Course Statistical Inference SIF5084

Faglig kontakt under eksamen:
Nikolai Ushakov 73593539

Hjelpemidler: (C):
K.Rottman: Mathematische Formelsamlung,

Statistiske tabeller og formler, Tapir,
Godkjent kalkulator med tomt minne,
Et gult håndskrevet A4-ark, stemplet av instituttet.

1. A sample X_{1}, \ldots, X_{n} is drawn from a uniform $(\theta, 2 \theta)$ distribution. Consider two estimators of θ :

$$
\begin{gathered}
T_{1}=\frac{1}{2} \max \left\{X_{1}, \ldots, X_{n}\right\}, \\
T_{2}=\frac{2}{3} \bar{X}=\frac{2}{3 n}\left(X_{1}+\ldots+X_{n}\right) .
\end{gathered}
$$

a) Prove that both estimators are consistent.
b) Which one should be preffered and why?

Solution. Find MSE of both estimators (this will be used for both (a) and (b)). The distribution function of X_{i} is

$$
F_{X_{i}}(x)= \begin{cases}0 & \text { for } x<\theta \\ \frac{1}{\theta} x-1 & \text { for } \theta \leq x \leq 2 \theta \\ 1 & \text { for } x>2 \theta\end{cases}
$$

therefore

$$
F_{T_{1}}(x)=\left[F_{X_{i}}(2 x)\right]^{n}= \begin{cases}0 & \text { for } x<\theta / 2 \\ \left(\frac{2}{\theta} x-1\right)^{n} & \text { for } \theta / 2 \leq x \leq \theta \\ 1 & \text { for } x>\theta\end{cases}
$$

i.e. probability density function of T_{1} is

$$
f_{T_{1}}(x)=n \frac{2}{\theta}\left(\frac{2}{\theta} x-1\right)^{n-1}
$$

on the interval $[\theta / 2, \theta]$ and zero outside this interval. Using this representation, we get

$$
E T_{1}=\int x f_{T_{1}}(x) d x=\frac{2 n+1}{2(n+1)} \theta,
$$

the bias:

$$
\begin{gathered}
b\left(T_{1}\right)=E T_{1}-\theta=-\frac{\theta}{2(n+1)}, \\
E T_{1}^{2}=\int x^{2} f_{T_{1}}(x) d x=\frac{2 n^{2}+4 n+1}{2(n+1)(n+2)} \theta^{2}, \\
\operatorname{Var}\left(T_{1}\right)=E T_{1}^{2}-\left(E T_{1}\right)^{2}=\frac{n}{4(n+1)^{2}(n+2)} \theta^{2}, \\
M S E\left(T_{1}\right)=\operatorname{Var}\left(T_{1}\right)+\left[b\left(T_{1}\right)\right]^{2}=\frac{\theta^{2}}{2(n+1)(n+2)} .
\end{gathered}
$$

For T_{2} moments and MSE are found directly:

$$
\begin{gathered}
E T_{2}=\frac{2}{3} E \bar{X}=\theta, \\
\operatorname{Var}\left(T_{2}\right)=\frac{4}{9 n} \operatorname{Var}\left(X_{i}\right)=\frac{\theta^{2}}{27 n}=\operatorname{MSE}\left(T_{2}\right) .
\end{gathered}
$$

a) We get from the Chebychev inequality

$$
P\left(\left|T_{i}-\theta\right| \geq \varepsilon\right) \leq \frac{E\left(T_{i}-\theta\right)^{2}}{\varepsilon^{2}}=\frac{\operatorname{MSE}\left(T_{i}\right)}{\varepsilon^{2}} \rightarrow 0, \quad n \rightarrow \infty, \quad i=1,2,
$$

which implies

$$
T_{i} \xrightarrow{P} \theta, \quad n \rightarrow \infty, \quad i=1,2,
$$

i.e. both estimators are consistent.
b)

$$
\begin{array}{ll}
\operatorname{MSE}\left(T_{1}\right)=O\left(\frac{1}{n^{2}}\right), & n \rightarrow \infty, \\
\operatorname{MSE}\left(T_{2}\right)=O\left(\frac{1}{n}\right), & n \rightarrow \infty,
\end{array}
$$

therefore the first estimator is better when the sample size is large. If n is small, then $\operatorname{MSE}\left(T_{1}\right)>\operatorname{MSE}\left(T_{2}\right)$ for $n \leq 10\left(T_{2}\right.$ is better) and $\operatorname{MSE}\left(T_{1}\right)<\operatorname{MSE}\left(T_{2}\right)$ for $n>10$ (T_{1} is better).
2. Let X_{1}, \ldots, X_{n} be a sample taken from a gamma distribution with parameters $(2,1 / \theta)$ i.e. distribution with pdf

