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Problem 1 Let X = {Xt | t ∈ Z} with

X = (1 + aB)(1 + bB7)Z (1)

where B is the backshift operator and Z = {Zt | t ∈ Z} ∼WN(0, σ2). For calcula-
tions assume a = −0.5282, b = −0.4920, and σ2 = 0.4090.

a) Show that X ∼ ARMA(p, q) and determine p and q.

b) Prove that X is causal.

c) Is Z uniquely determined by X?

d) Calculate the covariance function γ of X.

e) How is the best linear predictor X̂n of Xn given X1, . . . , X256 defined, and is
it unique?

Assume that
(1−B)(1−B7)T = X (2)

f) Is T weakly stationary?

g) Is T uniquely determined by Z?

h) Let T̂n be the best linear predictor of Tn given T−7, . . . , T256. Let t−7, . . . , t256
be given. Demonstrate how t̂200, t̂257, and t̂300 can be calculated together
with an uncertainty estimate.

i) State the necessary assumptions for the calculation of t̂200, t̂257, and t̂300.
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Figure 1: Daily numbers y−7, y−6, . . . , y256 of new reported cases of COVID-19 in
Norway from February 21th to November 10th 2020.

Problem 2 The key assumption in the following is that the daily COVID-19
data in Figure 1 are realized values of parts of an integer valued stochastic process
Y = {Yt | t ∈ Z}.

a) Explain why the key assumption is reasonable.

b) What are the possible values for Y300?

c) Is it reasonable to assume that Y300 has a Poisson distribution?

d) Define mathematically the laws of Y and (Y−7, Y−6, . . . , Y256) in terms of the
underlying probability space (Ω, E ,P).

e) How can g(y) = P(Y300 = y |Y−7 = y−7, Y−6 = y−6, . . . , Y256 = y256) be
calculated if the law of Y is known.

f) Assume that the law of Y is known and hence that g is known. Provide at
least two reasonable predictions of y300 and explain how you can quantify
the uncertainty.

g) Prove that
T = log(max(Y, 0.1)) (3)

is a stochastic process.
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Figure 2: Correlation function estimates.

Problem 3 Let T be given by equation (3) and let

X = (1−B)(1−B7)T (4)

where B is the backshift operator. The left of Figure 2 shows the sample correlation
ρ̂ of x1, . . . , x256 obtained from equations (4)-(3) and the data in Figure 1.

a) How is ρ̂ calculated?

b) Figure 1 and Figure 2 can be used to motivate using the model

X = (1 + aB)(1 + bB7)Z (5)

where Z ∼WN(0, σ2). Why?

c) The empirical covariance function of x1, . . . , x256 is γ̂(0) = 0.6252, γ̂(1) =
−0.2859, . . ., γ̂(7) = −0.1896, . . . Use this to estimate a, b and σ2.

d) How can a, b, σ2 be estimated by the maximum likelihood method?

e) How can the previous be used to forecast Y300?

f) How can z1, . . . , z256 be estimated using equation (5)?

g) Testing of residuals supports the assumption Z ∼WN(0, σ2). Is it reasonable
to assume that Z is Gaussian?
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h) The right part of Figure 2 motivates to consider a GARCH model for Z.
Why?

i) Explain how a GARCH(1, 1) model can be fitted to Z.


