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Figure 1: A time series.

Problem 1 Figure 1 shows the monthly sales in kiloliters of red wine by
Australian winemakers from January 1980 through October 1991. In the following
it will be assumed that the monthly sales is a realization of a stochastic process

U..
a)

b)

f)

g)

h)

What is the mathematical definition of a stochastic process?

Justify that the likelihood of the observations in Figure 1 can be written on
the form

L(0) = 11 filwi | wis, ... ) (1)
i=1
How does L simplify if the observations are independent?
How does L simplify if U, is a Gaussian process?
How can L be used to estimate 67

Explain why the conditional expectation E(Upyn | Ui, ..., U,) is better than
the best linear predictor E(U, 1y |Us,...,Uy,) of U,ip.

Derive a matrix formula for the best linear predictor.

Explain how, in principle, to forecast the wine sales in January 1992.
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Figure 2: A transformed time series.

Problem 2  Figure 2 shows the time series z; + 0.0681 = (1 — B'?)y, where
Yy = log(uy) and uy is the time series in Figure 1. In the following it will be assumed
that X, is a zero-mean weakly stationary time series.

a) Why is it reasonable to consider the time series y; = log(u;)?

b) Why is it reasonable to consider the time series (1 — B'?)y; obtained by
differencing at lag 127

c) Define mathematically what it means that X; is an ARMA(p, q) process.
d) How can the likelihood of a Gaussian ARMA (p, ¢) process be computed?

Figure 3 shows the sample partial autocorrelation function of the data in Figure 2.

e) Figure 3 can be taken as an argument for assuming that X; is an AR(12)
process. Explain this.

f) Forecasting for an AR(p) process is particularly simple. Explain this.

g) It can be shown that the AR(12) process (1 —0.270B —0.224B° —0.149B% +
0.099B'" + 0.353B?)X; = Z;, with Z ~ WN(0,0.0138) gives a good fit to
the data. Explain how this can be used to forecast the wine sales in January
1992.
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Figure 3: A sample partial autocorrelation function.

Problem 3 Figure 4 shows Z; = log(P,/P,—1) where P, is the Dow Jones
Industrial Index from July 1, 1997, through April 9, 1999 together with an estimate
of hy in a causal stationary GARCH(1, 1) model: Z; = V/hses, hy = g + oy Z2 | +
B1hi—1, and e; ~ I1ID(0, 1).

a) What does it mean that Z; is causal and stationary?

b) Show that E(Z2|Z%,,Z2 ,,...) = hs.

c¢) Show that Z; ~ WN(0, ¢%) including an explicit formula for o%.

d) What is the interpretation of the volatility h;?

e) GARCH models have been developed to reflect the so-called stylized features
of financial time series. Exemplify some of these features.
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Figure 4: A white noise process (top) together with estimated volatility.



