
Norwegian University of Science and Technology

Department of Mathematical Sciences

Page 1 of 6

TMA4285 Time Series Models, Solution, December 2017

Problem 1

a)

ρk =



1, k = 0
3
4
, k = ±1

2
4
, k = ±2

1
4
, k = ±3

0, |k| ≥ 4

b) (i) The pacf cuts of after lags k > 1 and the acf tails off. This suggest an AR(1) model.

(ii) The acf of the non-differenced series decays slowly which suggest that the process is
non-stationary. The acf of the differenced series is significant at one multiple of s = 4
but cuts off at higher multiple while the pacf has tailing off behaviour at 4, 8, 12, . . . .
This suggest that the seasonal part of the model is MA(1). Both the acf and pacf is zero
at lag k = 1 and around each multiple of s. This suggest that the regular part of the
model has no AR or MA part. Overall the model is thus ARIMA(0, 1, 0)× (0, 0, 1)4.

(iii) The acf cuts off for lags k > 3 while the pacf tails off. This suggests a MA(3) model.
Note that if the MA-polynomial has complex roots this would translate to cycles in the
pacf. These cycles happen to have a period of 4. The peaks in the pacf at multiples of
4 could perhaps suggest a seasonal MA(1) part but this is excluded by the fact that the
acf at lag 4 is non-significant.

c) (i) φ̂1 = −.9. (ii) Θ1 = −1. (iii) This looks like the acf of the model in point a. Thus,
reasonable estimates are θ1 = · · · = θ3 = −1.

Problem 2

a) The partial autocorrelation at lag k can be defined as

φkk = corr(Zt − Ẑt, Zt+k − Ẑt+k)
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where Ẑt and Ẑt+k are minimum mean square linear predictors of Zt and Zt+k based on
the intermediate observations Zt+1, . . . , Zt+k−1.

Alternatively, φkk can be defined as the last coefficient in the regression of Zt+k on
Zt+k−1, . . . , Zt or, for Gaussian processes, as the correlation conditional on the interme-
diate observations.

For an AR(2) process we have ρk = φ1ρk−1 + φ2ρk−2 for k > 0 such that

φ33 =

∣∣∣∣∣∣
1 ρ1 ρ1
ρ1 1 ρ2
ρ2 ρ1 ρ3

∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 ρ1 φ1 + φ2ρ1
ρ1 1 φ1ρ1 + φ2

ρ2 ρ1 φ1ρ2 + φ2ρ1

∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

∣∣∣∣∣∣
.

The third column of the matrix in the numerator is thus a linear combination of columns
1 and 2. The determinant and φ33 are thus both zero.

Problem 3

a) The autoregressive polynomial for the model 1−B has a unit root and the process is thus
not stationary. It is also not invertible since the root B1 = 1/2 of the moving average
polynomial 1− 2B is inside the unit circle.

The moving average a′t − 1
2
a′t−1 will have the same autocovariance function if we let

σ2
a
′
= 1. Hence, the process can be represented by the invertible model

(1−B)Zt = (1− θ′1B)a′t.

where θ′1 = 1
2
.

To write the model in pure autoregressive form

π(B)Zt = a′t

we must have

π(B)(1− θ′1B) = 1−B
1− π1B − π2B2 − . . .
−θ′1B + θ1π1B

2 + . . . = 1−B

Equating coefficients we find that πj = (1
2
)j.
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b) The 1-step ahead forecast becomes

Ẑ5(1) = π1Zt + π2Z4 + . . .

= .5 · .32 + .25 · 1.75 + .125 · .12 + .0625 · .72

= .6575.

The 1-step ahead forecast variance Var e5(1) = σ2
a
′
= 1.

For lead times l > 1 the forecast function satisifies

Ẑ5(l) = E(Z5+l|Z5, Z4, . . . )

= E(Z5+l−1 + a′5+l − θ′1a′5+l−1|Z5, Z4, . . . )

= Ẑ5(l − 1)

= Ẑ5(1) = .6575.

c) To write the model in pure moving average form

Zt = ψ(B)a′t

we must have
(1−B)ψ(B) = 1− θ′1B

which leads to ψi = 1− θ′1 = 1
2

for all i. A non-stationary model can not be repesented
in pure moving average form, however, and the ψi’s are indeed not square summable.

