Problem 1

a) (i) The acf cuts off for lags $k>2$ and the PACF tails offs which suggest an $\operatorname{ARIMA}(0,0,2)$ model
(ii) The acf has peaks at multiples of 12 which suggests a seasonal model with period $s=12$. At multiples of s the acf tails of where as the pacf has a single peak around $1 s^{1}$ which suggest that the seasonal part of the model is $\operatorname{AR}(1)$. Around each peak the acf cuts of after lag $k>1$ and the pacf tails off which suggest that the regular part of the model is MA(1). Overall, an $\operatorname{ARIMA}(0,0,1) \times(1,0,0)_{12}$ model may be appropriate.
(iii) The acf tails off and the pacf cuts of after lags $k>1$. Hence, this is a simple $\operatorname{AR}(1)$ process.
b) The acf of the non-differenced data does not tail off slowly so no differencing is needed. Given that the the process is $\mathrm{AR}(1)$,

$$
\left(1-\phi_{1} B\right) Z_{t}=a_{t} .
$$

Applying the difference operator $1-B$ yields

$$
\left(1-\phi_{1} B\right)(1-B) Z_{t}=(1-B) a_{t}
$$

and so the differenced series $w_{t}=(1-B) Z_{t}$ satisfies

$$
\left(1-\phi_{1} B\right) w_{t}=(1-B) a_{t},
$$

that is, an ARMA $(1,1)$ model. This agrees well with the observed sample acf and pacf of w_{t} which both exhibit approximately geometric tailing off behaviour for lags $k>q=$ $p=1$.

[^0]
Problem 2

a) The autocovariance function becomes

$$
\begin{aligned}
& \gamma_{0}=\sigma_{a}^{2}\left(1^{2}+\theta_{1}^{2}+\theta_{2}^{2}\right)=1+\left(\frac{5}{2}\right)^{2}+1=\frac{33}{4} \\
& \gamma_{1}=\sigma_{a}^{2}\left(-\theta_{1}+\theta_{1} \theta_{2}\right)=-\frac{5}{2}-\frac{5}{2}=-5 \\
& \gamma_{2}=-\sigma_{a}^{2} \theta_{2}=1 \\
& \gamma_{k}=0 \text { for } k>2 .
\end{aligned}
$$

b) First computing the autocorrelation function

$$
\begin{aligned}
& \rho_{0}=1 \\
& \rho_{1}=\frac{-5 \cdot 4}{33}=-\frac{20}{33} \\
& \rho_{2}=\frac{1 \cdot 4}{33}=\frac{4}{33}
\end{aligned}
$$

For lags $k \leq 2$, the partial autocovariance function becomes

$$
\begin{aligned}
\phi_{11} & =\rho_{1}=-\frac{20}{33} \\
\phi_{22} & =\frac{\left|\begin{array}{cc}
1 & \rho_{1} \\
\rho_{1} & \rho_{2}
\end{array}\right|}{\left|\begin{array}{cc}
1 & \rho_{1} \\
\rho_{1} & 1
\end{array}\right|}=\frac{\rho_{2}-\rho_{1}^{2}}{1-\rho_{1}^{2}}=\frac{\frac{4}{33}-\left(\frac{20}{33}\right)^{2}}{1-\left(\frac{20}{33}\right)^{2}}=-\frac{269}{689}=-0.38
\end{aligned}
$$

c) The MA(2) model

$$
\begin{aligned}
Z_{t} & =\left(1-\frac{1}{2} B\right)^{2} a_{t} \\
& =\left(1-B+\frac{1}{4} B^{2}\right) a_{t} \\
& =\left(1-\theta_{1}^{\prime} B-\theta_{2}^{\prime} B^{2}\right) a_{t}
\end{aligned}
$$

has moving average parameters $\theta_{1}^{\prime}=1$ and $\theta_{2}^{\prime}=-\frac{1}{4}$. Hence, the autocovariance function
is

$$
\begin{aligned}
\gamma_{0}^{\prime} & =\sigma_{a}^{2^{\prime}}\left(1^{2}+\theta_{1}^{2^{\prime}}+\theta_{2}^{2^{\prime}}\right)=\sigma_{a}^{2^{\prime}} \frac{33}{16} \\
\gamma_{1}^{\prime} & =\sigma_{a}^{2^{\prime}}\left(-\theta_{1}^{\prime}+\theta_{1}^{\prime} \theta_{2}^{\prime}\right)=-\sigma_{a}^{2^{\prime}} \frac{5}{4} \\
\gamma_{2}^{\prime} & =-\sigma_{a}^{2^{\prime}} \theta_{2}^{\prime}=\sigma_{a}^{2^{\prime}} \frac{1}{4} \\
\gamma_{k}^{\prime} & =0 \text { for } k>2 .
\end{aligned}
$$

