitative behaviour of P as
a function of Q is intuitively reasonable for the state-space model considered here. In
particular give an intuitive reason for the value of P when Q = 0.



Page 7 of 8

c) For a scalar state-space model on the form in equation (1), use known properties of
the multi-normal distribution to explain why the conditional distribution of xt+1 given
y0, . . . , yt is a normal distribution. Correspondingly, explain why the conditional distri-
bution for xt+1 given y0, . . . , yt, yt+1 is also a normal distribution.

Use the above to derive formulas for

xt+1

t+1 = E[xt+1|y0, . . . , yt+1] and P t+1

t+1 = Var[xt+1|y0, . . . , yt+1]

as a function of

xtt+1 = E[xt+1|y0, . . . , yt], P t
t+1 = Var[xt+1|y0, . . . , yt]

and the quantities that define the state-space model. [Note that you in this item are not
allowed to use the general Kalman filter equations given in the last page of this problem
set.]
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Appendix:

The Kalman filter equations (in the notation used in the lectures):

xtt+1 = Φxtt
P t
t+1 = ΦP t

t φ
T +Q

xt+1

t+1 = xtt+1 +Kt+1(yt+1 −At+1x
t
t+1)

P t+1

t+1 = [I −Kt+1At+1]P
t
t+1

Kt+1 = P t
t+1A

T
t+1[At+1P

t
t+1A

T
t+1 +R]−1


