## Problem 1

a)

$$
\rho_{k}=\left\{\begin{array}{l}
1, k=0 \\
\frac{3}{4}, k= \pm 1 \\
\frac{3}{4}, k= \pm 2 \\
\frac{1}{4}, k= \pm 3 \\
0,|k| \geq 4
\end{array}\right.
$$

b) (i) The pacf cuts of after lags $k>1$ and the acf tails off. This suggest an $\operatorname{AR}(1)$ model.
(ii) The acf of the non-differenced series decays slowly which suggest that the process is non-stationary. The acf of the differenced series is significant at one multiple of $s=4$ but cuts off at higher multiple while the pacf has tailing off behaviour at $4,8,12, \ldots$. This suggest that the seasonal part of the model is MA(1). Both the acf and pacf is zero at lag $k=1$ and around each multiple of s. This suggest that the regular part of the model has no AR or MA part. Overall the model is thus $\operatorname{ARIMA}(0,1,0) \times(0,0,1)_{4}$.
(iii) The acf cuts off for lags $k>3$ while the pacf tails off. This suggests a MA(3) model. Note that if the MA-polynomial has complex roots this would translate to cycles in the pacf. These cycles happen to have a period of 4 . The peaks in the pacf at multiples of 4 could perhaps suggest a seasonal MA(1) part but this is excluded by the fact that the acf at lag 4 is non-significant.
c) (i) $\hat{\phi}_{1}=-.9$. (ii) $\Theta_{1}=-1$. (iii) This looks like the acf of the model in point a. Thus, reasonable estimates are $\theta_{1}=\cdots=\theta_{3}=-1$.

## Problem 2

a) The partial autocorrelation at lag $k$ can be defined as

$$
\phi_{k k}=\operatorname{corr}\left(Z_{t}-\hat{Z}_{t}, Z_{t+k}-\hat{Z}_{t+k}\right)
$$

where $\hat{Z}_{t}$ and $\hat{Z}_{t+k}$ are minimum mean square linear predictors of $Z_{t}$ and $Z_{t+k}$ based on the intermediate observations $Z_{t+1}, \ldots, Z_{t+k-1}$.
Alternatively, $\phi_{k k}$ can be defined as the last coefficient in the regression of $Z_{t+k}$ on $Z_{t+k-1}, \ldots, Z_{t}$ or, for Gaussian processes, as the correlation conditional on the intermediate observations.
For an $\operatorname{AR}(2)$ process we have $\rho_{k}=\phi_{1} \rho_{k-1}+\phi_{2} \rho_{k-2}$ for $k>0$ such that

$$
\phi_{33}=\frac{\left|\begin{array}{ccc}
1 & \rho_{1} & \rho_{1} \\
\rho_{1} & 1 & \rho_{2} \\
\rho_{2} & \rho_{1} & \rho_{3}
\end{array}\right|}{\left|\begin{array}{ccc}
1 & \rho_{1} & \rho_{2} \\
\rho_{1} & 1 & \rho_{1} \\
\rho_{2} & \rho_{1} & 1
\end{array}\right|}=\frac{\left|\begin{array}{ccc}
1 & \rho_{1} & \phi_{1}+\phi_{2} \rho_{1} \\
\rho_{1} & 1 & \phi_{1} \rho_{1}+\phi_{2} \\
\rho_{2} & \rho_{1} & \phi_{1} \rho_{2}+\phi_{2} \rho_{1}
\end{array}\right|}{\left|\begin{array}{ccc}
1 & \rho_{1} & \rho_{2} \\
\rho_{1} & 1 & \rho_{1} \\
\rho_{2} & \rho_{1} & 1
\end{array}\right|}
$$

The third column of the matrix in the numerator is thus a linear combination of columns 1 and 2 . The determinant and $\phi_{33}$ are thus both zero.