Choosing $\sigma_{a}^{2^{\prime}}=4, \gamma_{k}^{\prime}=\gamma_{k}$ for all k and both models then represent the same stochastic process. While the first model is non-invertible (it has one root inside the unit circle) the second model is invertible as its double root $B=2$ outside the unit circle. This model is thus preferable in that we can write it in $A R(\infty)$ form.
d) The polynomial in the $\operatorname{AR}(\infty)$ representation

$$
\pi(B) Z_{t}=a_{t}
$$

must satisfy

$$
\left(1-\pi_{1} B-\pi_{2} B^{2}-\ldots\right)\left(1-B+\frac{1}{4} B^{2}\right)=1
$$

Expanding the product and equating coefficients, $\pi_{1}=-1, \pi_{2}=-\frac{3}{4}$ and for $i \geq 3$ the coefficients satisfies the difference equation

$$
\theta^{\prime}(B) \pi_{i}=0
$$

With one root of multiplicity two, the general solution is

$$
\pi_{i}=b_{1} \frac{1}{2^{i}}+b_{2} i \frac{1}{2^{i}}
$$

Using the initial conditions $\pi_{1}=-1$ for $i=1$ and $\pi_{2}=-\frac{3}{4}$ for $i=2$ we find that $b_{1}=b_{2}=-1$ and

$$
\pi_{i}=-\frac{1}{2^{i}}-i \frac{1}{2^{i}}
$$

for $i \geq 1$.
The one-step ahead forecast can be now computed as

$$
\begin{aligned}
\hat{Z}_{n}(1) & =E\left(Z_{n+1} \mid Z_{n}, Z_{n-1}, \ldots\right) \\
& =E\left(\pi_{1} Z_{n}+\pi_{2} Z_{n-1}+\ldots \mid Z_{n}, Z_{n-1}, \ldots\right) \\
& =\pi_{1} Z_{n}+\pi_{2} Z_{n-1}+\ldots
\end{aligned}
$$

the two-step ahead forecast as

$$
\begin{aligned}
\hat{Z}_{n}(2) & =E\left(Z_{n+2} \mid Z_{n}, Z_{n-1}, \ldots\right) \\
& =E\left(\pi_{1} Z_{n+1}+\pi_{2} Z_{n}+\ldots \mid Z_{n}, Z_{n-1}, \ldots\right) \\
& =\pi_{1} E\left(Z_{n+1} \mid Z_{n}, Z_{n-1}, \ldots\right)+\pi_{2} Z_{n}+\ldots \\
& =\pi_{1} \hat{Z}_{n}(1)+\pi_{2} Z_{n}+\ldots
\end{aligned}
$$

and the l-step ahead forecast as

$$
\begin{aligned}
\hat{Z}_{n}(l) & =E\left(Z_{n+2} \mid Z_{n}, Z_{n-1}, \ldots\right) \\
& =E\left(a_{n+l}-\theta_{1} a_{n+l-1}-\theta_{2} a_{n+l-2} \mid Z_{n}, Z_{n-1}, \ldots\right) \\
& =0
\end{aligned}
$$

for $l>q=2$.
The variance of the forecast error is given by

$$
\operatorname{Var}\left(e_{n}(l)\right)=\sigma_{a}^{2^{\prime}} \sum_{j=0}^{l-1} \psi_{j}^{2}= \begin{cases}4 & \text { for } l=1 \\ 4(1+1)=8 & \text { for } l=2 \\ 4\left(1+1+\frac{1}{4^{2}}\right)=\frac{33}{4} & \text { for } l>2\end{cases}
$$

Problem 3

a) Using the Kalman forecasting recursions, the forecasted mean and variance of Y_{10} becomes

$$
\begin{aligned}
& \hat{Y}_{10 \mid 9}=A \hat{Y}_{9 \mid 9}=0.7 \cdot 2=1.4 \\
& V_{10 \mid 9}=A V_{9 \mid 9} A^{T}+G \Sigma G^{T}=0.7^{2} \cdot 0.4+1=1.2
\end{aligned}
$$

As expected from the mean reverting behaviour of the $\operatorname{AR}(1)$ state equation, the forecasted mean is closer to zero than the estimated state after the previous filtering step. The Kalman filtering recursions yields

$$
\begin{aligned}
K_{10} & =V_{10 \mid 9} H^{T}\left(H V_{10 \mid 9} H^{T}+\Omega\right)^{-1}=\frac{1.2}{1.2+0.5}=0.705, \\
\hat{Y}_{10 \mid 10} & =\hat{Y}_{10 \mid 9}+K_{10}\left(Z_{10}-H \hat{Y}_{10 \mid 9}\right)=1.4+0.705(0.2-1.4)=0.55, \\
V_{10 \mid 10} & =\left(I-K_{10} H\right) V_{10 \mid 9}=(1-.705) 1.2=0.354
\end{aligned}
$$

