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Problem 1

a) Both ts1 and ts2 seem to be stationary , so one should have d = 0 for both
time series.

The acf for ts1 seems to be a damped sine wave, whereas the pacf cuts off
after lag 3. This behaviour is consistent with an AR(3) model, so one should
start with p = 3, d = 0 and q = 0.

The acf for ts2 cuts off after lag 1, whereas the pacf seems to decay expo-
nentially. This behaviour is consistent with an MA(1) model, so one should
start with p = 0, d = 0 and q = 1.

b) For the ARMA(1,1) model the estimated values for ϕ1 and θ1 are both sig-
nificant, but the estimated acf and pacf have several lags clearly outside the
confidence bands and this indicates that there are is correlation in the time
series that can not be modelled by this model.

For the ARMA(1,2) model the estimated value for θ2 is (barely) not signifi-
cant, which may indicate over-parameterisation. The estimated acf and pacf
for the estimated residuals have at least one lag clearly outside the confidence
bands, which again indicates that there is some correlation in the time series
that can not be modelled by this model.

For the ARMA(2,1) model the estimated values for ϕ1, ϕ2 and θ1 are all
significant and the estimated acf and pacf for the estimated residuals are
inside the confidence bands except for a few lags where the values are slightly
outside the confidence bands. Thereby this seems to be a good model for
the observed time series.

From the above discussion it should be clear that one should use the ARMA(2,1)
model for ts3.

Problem 2

a) For a time series zt to be second-order stationary one must have

Fzt1
,zt2

(x1, x2) = Fzt1+k,zz2+k
(x1, x2),

for all t1, t2, k and all x1, x2.

For a time series zt to be covariance stationary all first and second order
moments must exist and be time invariant.
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A time series process zt which is covariance stationary, does not need to be
second-order stationary. Even if the two first moments is time invariant, the
joint distribution does not need to be time invariant.

A time series process zt which is second-order stationary does not need to
be covariance stationary. If all the first and second order moments exist for
a second-order stationary process, then it is also covariance stationary, but
the first and second order moments do not need to exist for a second-order
stationary process.

b) The process is invertible if and only if all the roots of θ(B) = 1 − θ1B = 0
are outside the unit circle. The current model has only one root, which is
B = 1/θ1 so thereby the process is invertible if

∣∣∣∣
1

θ1

∣∣∣∣ > 1 ⇔ θ ∈ (−1, 1).

The model is covariance stationary if and only if the roots of ϕ(B) = 1 −
1.7B+0.72B2 = 0 are outside the unit circle. The roots in the current model
become

B =
1.7 ±

√
1.72 − 4 · 0.72

2 · 0.72
=

1.7 ±
√

0.01

1.44
⇒ B = 1.25 or B = 1.11.

Thus, the model is covariance stationary.

c) From the model we have that

zt+k = ϕ1zt+k−1 + ϕ2zt+k−2 + at+k − θ1at+k−1.

Thereby we get for k = 0, 1, 2, . . .,

γk = E[zt+kzt] = E[(ϕ1zt+k−1 + ϕ2zt+k−2 + at+k − θ1at+k−1)zt]

= ϕ1E[zt+k−1zt] + ϕ2E[zt+k−2zt] + E[at+kzt] − θ1E[at+k−1zt]

= ϕ1γk−1 + ϕ2γk−2 + E[at+kzt] − θ1E[at+k−1zt].

For k = 2, 3, . . . we have that both t + k and t + k − 1 is larger that t
and thereby at+k and at+k−1 are both uncorrelated with zt, so E[at+kzt] =
E[at+k]E[zt] = 0 · E[zt] = 0 and E[at+k−1zt] = E[at+k−1]E[zt] = 0 · E[zt] = 0.
Thus we have found the homogeneous difference equation

γk − ϕ1γk−1 − ϕ2γk−2 = 0 for k = 2, 3, . . .. (1)
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To find the initial conditions we need to consider the above expression for γk

for k < 2. We start with k = 0,

γ0 = ϕ1γ−1 + ϕ2γ−2 + E[atzt] − θ1E[at−1zt]

= ϕ1γ−1 + ϕ2γ−2 + E[at(ϕ1zt−1 + ϕ2zt−2 + at − θ1at−1)]

−θ1E[at−1(ϕ1zt−1 + ϕ2zt−2 + at − θ1at−1)]

= ϕ1γ−1 + ϕ2γ−2 + E[at · at] − θ1(ϕ1E[at−1zt−1] − θ1E[at−1 · at−1])

= ϕ1γ−1 + ϕ2γ−2 + σ2

a − θ1(ϕ1σ
2

a − θ1σ
2

a).

Thus, using that γk is a symmetric function, the first equation becomes

γ0 = ϕ1γ1 + ϕ2γ2 + σ2

a(1 − θ1ϕ1 + θ2

1). (2)

Doing the same for k = 1 we get

γ1 = ϕ1γ0 + ϕ2γ−1 + E[at+1zt] − θ1E[atzt].

Again using what we found above, namely that E[at+1zt] = 0 and E[atzt] = σ2
a

the second equation becomes

γ1 = ϕ1γ0 + ϕ2γ1 − θ1σ
2

a. (3)

As (2) and (3) includes both γ0, γ1 and γ2 we need a third equation, which
we get for k = 2. This, however, we get directly from (1),

γ2 = ϕ1γ1 + ϕ2γ0. (4)

Thereby we have three equations, (2), (3) and (4), with three unknowns, γ0,

γ1 and γ2, which can be solved to find the initial conditions.

d) We have

ϕ(B)zt = θ(B)at ⇒ ϕ(B)

θ(B)
zt = at.

