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Problem 1

Figure 1 shows two observed time series, ts1 and ts2, with corresponding estimated
autocorrelation function (acf) and partial autocorrelation function (pacf).
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Figure 1: Time series ts1 and ts2 with estimated acf and pacf.

a) Assuming you want to fit ARIMA(p,d,q) models to these data sets, discuss
for each of the two observed time series what values you would have started
with for p, d and q. Remember to give reasons for your choices.

For a third time series, ts3, we have fitted an ARMA(1,1) model, an ARMA(1,2)
model and an ARMA(2,1) model. The R output for fitted ARMA(1,1) model is

Call:

arima(x = x, order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept

0.9841 0.2162 -1.4961

s.e. 0.0091 0.0568 3.4168

sigma^2 estimated as 0.9445: log likelihood = -558.09, aic = 1124.18
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The R output for the fitted ARMA(1,2) model is

Call:

arima(x = x, order = c(1, 0, 2))

Coefficients:

ar1 ma1 ma2 intercept

0.9869 0.2514 -0.1283 -1.8741

s.e. 0.0082 0.0574 0.0684 3.7526

sigma^2 estimated as 0.9353: log likelihood = -556.21, aic = 1122.41

The R output for the fitted ARMA(2,1) model is

Call:

arima(x = x, order = c(2, 0, 1))

Coefficients:

ar1 ar2 ma1 intercept

0.3440 0.6345 0.9049 -1.6786

s.e. 0.0572 0.0573 0.0307 3.6834

sigma^2 estimated as 0.8779: log likelihood = -543.76, aic = 1097.52

Plots of estimated residuals for the three models and corresponding estimated auto-
correlation function (acf) and partial autocorrelation function (pacf) are shown in
Figure 2.

b) For each of the three fitted models, discuss briefly whether or not the esti-
mated model is a reasonable model for the observed time series.

Which of the three fitted models would you use for the observed time series?
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Figure 2: Estimated residuals with corresponding estimated acf and pacf for fitted
ARMA(1,1), ARMA(1,2) and ARMA(2,1) models.
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Problem 2

Let {zt} be a time series process.

a) What properties must {zt} have to be second-order stationary?

What properties must {zt} have to be covariance stationary (second-order
weakly stationary)?

Can a time series process {zt} be covariance stationary, but not second-order
stationary? Can a time series process {zt} be second-order stationary, but
not covariance stationary? Explain your answers!

In the remaining part of this problem we will assume that {zt} follows the zero-
mean ARMA(2,1) model

(1 − ϕ1B − ϕ2B
2)zt = (1 − θ1B)at,

where ϕ1, ϕ2 and θ are (real) parameters, B denotes the backshift operator, i.e.
Bkzt = zt−k, and at is a white noise process with zero mean and variance Var[at] =
σ2

a
.

b) For what values of ϕ1, ϕ2 and θ1 is the model for {zt} invertible?

Is the model covariance stationary when ϕ1 = 1.7, ϕ2 = −0.72 and θ1 = 0.75?

c) Assuming the above model to be covariance stationary, show that the auto-
covariance function γk must fulfil the second order homogeneous difference
equation

γk − ϕ1γk−1 − ϕ2γk−2 = 0 for k = 2, 3, . . ..

Develop a set of equations that define initial conditions for this homogeneous
difference equation.

d) Assuming the model to be invertible, find the coefficients ψk, k = 1, 2, . . . in
the AR(∞) representation of the above model,

zt =
∞∑

k=1

ψkzt−k + at.
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Assume that we have observed {zt}
n

t=−∞
and that we want to use these observations

to forecast future values of the process. Moreover, still assume that {zt} follows
the zero-mean ARMA(2,1) model specified above and that the values of the model
parameters ϕ1, ϕ2, θ1 and σ2

a
are known.

e) Find an expressions for the one-step ahead forecast ẑn(1).

When ϕ1 = 1.7, ϕ2 = −0.72 and θ1 = 0.75, develop the eventual forecast
function, i.e. an expression of the k-step forecast ẑn(k), k ≥ 2 as a function
of ẑn(1) and observed data.

Problem 3 Consider the state-space model

xt = Φxt−1 + ωt for t = 1, 2, . . .,

yt = Atxt + vt for t = 0, 1, 2, . . .,

where ω1, ω2, . . . and v0, v1, . . . are independent and ωt ∼ N(0, Q) and vt ∼ N(0, R).
Moreover, assume x0 to be independent of all ωt’s and vt’s and x0 ∼ N(µ0,Σ0).

In the following we assume y0, . . . , yn to be observed and that we want to forecast
xn+k for k = 1, 2, . . . with associated uncertainties. You can assume that the
filtering problem is already solved, i.e. that we have available E[xn|y0, . . . , yn] and
Cov[xn|y0, . . . , yn].

a) Develop recursive formulas that can be used to compute the k-steps ahead
forecast E[xn+k|y0, . . . , yn] and the associated Cov[xn+k|y0, . . . , yn].

Explain why xn+k given the observations y0, . . . , yn is Gaussian distributed,
and use this to construct a 95% prediction interval for xn+k.


