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Problem 1

a) (i) The acf cuts off for lags k > 2 and the PACF tails offs which suggest an ARIMA(0, 0, 2)
model

(ii) The acf has peaks at multiples of 12 which suggests a seasonal model with period
s = 12. At multiples of s the acf tails of where as the pacf has a single peak around 1s1

which suggest that the seasonal part of the model is AR(1). Around each peak the acf
cuts of after lag k > 1 and the pacf tails off which suggest that the regular part of the
model is MA(1). Overall, an ARIMA(0, 0, 1)× (1, 0, 0)12 model may be appropriate.

(iii) The acf tails off and the pacf cuts of after lags k > 1. Hence, this is a simple AR(1)
process.

b) The acf of the non-differenced data does not tail off slowly so no differencing is needed.
Given that the the process is AR(1),

(1− φ1B)Zt = at.

Applying the difference operator 1−B yields

(1− φ1B)(1−B)Zt = (1−B)at

and so the differenced series wt = (1−B)Zt satisfies

(1− φ1B)wt = (1−B)at,

that is, an ARMA(1,1) model. This agrees well with the observed sample acf and pacf
of wt which both exhibit approximately geometric tailing off behaviour for lags k > q =
p = 1.

1Counterintuitively, the peak in the pacf is at lag 11. Doing
acf2AR(ARMAacf(ar=c(rep(0,11),.8),ma=c(.9),lag.max=12)) yields φ11,11 = 0.77, φ11,12 = 0.584
and φ12,12 = 0.199.
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Problem 2

a) The autocovariance function becomes

γ0 = σ2
a(12 + θ21 + θ22) = 1 +

(
5

2

)2

+ 1 =
33

4

γ1 = σ2
a(−θ1 + θ1θ2) = −5

2
− 5

2
= −5

γ2 = −σ2
aθ2 = 1

γk = 0 for k > 2.

b) First computing the autocorrelation function

ρ0 = 1

ρ1 =
−5 · 4

33
= −20

33

ρ2 =
1 · 4
33

=
4

33

For lags k ≤ 2, the partial autocovariance function becomes

φ11 = ρ1 = −20

33

φ22 =

∣∣∣∣ 1 ρ1
ρ1 ρ2

∣∣∣∣∣∣∣∣ 1 ρ1
ρ1 1

∣∣∣∣ =
ρ2 − ρ21
1− ρ21

=
4
33
−
(
20
33

)2
1−

(
20
33

)2 = −269

689
= −0.38

c) The MA(2) model

Zt = (1− 1

2
B)2at

= (1−B +
1

4
B2)at

= (1− θ′1B − θ′2B2)at

has moving average parameters θ′1 = 1 and θ′2 = −1
4
. Hence, the autocovariance function
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is

γ′0 = σ2′

a (12 + θ2
′

1 + θ2
′

2 ) = σ2′

a

33

16

γ′1 = σ2′

a (−θ′1 + θ′1θ
′
2) = −σ2′

a

5

4

γ′2 = −σ2′

a θ
′
2 = σ2′

a

1

4
γ′k = 0 for k > 2.

Choosing σ2′
a = 4, γ′k = γk for all k and both models then represent the same stochastic

process. While the first model is non-invertible (it has one root inside the unit circle) the
second model is invertible as its double root B = 2 outside the unit circle. This model
is thus preferable in that we can write it in AR(∞) form.

d) The polynomial in the AR(∞) representation

π(B)Zt = at

must satisfy

(1− π1B − π2B2 − . . . )(1−B +
1

4
B2) = 1.

Expanding the product and equating coefficients, π1 = −1, π2 = −3
4

and for i ≥ 3 the
coefficients satisfies the difference equation

θ′(B)πi = 0.

With one root of multiplicity two, the general solution is

πi = b1
1

2i
+ b2i

1

2i
.

Using the initial conditions π1 = −1 for i = 1 and π2 = −3
4

for i = 2 we find that
b1 = b2 = −1 and

πi = − 1

2i
− i 1

2i

for i ≥ 1.