The variance of the l-step ahead forecast error can still be computed in the usual way,
however, see the lecture summary p. 24 or Wei, ch. 5. For l > 1 we obtain

Var e5(l) = σ2
a
′
l−1∑
j=0

ψ2
j

= 1 +
1

4
(l − 1)

=
3

4
+

1

4
l.

d) We have
Zt = (1− θ1B)ξt (1)

and
(1−B)ξt = at. (2)

Applying (1−B) to both sides of (1) and using (2) yields

(1−B)Zt = (1−B)(1− θ1B)ξt = (1− θ1B)at (3)
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which shows that Zt is an ARIMA(0,1,1) process.

A state space representation can be obtained by first writing (2) in vector AR(1) form
as [

ξt
ξt−1

]
︸ ︷︷ ︸

Yt

=

[
1 0
1 0

]
︸ ︷︷ ︸

A

[
ξt−1
ξt−2

]
︸ ︷︷ ︸
Yt−1

+

[
1
0

]
︸︷︷︸
G

at. (4)

The observed values depends on the the unobserved states through

Zt = [1 − 2]︸ ︷︷ ︸
H

[
ξt
ξt−1

]
(5)

e) It follows that

Ŷ6|5 = E(Y6|Z1, . . . , Z5)

= E(AY5 +Gat|Z1, . . . , Z5)

= AE(Y5|Z1, . . . , Z5)

= AŶ5|5

=

[
1 0
1 0

] [
−.668
−.494

]
=

[
−.668
−.668

]
Similarly,

V6|5 = Var(Y6|Z1, . . . , Z5)

= Var(AY5 +Gat|Z1, . . . , Z5)

= AVar(Y5|Z1, . . . , Z5)A
T +Gσ2

aG
T

=

[
1 0
1 0

] [
.7507 .3754
.3754 .1877

] [
1 1
0 0

]
+

[
0.25 0

0 0

]
=

[
1.007 .7507
.7507 .7507

]
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From this, the forecast of Z6 is given by

Ẑ5(1) = E(Z6|Z1, . . . , Z5)

= E(HY6|Z1, . . . , Z5)

= HE(Y6|Z1, . . . , Z5)

= HŶ6|5

= [1 − 2]

[
−.668
−.668

]
= 0.668.

Similarly, the forecast error variance is given by

Var(Z6|Z1, . . . , Z5)

= Var(HY6|Z1, . . . , Z5)

= H Var(Y6|Z1, . . . , Z5)H
T

= HV6|5H
T

= [1 − 2]

[
1.007 .7507
.7507 .7507

] [
1
−2

]
= 1.007

The actual forecast is very similar to the infinite history forecast in point b. This is
expected since the forecast only depends stongly on the last few observations (the AR(∞)
coefficients decays by a factor of θ′1 = 1/2 for every time step).

The variance of the finite history forecast error is slightly larger than the inifinite history
forecast error variance in point b (computed as if all the past is known) which again is
expected since the finite history forecast is based on less information.

f) First consider ξ0. To represent that we only have vague knowledge of this quantitiy
it would be reasonable to assume that E(ξ0) = 0 and that the variance is large, say
Var(ξ0) = 106. Now, from the assumption ξ1 = ξ0 + a1 it follows that

Y1|0 = E

[
ξ0 + a1
ξ0

]
=

[
0
0

]
and

V1|0 = Var

[
ξ0 + a1
ξ0

]
=

[
1000000.25 106

106 106

]
This makes ξ1 and ξ0 strongly correlated reflecting the fact that these two quantities are
both highly uncertain but that they must have similar values (they are subsequent values
in a random walk).
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An alternative would perhaps be to assume that ξ0 and ξ1 are independent with large
variances but this would lead to different results (much more uncertainty after having
conditioned on Z1) and would not utilize what we know about the process a priori.