## Problem 3

a) The autoregressive polynomial for the model $1-B$ has a unit root and the process is thus not stationary. It is also not invertible since the root $B_{1}=1 / 2$ of the moving average polynomial $1-2 B$ is inside the unit circle.
The moving average $a_{t}^{\prime}-\frac{1}{2} a_{t-1}^{\prime}$ will have the same autocovariance function if we let $\sigma_{a}^{2 \prime}=1$. Hence, the process can be represented by the invertible model

$$
(1-B) Z_{t}=\left(1-\theta_{1}^{\prime} B\right) a_{t}^{\prime}
$$

where $\theta_{1}^{\prime}=\frac{1}{2}$.
To write the model in pure autoregressive form

$$
\pi(B) Z_{t}=a_{t}^{\prime}
$$

we must have

$$
\begin{aligned}
& \pi(B)\left(1-\theta_{1}^{\prime} B\right)=1-B \\
& 1-\pi_{1} B-\pi_{2} B^{2}-\ldots \\
& -\theta_{1}^{\prime} B+\theta_{1} \pi_{1} B^{2}+\ldots=1-B
\end{aligned}
$$

Equating coefficients we find that $\pi_{j}=\left(\frac{1}{2}\right)^{j}$.
b) The 1-step ahead forecast becomes

$$
\begin{aligned}
\hat{Z}_{5}(1) & =\pi_{1} Z_{t}+\pi_{2} Z_{4}+\ldots \\
& =.5 \cdot .32+.25 \cdot 1.75+.125 \cdot .12+.0625 \cdot .72 \\
& =.6575
\end{aligned}
$$

The 1-step ahead forecast variance $\operatorname{Var} e_{5}(1)=\sigma_{a}^{2^{\prime}}=1$.
For lead times $l>1$ the forecast function satisifies

$$
\begin{aligned}
\hat{Z}_{5}(l) & =E\left(Z_{5+l} \mid Z_{5}, Z_{4}, \ldots\right) \\
& =E\left(Z_{5+l-1}+a_{5+l}^{\prime}-\theta_{1}^{\prime} a_{5+l-1}^{\prime} \mid Z_{5}, Z_{4}, \ldots\right) \\
& =\hat{Z}_{5}(l-1) \\
& =\hat{Z}_{5}(1)=.6575
\end{aligned}
$$

c) To write the model in pure moving average form

$$
Z_{t}=\psi(B) a_{t}^{\prime}
$$

we must have

$$
(1-B) \psi(B)=1-\theta_{1}^{\prime} B
$$

which leads to $\psi_{i}=1-\theta_{1}^{\prime}=\frac{1}{2}$ for all $i$. A non-stationary model can not be repesented in pure moving average form, however, and the $\psi_{i}$ 's are indeed not square summable.
The variance of the $l$-step ahead forecast error can still be computed in the usual way, however, see the lecture summary p. 24 or Wei, ch. 5 . For $l>1$ we obtain

$$
\begin{aligned}
\operatorname{Var} e_{5}(l) & =\sigma_{a}^{2^{\prime}} \sum_{j=0}^{l-1} \psi_{j}^{2} \\
& =1+\frac{1}{4}(l-1) \\
& =\frac{3}{4}+\frac{1}{4} l .
\end{aligned}
$$

d) We have

$$
\begin{equation*}
Z_{t}=\left(1-\theta_{1} B\right) \xi_{t} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-B) \xi_{t}=a_{t} \tag{2}
\end{equation*}
$$

Applying $(1-B)$ to both sides of (1) and using (2) yields

$$
\begin{equation*}
(1-B) Z_{t}=(1-B)\left(1-\theta_{1} B\right) \xi_{t}=\left(1-\theta_{1} B\right) a_{t} \tag{3}
\end{equation*}
$$

which shows that $Z_{t}$ is an $\operatorname{ARIMA}(0,1,1)$ process.
A state space representation can be obtained by first writing (2) in vector $\operatorname{AR}(1)$ form as

$$
\underbrace{\left[\begin{array}{c}
\xi_{t}  \tag{4}\\
\xi_{t-1}
\end{array}\right]}_{Y_{t}}=\underbrace{\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
\xi_{t-1} \\
\xi_{t-2}
\end{array}\right]}_{Y_{t-1}}+\underbrace{\left[\begin{array}{c}
1 \\
0
\end{array}\right]}_{G} a_{t} .
$$