Thereby we must have

ψ(B) =
ϕ(B)

θ(B)
⇒ θ(B)ψ(B) = ϕ(B),

where ψ(B) = 1 − ψ1B − ψ2B
2 − . . .. Thereby,

(1 − θ1B)(1 − ψ1B − ψ2B
2 − ψ3B

3 − . . .) = 1 − ϕ1B − ϕ2B
2.
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By expanding on the left hand side of this equation and setting equal coef-
ficients in front of the same power of B, we sequentially get

B1 : −ψ1 − θ1 = −ϕ1 ⇒= ψ1 = ϕ1 − θ1,

B2 : −ψ2 + θ1ψ1 = −ϕ2 ⇒ ψ2 = ϕ2 + θ1ψ1 = ϕ2 + θ1(ϕ1 − θ1),

B3 : −ψ3 + θ1ψ2 = 0 ⇒ ψ3 = θ1ψ2 = θ1(ϕ2 + θ1(ϕ1 − θ1)),
...

Bk : −ψk + θ1ψk−1 = 0 ⇒ ψk = θ1ψk−1 = θk−2

1 (ϕ2 + θ1(ϕ1 − θ1)).

e) The one-step ahead forecast can be found directly from the AR(∞) repre-
sentation

ẑn(1) = E[zn+1| . . . , zn−1, zn] = E

[
∞∑

k=1

ψkzn+1−k + an+1

∣∣∣∣∣ . . . , zn−1, zn

]

=
∞∑

k=1

ψkzn+1−k,

where we have used that an+1 is uncorrelated with the observed values and
that E[an+1] = 0.

From the definition of the model we get for k ≥ 2

ẑn(k) = E[zn+k| . . . , zn−1, zn]

= E[ϕ1zn+k−1 + ϕ2E[zn+k−2 + an+k − θ1an+k−1| . . . , zn−1, zn]

= ϕ1E[zn+k−1| . . . , zn−1, zn] + ϕ2E[zn+k−2| . . . , zn−1, zn]

= ϕ1ẑn(k − 1) + ϕ2ẑn(k − 2),

where we have used that an+k and an+k−1 are uncorrelated with the observed
data when k ≥ 2. Thereby we have the homogeneous difference equation
(inserting given parameter values)

ẑn(k) − 1.7ẑn(k − 1) + 0.72ẑn(k − 2) = 0 for k = 2, 3, . . ..

To write up the general solution of this difference equation we need to find
the roots of 1 − 1.7B + 0.72B2 = 0. These, however, we have previously
found to be B = 1.25 = 1/0.8 and B = 1.11 = 1/0.9. The general solution
is thereby

ẑn(k) = b0 · 0.8k + b10.9
k.

We find b0 and b1 from the initial conditions ẑn(1) and ẑn(0) = zn,

b0 · 0.8 + b10.9 = ẑn(1),

b0 · 1 + b1 · 1 = zn,
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which have solution b0 = 9zn − 10ẑn(1) and b1 = 10ẑn(1) − 8zn. Thereby the
eventual forecast function is

ẑn(k) = (9zn − 10ẑn(1)) · 0.8k + (10ẑn(1) − 8zn) · 0.9k.

Problem 3

a) We use the notation xn
t = E[xt|y0, . . . , yn] and P n

t = Cov[xt|y0, . . . , yn]. From
the model assumptions we then get for k = 1, 2, . . .

xn
n+k = E[xn+k|y0, . . . , yn] = E[Φxn+k−1 + wn+k|y0, . . . , yn]

= ΦE[xn+k−1|y0, . . . , yn] + E[wn+k|y0, . . . , yn]

= Φxn
n+k−1 + E[wn+k|y0, . . . , yn]

Using that wn+k is independent of y0, . . . , yn we get E[wn+k|y0, . . . , yn] =
E[wn+k] = 0. Thus, we have the recursion

xn
n+k = Φxn

n+k−1 for k = 1, 2, . . ..

For P n
n+k we correspondingly get

P n
n+k = Cov[xn+k|y0, . . . , yn] = Cov[Φxn+k−1 + wn+k|y0, . . . , yn]

= ΦCov[xn+k−1|y0, . . . , yn]ΦT + E[wn+k|y0, . . . , yn]

= ΦP n
n+k−1Φ

T +Q,

where we have used that wn+k is independent of both y0, . . . , yn and xn+k−1.
Thus, the recursion of the covariance matrix is

P n
n+k = ΦP n

n+k−1Φ
T +Q for k = 1, 2, . . ..

All xn+k, y0, . . . , yn can be expressed as a linear combination of the indepen-
dent Gaussian variables x0, ω1, . . . , ωn+k and v0, . . . , vn. Thereby the joint
distribution of xn+k, y0, . . . , yn is Gaussian, and since the Gaussian distribu-
tion is closed under conditioning, the conditional distribution of xn+k given
y0, . . . , yn is also Gaussian. If the xt’s are scalar quantities, a 95% prediction
interval for xn+k is

[
xn

n+k − 1.96
√
P n

n+k, x
n
n+k + 1.96

√
P n

n+k

]
.

If the xt’s are vectors, corresponding prediction intervals can be constructed
for each component of xn+k.