The one-step ahead forecast can be now computed as

Ẑn(1) = E(Zn+1|Zn, Zn−1, . . . )

= E(π1Zn + π2Zn−1 + . . . |Zn, Zn−1, . . . )

= π1Zn + π2Zn−1 + . . . ,
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the two-step ahead forecast as

Ẑn(2) = E(Zn+2|Zn, Zn−1, . . . )

= E(π1Zn+1 + π2Zn + . . . |Zn, Zn−1, . . . )

= π1E(Zn+1|Zn, Zn−1, . . . ) + π2Zn + . . .

= π1Ẑn(1) + π2Zn + . . . ,

and the l-step ahead forecast as

Ẑn(l) = E(Zn+2|Zn, Zn−1, . . . )

= E(an+l − θ1an+l−1 − θ2an+l−2|Zn, Zn−1, . . . )

= 0

for l > q = 2.

The variance of the forecast error is given by

Var(en(l)) = σ2′

a

l−1∑
j=0

ψ2
j =


4 for l = 1

4(1 + 1) = 8 for l = 2

4(1 + 1 + 1
42

) = 33
4

for l > 2

Problem 3

a) Using the Kalman forecasting recursions, the forecasted mean and variance of Y10 be-
comes

Ŷ10|9 = AŶ9|9 = 0.7 · 2 = 1.4,

V10|9 = AV9|9A
T +GΣGT = 0.72 · 0.4 + 1 = 1.2.

As expected from the mean reverting behaviour of the AR(1) state equation, the fore-
casted mean is closer to zero than the estimated state after the previous filtering step.

The Kalman filtering recursions yields

K10 = V10|9H
T (HV10|9H

T + Ω)−1 =
1.2

1.2 + 0.5
= 0.705,

Ŷ10|10 = Ŷ10|9 +K10(Z10 −HŶ10|9) = 1.4 + 0.705(0.2− 1.4) = 0.55,

V10|10 = (I −K10H)V10|9 = (1− .705)1.2 = 0.354.

Conditioning also on Z10, the estimated of the state Y10 is moved towards the observed
value of Z10 away from the forecasted value.



TMA4285 Time Series Models, December 2016, Solution Page 5 of 6

b) The total likelihood can in general be written as

L(θ) = f(Z1, Z2, . . . , Zn) = f(Z1)
n∏

t=2

f(Zt|Zt−1, . . . , Z1). (1)

For a Gaussian, linear state-space model, the Zt’s are jointly multivariate normal. Hence,
the conditional densities in (1) are also Gaussian with means and variances that can be
expressed in terms of quantities computed via the Kalman recursions as

E(Zt|Zt−1, Zt−2, . . . ) = E(HYt + bt|Zt−1, Zt−2, . . . )

= HE(Yt|Zt−1, Zt−2, . . . )

= HŶt|t−1

and

Var(Zt|Zt−1, Zt−2, . . . ) = Var(HYt + bt|Zt−1, Zt−2, . . . )

= H Var(Yt|Zt−1, Zt−2, . . . )H
T + Ω

= HVt|t−1H
T + Ω.

For the parameter values in the present example E(Z10|Z9, . . . ) = 1.4, Var(Z10|Z9, . . . ) =
1.2 + 0.5 = 1.7 such that the contribution the log likelihood becomes

−1

2
ln(2π1.7)− (0.2− 1.4)2

2 · 1.7
= −1.607.

c) Using the Kalman forecasting recursions it follows that Ŷ14|10 = 0.74Ŷ10|10 = 0.132. The
variance can be computed as

V11|10 = 0.72V10|10 + 1 = 0.72 · 0.354 + 1 = 1.173

V12|10 = 0.72V11|10 + 1 = 1.575

V13|10 = 0.72V12|10 + 1 = 1.772

V14|10 = 0.72V13|10 + 1 = 1.868
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Problem 4

a) Using the law of total variance,

Var ηt = E Var(ηt|ηt−1) + VarE(ηt|ηt−1)
= E(θ0 + θ1η

2
t−1) + Var 0

= θ0 + θ1 Var ηt−1.

Assuming that the process is variance stationary, we can solve for Var ηt = Var ηt−1 =
θ0/(1− θ1).
Writing the ARCH(1) model in autoregressive form,

Var(at|ηt−1) = Var(η2t − σ2
t |ηt−1)

= Var(σ2
t (e2t − 1)|ηt−1)

= Var((θ0 + θ1η
2
t−1)e

2
t |ηt−1)

= 2(θ0 + θ1η
2
t−1)

2

since e2t is chi-square with one degree of freedom.