Conditioning also on Z_{10}, the estimated of the state $Y_{1} 0$ is moved towards the observed value of Z_{10} away from the forecasted value.
b) The total likelihood can in general be written as

$$
\begin{equation*}
L(\theta)=f\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)=f\left(Z_{1}\right) \prod_{t=2}^{n} f\left(Z_{t} \mid Z_{t-1}, \ldots, Z_{1}\right) \tag{1}
\end{equation*}
$$

For a Gaussian, linear state-space model, the Z_{t} 's are jointly multivariate normal. Hence, the conditional densities in (1) are also Gaussian with means and variances that can be expressed in terms of quantities computed via the Kalman recursions as

$$
\begin{aligned}
E\left(Z_{t} \mid Z_{t-1}, Z_{t-2}, \ldots\right) & =E\left(H Y_{t}+b_{t} \mid Z_{t-1}, Z_{t-2}, \ldots\right) \\
& =H E\left(Y_{t} \mid Z_{t-1}, Z_{t-2}, \ldots\right) \\
& =H \hat{Y}_{t \mid t-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Var}\left(Z_{t} \mid Z_{t-1}, Z_{t-2}, \ldots\right) & =\operatorname{Var}\left(H Y_{t}+b_{t} \mid Z_{t-1}, Z_{t-2}, \ldots\right) \\
& =H \operatorname{Var}\left(Y_{t} \mid Z_{t-1}, Z_{t-2}, \ldots\right) H^{T}+\Omega \\
& =H V_{t \mid t-1} H^{T}+\Omega
\end{aligned}
$$

For the parameter values in the present example $E\left(Z_{10} \mid Z_{9}, \ldots\right)=1.4, \operatorname{Var}\left(Z_{10} \mid Z_{9}, \ldots\right)=$ $1.2+0.5=1.7$ such that the contribution the log likelihood becomes

$$
-\frac{1}{2} \ln (2 \pi 1.7)-\frac{(0.2-1.4)^{2}}{2 \cdot 1.7}=-1.607 .
$$

c) Using the Kalman forecasting recursions it follows that $\hat{Y}_{14 \mid 10}=0.7^{4} \hat{Y}_{10 \mid 10}=0.132$. The variance can be computed as

$$
\begin{aligned}
& V_{11 \mid 10}=0.7^{2} V_{10 \mid 10}+1=0.7^{2} \cdot 0.354+1=1.173 \\
& V_{12 \mid 10}=0.7^{2} V_{11 \mid 10}+1=1.575 \\
& V_{13 \mid 10}=0.7^{2} V_{12 \mid 10}+1=1.772 \\
& V_{14 \mid 10}=0.7^{2} V_{13 \mid 10}+1=1.868
\end{aligned}
$$

Problem 4

a) Using the law of total variance,

$$
\begin{aligned}
\operatorname{Var} \eta_{t} & =E \operatorname{Var}\left(\eta_{t} \mid \eta_{t-1}\right)+\operatorname{Var} E\left(\eta_{t} \mid \eta_{t-1}\right) \\
& =E\left(\theta_{0}+\theta_{1} \eta_{t-1}^{2}\right)+\operatorname{Var} 0 \\
& =\theta_{0}+\theta_{1} \operatorname{Var} \eta_{t-1}
\end{aligned}
$$

Assuming that the process is variance stationary, we can solve for Var $\eta_{t}=\operatorname{Var} \eta_{t-1}=$ $\theta_{0} /\left(1-\theta_{1}\right)$.
Writing the $\mathrm{ARCH}(1)$ model in autoregressive form,

$$
\begin{aligned}
\operatorname{Var}\left(a_{t} \mid \eta_{t-1}\right) & =\operatorname{Var}\left(\eta_{t}^{2}-\sigma_{t}^{2} \mid \eta_{t-1}\right) \\
& =\operatorname{Var}\left(\sigma_{t}^{2}\left(e_{t}^{2}-1\right) \mid \eta_{t-1}\right) \\
& =\operatorname{Var}\left(\left(\theta_{0}+\theta_{1} \eta_{t-1}^{2}\right) e_{t}^{2} \mid \eta_{t-1}\right) \\
& =2\left(\theta_{0}+\theta_{1} \eta_{t-1}^{2}\right)^{2}
\end{aligned}
$$

since e_{t}^{2} is chi-square with one degree of freedom.

[^0]: ${ }^{1}$ Counterintuitively, the peak in the pacf is at lag 11. Doing $\operatorname{acf} 2 \operatorname{AR}(\operatorname{ARMAacf}(\operatorname{ar}=\mathrm{c}(\mathrm{rep}(0,11), .8), \operatorname{ma}=c(.9), \operatorname{lag} \cdot \max =12))$ yields $\phi_{11,11}=0.77, \phi_{11,12}=0.584$ and $\phi_{12,12}=0.199$.

