- NTNU

Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4285 Time Series Models

Academic contact during examination: Professor John S. Tyssedal
Phone: 41645376

Examination date: December 5, 2017
Examination time (from-to): 09:00-13:00
Permitted examination support material: Tabeller og formler i statistikk, Tapir Forlag/ Fagbokforlaget, K. Rottmann: Matematisk formelsamling, Calculator Casio fx-82ES PLUS, CITIZEN SR-270X, CITIZEN SR-270X College or HP30S, one yellow A5-sheet with your own handwritten notes.

Other information:

Note that you should explain your reasoning behind your answers. You may write in English and/or Norwegian. You may write with a pencil.

Language: English
Number of pages: 3
Number of pages enclosed: 1
Checked by:
Informasjon om trykking av eksamensoppgave
Originalen er:
1-sidig $\quad \square \quad$ 2-sidig \boxtimes
sort/hvit $\mathbb{\text { farger }} \square$
skal ha flervalgskjema

Figure 1: Three different times series (i), (ii) and (iii) (first row) and their associated sample autocorrelation (second row) and sample partial autocorrelation functions (third row). The third column shows series (ii) after first order differencing.

Problem 1

a) Find the autocorrelation function of an MA(3) process defined by

$$
\begin{equation*}
Z_{t}=a_{t}+a_{t-1}+a_{t-2}+a_{t-3} \tag{1}
\end{equation*}
$$

where a_{t} is a white noise process.
b) Choose the order of $\operatorname{ARIMA}(p, d, q)$ models or seasonal $\operatorname{ARIMA}(p, d, q) \times$ $(P, D, Q)_{s}$ models if you were to fit such models to datasets (i) (first column),
(ii) (second and third column) and (iii) (fourth column) in Fig. 1. Dataset
(ii) contains quarterly observations.
c) Based on the observed sample autocorrelation functions in Fig. 1, estimate all model parameters by eye (except σ_{a}^{2}) for time series (i), (ii) and (iii).

Problem 2

a) Give a definition of the partial autocorrelation function $\phi_{k k}$. Find an expression for ϕ_{33} using Cramer's rule. Use the fact that $\rho_{k}=\phi_{1} \rho_{k-1}+\phi_{2} \rho_{k-2}$ for $k>0$ to show that $\phi_{33}=0$ for an $\operatorname{AR}(2)$ process. Hint: Recall that the determinant of a singular matrix is zero.

Problem 3 Suppose that $\left\{Z_{t}\right\}$ follows a process defined by

$$
\begin{equation*}
Z_{t}=Z_{t-1}+a_{t}-2 a_{t-1} \tag{2}
\end{equation*}
$$

where $\left\{a_{t}\right\}$ is Gaussian white noise with variance $\sigma_{a}^{2}=0.25$.
a) Is Z_{t} a stationary process? Why is the model as given by (2) not invertible? Find an alternative represention of the model specified by (2) that is invertible and find the $\operatorname{AR}(\infty)$-representation of the invertible model.

Suppose that we have $n=5$ observations $Z_{1}, Z_{2}, \ldots, Z_{5}$ as shown in Table 1.

t	z_{t}
1	0.00
2	0.72
3	0.12
4	1.75
5	0.32

Table 1: Observed values of Z_{t} in problem 3
b) Compute the numerical value of the infinite history 1-step ahead forecast of Z_{6} neglecting terms containing Z_{0}, Z_{-1}, \ldots. Find the variance of the associated forecast error. Also derive a general formula for the l-step ahead forecast for $l>1$.
c) Derive the pure moving average representation of the model

$$
\begin{equation*}
Z_{t}=\sum_{j=0}^{\infty} \psi_{j} a_{t-j} \tag{3}
\end{equation*}
$$

using methods assuming that the process is stationary. Is (3) a valid representation of (2)?