$$
f(x ; \theta)=\theta^{2} x e^{-\theta x}, x>0, \theta>0 .
$$

a) Prove that this family of distributions has a monotone likelihood ratio.
b) Suppose that n is large enough so that the Central Limit Theorem can be used. For testing $H_{0}: \theta \leq \theta_{0}$ versus $H_{1}: \theta>\theta_{0}$ find the acceptance region of the significance level α a UMP (uniformly most powerful) test.
c) Find the $(1-\alpha)$ one-sided confidence interval that results from inverting the test of part (b).

Solution. a) The likelihood function is

$$
L(\theta ; X)=\theta^{2 n} e^{-\theta \sum X_{i}} \prod_{i=1}^{n} X_{i},
$$

therefore, if $\theta^{\prime}<\theta^{\prime \prime}$, then the ratio

$$
\frac{L\left(\theta^{\prime} ; X\right)}{L\left(\theta^{\prime \prime} ; X\right)}=\left(\frac{\theta^{\prime}}{\theta^{\prime \prime}}\right)^{2 n} e^{\left(\theta^{\prime \prime}-\theta^{\prime}\right) \sum x_{i}}
$$

is a monotone (increasing) function of $T(X)=\sum X_{i}$.
b) Due to part (a) the UMP test has form

$$
\sum_{i=1}^{n} X_{i}<c \Longrightarrow H_{1}
$$

where c is determined from condition

$$
P_{\theta_{0}}\left(\sum X_{i}<c\right)=\alpha .
$$

To find c let us use CLT. We have $E X_{i}=2 / \theta, \operatorname{Var}\left(X_{i}\right)=2 / \theta^{2}$ therefore

$$
\alpha=P_{\theta_{0}}\left(\sum X_{i}<c\right)=P_{\theta_{0}}\left(\frac{\sum X_{i}-2 n / \theta_{0}}{\sqrt{2 n} / \theta_{0}}<\frac{c-2 n / \theta_{0}}{\sqrt{2 n} / \theta_{0}}\right) \approx \Phi\left(\frac{c-2 n / \theta_{0}}{\sqrt{2 n} / \theta_{0}}\right)
$$

and

$$
c=\frac{2 n+z_{\alpha} \sqrt{2 n}}{\theta_{0}} .
$$

Thus the acceptance region has form

$$
\sum_{i=1}^{n} X_{i} \geq \frac{2 n+z_{\alpha} \sqrt{2 n}}{\theta_{0}}
$$

or

$$
\bar{X} \geq \frac{2+z_{\alpha} \sqrt{2} / \sqrt{n}}{\theta_{0}}
$$

c) Inverting the test of part (b) we obtain the following $(1-\alpha)$ one-sided confidence interval:

$$
\left[\frac{2}{\bar{X}}+\frac{z_{\alpha} \sqrt{2}}{\bar{X} \sqrt{n}}, \infty\right) .
$$

3. A sample X_{1}, \ldots, X_{n} is drawn from a beta distribution with parameters θ and $\theta+5$ i. e. pdf of X_{i} is

$$
f(x ; \theta)=\frac{\Gamma(2 \theta+5)}{\Gamma(\theta) \Gamma(\theta+5)} x^{\theta-1}(1-x)^{\theta+4}, 0<x<1, \theta>0 .
$$

a) Find a one-dimensional sufficient statistic for θ.
b) Find MME (the method of moments estimator) of θ.
c) Show that MME differs from MLE (the maximum likelihood estimator) in the considered case. (Do not try to find MLE! Just use your result of part (a)).

Solution. a) The likelihood function is

$$
L\left(\theta ; X_{1}, \ldots, X_{n}\right)=\left[\frac{\Gamma(2 \theta+5)}{\Gamma(\theta) \Gamma(\theta+5)}\right]^{n}\left[\prod_{i=1}^{n} X_{i}\left(1-X_{i}\right)\right]^{\theta-1}\left[\prod_{i=1}^{n}\left(1-X_{i}\right)\right]^{5}
$$

