Course Statistical Inference SIF5084

Faglig kontakt under eksamen:

Nikolai Ushakov 735 93539

Hjelpemidler: (C):

K.Rottman: Mathematische Formelsamlung,

Statistiske tabeller og formler, Tapir,

Godkjent kalkulator med tomt minne,

Et gult håndskrevet A4-ark, stemplet av instituttet.

1. A sample $X_1, ..., X_n$ is drawn from a uniform $(\theta, 2\theta)$ distribution. Consider two estimators of θ :

$$T_1 = \frac{1}{2} \max\{X_1, ..., X_n\},$$
$$T_2 = \frac{2}{3}\bar{X} = \frac{2}{3n}(X_1 + ... + X_n)$$

a) Prove that both estimators are consistent.

b) Which one should be preffered and why?

Solution. Find MSE of both estimators (this will be used for both (a) and (b)). The distribution function of X_i is

$$F_{X_i}(x) = \begin{cases} 0 & \text{for } x < \theta, \\ \frac{1}{\theta}x - 1 & \text{for } \theta \le x \le 2\theta, \\ 1 & \text{for } x > 2\theta, \end{cases}$$

therefore

$$F_{T_1}(x) = [F_{X_i}(2x)]^n = \begin{cases} 0 & \text{for } x < \theta/2, \\ \left(\frac{2}{\theta}x - 1\right)^n & \text{for } \theta/2 \le x \le \theta, \\ 1 & \text{for } x > \theta, \end{cases}$$

i.e. probability density function of T_1 is

$$f_{T_1}(x) = n\frac{2}{\theta} \left(\frac{2}{\theta}x - 1\right)^{n-1}$$

on the interval $[\theta/2, \theta]$ and zero outside this interval. Using this representation, we get

$$ET_1 = \int x f_{T_1}(x) dx = \frac{2n+1}{2(n+1)}\theta,$$

the bias:

$$b(T_1) = ET_1 - \theta = -\frac{\theta}{2(n+1)},$$

$$ET_1^2 = \int x^2 f_{T_1}(x) dx = \frac{2n^2 + 4n + 1}{2(n+1)(n+2)} \theta^2,$$

$$Var(T_1) = ET_1^2 - (ET_1)^2 = \frac{n}{4(n+1)^2(n+2)} \theta^2,$$

$$MSE(T_1) = Var(T_1) + [b(T_1)]^2 = \frac{\theta^2}{2(n+1)(n+2)}.$$

For T_2 moments and MSE are found directly:

$$ET_2 = \frac{2}{3}E\bar{X} = \theta,$$

$$Var(T_2) = \frac{4}{9n}Var(X_i) = \frac{\theta^2}{27n} = MSE(T_2).$$

a) We get from the Chebychev inequality

$$P(|T_i - \theta| \ge \varepsilon) \le \frac{E(T_i - \theta)^2}{\varepsilon^2} = \frac{MSE(T_i)}{\varepsilon^2} \to 0, \quad n \to \infty, \quad i = 1, 2,$$

which implies

$$T_i \xrightarrow{P} \theta, \quad n \to \infty, \quad i = 1, 2,$$

i.e. both estimators are consistent.

b)

$$MSE(T_1) = O\left(\frac{1}{n^2}\right), \quad n \to \infty,$$
$$MSE(T_2) = O\left(\frac{1}{n}\right), \quad n \to \infty,$$

therefore the first estimator is better when the sample size is large. If n is small, then $MSE(T_1) > MSE(T_2)$ for $n \le 10$ (T_2 is better) and $MSE(T_1) < MSE(T_2)$ for n > 10 (T_1 is better).

2. Let $X_1, ..., X_n$ be a sample taken from a gamma distribution with parameters $(2, 1/\theta)$ i.e. distribution with pdf

$$f(x;\theta) = \theta^2 x e^{-\theta x}, \ x > 0, \ \theta > 0.$$

a) Prove that this family of distributions has a monotone likelihood ratio.

b) Suppose that n is large enough so that the Central Limit Theorem can be used. For testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ find the acceptance region of the significance level α a UMP (uniformly most powerful) test.

c) Find the $(1-\alpha)$ one-sided confidence interval that results from inverting the test of part (b).