Derive a general formula for variance of the error of the l-step ahead forecast in point (b).
d) Show that a possible interpretation of model (2) is that $\left\{Z_{t}\right\}$ is a first order moving average $Z_{t}=\xi_{t}-\theta_{1} \xi_{t-1}$ of a random walk process $\left\{\xi_{t}\right\}$ defined by $(1-B) \xi_{t}=a_{t}$. Use this to construct a state-space representation (see the Appendix) of the above non-invertible model (with $\theta_{1}=2$ and $\sigma_{a}^{2}=0.25$) with $Y_{t}=\left[\begin{array}{c}\xi_{t} \\ \xi_{t-1}\end{array}\right]$ as state vector.
e) Suppose that we have run the Kalman forecasting and filtering recursions on the state-space model in point (d) using the data in Table 1 up to time $t=5$ such that we know that

$$
\hat{Y}_{5 \mid 5}=\left[\begin{array}{l}
-0.668 \tag{4}\\
-0.494
\end{array}\right], \quad V_{5 \mid 5}=\left[\begin{array}{ll}
0.7507 & 0.3754 \\
0.3754 & 0.1877
\end{array}\right]
$$

in the notation given in the Appendix. Find $\hat{Y}_{6 \mid 5}$ and use this to compute a forecast of Z_{6}, that is, $E\left(Z_{6} \mid Z_{1}, \ldots, Z_{5}\right)$.
Also compute $V_{6 \mid 5}$ and use this to find the variance of the error of the forecast of Z_{6}.
Discuss how these results compare to the forecast in point (b).
f) Discuss how you would chooose the initial values $\hat{Y}_{1 \mid 0}$ and $V_{1 \mid 0}$ assuming that you only have vague prior knowledge about the state vector at time $t=1$, $Y_{1}=\left[\begin{array}{l}\xi_{1} \\ \xi_{0}\end{array}\right]$. In particular, should ξ_{1} and ξ_{0} be independent?

Appendix: The Kalman recursions:

Model:

$$
\begin{array}{lr}
Y_{t}=A Y_{t-1}+G a_{t}, & a_{t} \sim N(0, \Sigma) \\
Z_{t}=H Y_{t}+b_{t}, & b_{t} \sim N(0, \Omega)
\end{array}
$$

Notation:

$$
\begin{aligned}
\hat{Y}_{t \mid s} & =E\left(Y_{t} \mid Z_{1}, Z_{2}, \ldots, Z_{s}\right) \\
V_{t \mid s} & =\operatorname{Var}\left(Y_{t} \mid Z_{1}, Z_{2}, \ldots, Z_{s}\right)
\end{aligned}
$$

Forecasting, $t \geq s$:

$$
\begin{aligned}
& \hat{Y}_{t+1 \mid s}=A \hat{Y}_{t \mid s} \\
& V_{t+1 \mid s}=A V_{t \mid s} A^{\top}+G \Sigma G^{\top}
\end{aligned}
$$

Filtering:

$$
\begin{aligned}
\hat{Y}_{t+1 \mid t+1} & =\hat{Y}_{t+1 \mid t}+K_{t+1}\left(Z_{t+1}-H \hat{Y}_{t+1 \mid t}\right), \\
V_{t+1 \mid t+1} & =\left(I-K_{t+1} H\right) V_{t+1 \mid t} \\
K_{t+1} & =V_{t+1 \mid t} H^{\top}\left(H V_{t+1 \mid t} H^{\top}+\Omega\right)^{-1} .
\end{aligned}
$$

Smoothing:

$$
\begin{aligned}
\hat{Y}_{t \mid n} & =\hat{Y}_{t \mid t}+J_{t}\left(\hat{Y}_{t+1 \mid n}-\hat{Y}_{t+1 \mid t}\right) \\
V_{t \mid n} & =V_{t \mid t}+J_{t}\left(V_{t+1 \mid n}-V_{t+1 \mid t}\right) J_{t}^{\top}, \\
J_{t} & =V_{t \mid t} A^{\top} V_{t+1 \mid t}^{-1} .
\end{aligned}
$$

