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Figure 1: A time series.

Problem 1 Let

Xt − 1.318Xt−1 + 0.634Xt−2 = Zt, t ∈ Z, (1)

with Z ∼WN(0, 289.2).

a) State the needed additional requirements ensuring that X ∼ ARMA(p, q).

b) Determine p and q.

c) Prove that X is causal.

d) Calculate ψj for j ≤ 2 where Xt = ∑∞
j=−∞ ψjZt−j.

e) Determine a finite difference equation for the covariance function γ of X.

f) Calculate and graph the partial correlation function of X given that γ(0) =
1384.1, γ(1) = 1116.4, γ(2) = 593.9.

g) Derive equations that determines the best linear predictor F (h) = X̂n+h of
Xn+h based on X1, X2, . . . , Xn.

h) Calculate the prediction uncertainty u of X̂n+1.

Problem 2 Sunspots are regions of reduced surface temperature that appear
as dark spots on the Sun. Figure 1 shows the Wolfer’s sunspot numbers analyzed
by George Udny Yule in 1927. Let s = (s1, . . . , s100) be the sunspot numbers for the
years 1770–1869. It will be assumed that s is a sample from a weakly stationary
causal stochastic process S. The data s gives the sample statistics µ̂ = 46.93,
γ̂(0) = 1382.2, γ̂(1) = 1114.4, γ̂(2) = 591.73, and the sample partial correlation
function α̂ in Figure 2.

a) How is the sample mean µ̂ calculated?
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Figure 2: A sample partial correlation function.

b) How is the sample covariance function γ̂ calculated?

c) Justify that µ̂ is an unbiased estimator for the mean µ.

d) Derive a formula for estimating the uncertainty of µ̂.

e) Figure 2 gives an argument for assuming X = S−µ ∼ AR(2). Explain this.

f) Estimate the parameters of X using γ̂(0), γ̂(1), and γ̂(2).

g) Calculate α̂(0), α̂(1), and α̂(2). Compare with Figure 2.

h) Derive explicit formulas for obtaining the maximum likelihood estimates of
the parameters of S.
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Problem 3 Let Z be a causal stationary GARCH(p, q) process with Z =
√
he,

e ∼ IID(0, 1), and
h = α0 + α(B)Z2 + β(B)h (2)

Assume furthermore α1 + · · · + αp + β1 + · · · + βq < 1 and VarZ2 < ∞. It can
then be shown that [Z2 − E(Z2)] ∼ ARMA(m, q) with m = max(p, q) and

Z2 = α0 + (α + β)(B)Z2 + U − β(B)U (3)

with U = Z2 − h ∼WN.

Let Z ∼ WN(0, σ2) be the estimated noise process obtained for the sunspot
numbers with corresponding observed values z1, . . . , z100. The sample correla-
tion function of z2

1 , . . . , z
2
100 indicates that Z2 is not white noise. Further analysis

and estimation indicate that Z2 ∼ ARMA(1, 1). This motivates to consider the
GARCH(1, 1) model Z =

√
he with e ∼ IID(0, 1), and

ht = 31.152 + 0.223Z2
t−1 + 0.596ht−1 (4)

a) Is it reasonable to assume that Z is Gaussian?

b) Can Figure 1 be used to motivate modeling with GARCH noise?

c) Explain how the AICC generalizes the maximum likelihood, and can be used
for obtaining possibly improved models using equation (3).

d) Discuss briefly possible alternative models for the sunspot numbers.