Put

$$
\begin{gathered}
T\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} X_{i}\left(1-X_{i}\right) \\
g(T, \theta)=\left[\frac{\Gamma(2 \theta+5)}{\Gamma(\theta) \Gamma(\theta+5)}\right]^{n}\left[T\left(X_{1}, \ldots, X_{n}\right)\right]^{\theta-1}
\end{gathered}
$$

and

$$
h\left(X_{1}, \ldots, X_{n}\right)=\left[\prod_{i=1}^{n}\left(1-X_{i}\right)\right]^{5}
$$

Then

$$
L\left(\theta ; X_{1}, \ldots, X_{n}\right)=g\left(T\left(X_{1}, \ldots, X_{n}\right), \theta\right) h\left(X_{1}, \ldots, X_{n}\right)
$$

and hence, due to the factorization theorem, $T\left(X_{1}, \ldots, X_{n}\right)$ is a (univariate) sufficient statistic.
b)

$$
\mu_{1}=E X_{i}=\frac{\theta}{2 \theta+5}
$$

or

$$
\theta=\frac{5 \mu_{1}}{1-2 \mu_{1}}
$$

therefore

$$
\hat{\theta}_{M M E}=\frac{5 \bar{X}}{1-2 \bar{X}}
$$

c) $\hat{\theta}_{M L E}$ must be a function of any sufficient statistic, including in particular the sufficient statistic obtained in (a): $T(X)=\prod_{i=1}^{n} X_{i}\left(1-X_{i}\right)$. But $\hat{\theta}_{M M E}=5 \bar{X} /(1-2 \bar{X})$ is not a function of $T(X)$. Indeed, there exist two samples $X^{(1)}$ and $X^{(2)}$ such that

$$
\frac{5 \bar{X}^{(1)}}{1-2 \bar{X}^{(1)}} \neq \frac{5 \bar{X}^{(2)}}{1-2 \bar{X}^{(2)}}
$$

but

$$
T\left(X^{(1)}\right)=T\left(X^{(2)}\right)
$$

For example,

$$
X_{1}^{(1)}=X_{2}^{(1)}=\ldots=X_{n}^{(1)}=1 / 3
$$

and

$$
X_{1}^{(2)}=X_{2}^{(2)}=\ldots=X_{n}^{(2)}=2 / 3 .
$$

4. Let Y_{1}, \ldots, Y_{n} be observations. Consider the following two models:

$$
\begin{equation*}
Y_{i}=\tan \left(\beta x_{i}\right)+\epsilon_{i} \tag{1}
\end{equation*}
$$

(β is the parameter to be estimated, $|\beta| \leq 1,\left|x_{i}\right|<\pi / 2$),

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1}^{2} x_{i}+\epsilon_{i} \tag{2}
\end{equation*}
$$

(β_{0} and β_{1} are parameters to be estimated), where $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent identically distributed random variables having normal ($0, \sigma^{2}$) distribution (σ^{2} is known).
a) Which of these two models is a generalized linear model and which is not? Why? What is the link function of the generalized linear model?
b) Suppose that n is even: $n=2 m$, and $x_{1}=\ldots=x_{m}=x \neq 0, x_{m+1}=\ldots=x_{n}=$ $-x$. For model (1) find MLE (maximum likelihood estimator) of β.

Solution. a) Model (1) is a GLM, model (2) is not a GML (by definition). The link function in model (1) is $\arctan (\cdot)$.
b) We have

$$
f_{Y_{i}}(y)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{y-\tan \left(\beta x_{i}\right)^{2}}{2 \sigma^{2}}\right\}
$$

hence the likelihood function is

$$
L(\beta ; Y)=(2 \pi)^{-n / 2} \sigma^{-n} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum\left(Y_{i}-\tan \left(\beta x_{i}\right)\right)^{2}\right\}
$$

and
$\frac{\partial \ln L}{\partial \beta}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\tan \left(\beta x_{i}\right)\right) \frac{x_{i}}{\cos ^{2} \beta x_{i}}=\frac{x}{\sigma^{2} \cos ^{2} \beta x}\left(-\sum_{i=1}^{m} Y_{i}+\sum_{i=m+1}^{n} Y_{i}+2 m \tan (\beta x)\right)$.

Solving equation

$$
\frac{\partial \ln L}{\partial \beta}=0
$$

and taking into account that $|\beta| \leq 1$ we obtain

$$
\hat{\beta}_{M L E}(x)= \begin{cases}b=\frac{1}{x} \arctan \left[\frac{1}{n}\left(\sum_{i=1}^{m} Y_{i}-\sum_{i=m+1}^{n} Y_{i}\right)\right] & \text { if }|b| \leq 1 \\ 1 & \text { if } b>1 \\ -1 & \text { if } b<-1\end{cases}
$$