The observed values depends on the the unobserved states through

$$
Z_{t}=\underbrace{\left[\begin{array}{ll}
1 & -2
\end{array}\right]}_{H}\left[\begin{array}{c}
\xi_{t}  \tag{5}\\
\xi_{t-1}
\end{array}\right]
$$

e) It follows that

$$
\begin{aligned}
\hat{Y}_{6 \mid 5} & =E\left(Y_{6} \mid Z_{1}, \ldots, Z_{5}\right) \\
& =E\left(A Y_{5}+G a_{t} \mid Z_{1}, \ldots, Z_{5}\right) \\
& =A E\left(Y_{5} \mid Z_{1}, \ldots, Z_{5}\right) \\
& =A \hat{Y}_{5 \mid 5} \\
& =\left[\begin{array}{rr}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-.668 \\
-.494
\end{array}\right] \\
& =\left[\begin{array}{c}
-.668 \\
-.668
\end{array}\right]
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
V_{6 \mid 5} & =\operatorname{Var}\left(Y_{6} \mid Z_{1}, \ldots, Z_{5}\right) \\
& =\operatorname{Var}\left(A Y_{5}+G a_{t} \mid Z_{1}, \ldots, Z_{5}\right) \\
& =A \operatorname{Var}\left(Y_{5} \mid Z_{1}, \ldots, Z_{5}\right) A^{T}+G \sigma_{a}^{2} G^{T} \\
& =\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
.7507 & .3754 \\
.3754 & .1877
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0.25 & 0 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
1.007 & .7507 \\
.7507 & .7507
\end{array}\right]
\end{aligned}
$$

From this, the forecast of $Z_{6}$ is given by

$$
\begin{aligned}
\hat{Z}_{5}(1) & =E\left(Z_{6} \mid Z_{1}, \ldots, Z_{5}\right) \\
& =E\left(H Y_{6} \mid Z_{1}, \ldots, Z_{5}\right) \\
& =H E\left(Y_{6} \mid Z_{1}, \ldots, Z_{5}\right) \\
& =H \hat{Y}_{6 \mid 5} \\
& =\left[\begin{array}{ll}
1 & -2
\end{array}\right]\left[\begin{array}{l}
-.668 \\
-.668
\end{array}\right] \\
& =0.668 .
\end{aligned}
$$

Similarly, the forecast error variance is given by

$$
\begin{aligned}
\operatorname{Var}\left(Z_{6} \mid Z_{1}, \ldots, Z_{5}\right) & \\
& =\operatorname{Var}\left(H Y_{6} \mid Z_{1}, \ldots, Z_{5}\right) \\
& =H \operatorname{Var}\left(Y_{6} \mid Z_{1}, \ldots, Z_{5}\right) H^{T} \\
& =H V_{6 \mid 5} H^{T} \\
& =\left[\begin{array}{ll}
1 & -2
\end{array}\right]\left[\begin{array}{cc}
1.007 & .7507 \\
.7507 & .7507
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \\
& =1.007
\end{aligned}
$$

The actual forecast is very similar to the infinite history forecast in point b. This is expected since the forecast only depends stongly on the last few observations (the $\operatorname{AR}(\infty)$ coefficients decays by a factor of $\theta_{1}^{\prime}=1 / 2$ for every time step).
The variance of the finite history forecast error is slightly larger than the inifinite history forecast error variance in point $b$ (computed as if all the past is known) which again is expected since the finite history forecast is based on less information.
f) First consider $\xi_{0}$. To represent that we only have vague knowledge of this quantitiy it would be reasonable to assume that $E\left(\xi_{0}\right)=0$ and that the variance is large, say $\operatorname{Var}\left(\xi_{0}\right)=10^{6}$. Now, from the assumption $\xi_{1}=\xi_{0}+a_{1}$ it follows that

$$
Y_{1 \mid 0}=E\left[\begin{array}{c}
\xi_{0}+a_{1} \\
\xi_{0}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and

$$
V_{1 \mid 0}=\operatorname{Var}\left[\begin{array}{c}
\xi_{0}+a_{1} \\
\xi_{0}
\end{array}\right]=\left[\begin{array}{cc}
1000000.25 & 10^{6} \\
10^{6} & 10^{6}
\end{array}\right]
$$

This makes $\xi_{1}$ and $\xi_{0}$ strongly correlated reflecting the fact that these two quantities are both highly uncertain but that they must have similar values (they are subsequent values in a random walk).

An alternative would perhaps be to assume that $\xi_{0}$ and $\xi_{1}$ are independent with large variances but this would lead to different results (much more uncertainty after having conditioned on $Z_{1}$ ) and would not utilize what we know about the process a priori.