Solution. a) The likelihood function is

$$L(\theta;X) = \theta^{2n} e^{-\theta \sum X_i} \prod_{i=1}^n X_i,$$

therefore, if $\theta' < \theta''$, then the ratio

$$\frac{L(\theta';X)}{L(\theta'';X)} = \left(\frac{\theta'}{\theta''}\right)^{2n} e^{(\theta''-\theta')\sum X_i}$$

is a monotone (increasing) function of $T(X) = \sum X_i$.

b) Due to part (a) the UMP test has form

$$\sum_{i=1}^{n} X_i < c \Longrightarrow H_1$$

where c is determined from condition

$$P_{\theta_0}(\sum X_i < c) = \alpha.$$

To find c let us use CLT. We have $EX_i = 2/\theta$, $Var(X_i) = 2/\theta^2$ therefore

$$\alpha = P_{\theta_0}\left(\sum X_i < c\right) = P_{\theta_0}\left(\frac{\sum X_i - 2n/\theta_0}{\sqrt{2n}/\theta_0} < \frac{c - 2n/\theta_0}{\sqrt{2n}/\theta_0}\right) \approx \Phi\left(\frac{c - 2n/\theta_0}{\sqrt{2n}/\theta_0}\right)$$

and

$$c = \frac{2n + z_{\alpha}\sqrt{2n}}{\theta_0}$$

Thus the acceptance region has form

$$\sum_{i=1}^{n} X_i \ge \frac{2n + z_\alpha \sqrt{2n}}{\theta_0}$$

or

$$\bar{X} \ge \frac{2 + z_{\alpha}\sqrt{2}/\sqrt{n}}{\theta_0}.$$

c) Inverting the test of part (b) we obtain the following $(1 - \alpha)$ one-sided confidence interval:

$$\left[\frac{2}{\bar{X}} + \frac{z_{\alpha}\sqrt{2}}{\bar{X}\sqrt{n}}, \infty\right).$$

3. A sample $X_1, ..., X_n$ is drawn from a beta distribution with parameters θ and $\theta + 5$ i. e. pdf of X_i is

$$f(x;\theta) = \frac{\Gamma(2\theta+5)}{\Gamma(\theta)\Gamma(\theta+5)} x^{\theta-1} (1-x)^{\theta+4}, \ 0 < x < 1, \ \theta > 0.$$

a) Find a one-dimensional sufficient statistic for θ .

b) Find MME (the method of moments estimator) of θ .

c) Show that MME differs from MLE (the maximum likelihood estimator) in the considered case. (Do not try to find MLE! Just use your result of part (a)).

Solution. a) The likelihood function is

$$L(\theta; X_1, ..., X_n) = \left[\frac{\Gamma(2\theta+5)}{\Gamma(\theta)\Gamma(\theta+5)}\right]^n \left[\prod_{i=1}^n X_i(1-X_i)\right]^{\theta-1} \left[\prod_{i=1}^n (1-X_i)\right]^5.$$

Put

$$T(X_1, ..., X_n) = \prod_{i=1}^n X_i(1 - X_i),$$
$$g(T, \theta) = \left[\frac{\Gamma(2\theta + 5)}{\Gamma(\theta)\Gamma(\theta + 5)}\right]^n [T(X_1, ..., X_n)]^{\theta - 1},$$

and

$$h(X_1, ..., X_n) = \left[\prod_{i=1}^n (1 - X_i)\right]^5.$$

Then

$$L(\theta; X_1, ..., X_n) = g(T(X_1, ..., X_n), \theta)h(X_1, ..., X_n)$$

and hence, due to the factorization theorem, $T(X_1, ..., X_n)$ is a (univariate) sufficient statistic.

b)

$$\mu_1 = EX_i = \frac{\theta}{2\theta + 5}$$

 $\theta = \frac{5\mu_1}{1 - 2\mu_1},$

therefore

or

$$\hat{\theta}_{MME} = \frac{5\bar{X}}{1-2\bar{X}}.$$

c) $\hat{\theta}_{MLE}$ must be a function of any sufficient statistic, including in particular the sufficient statistic obtained in (a): $T(X) = \prod_{i=1}^{n} X_i(1-X_i)$. But $\hat{\theta}_{MME} = 5\bar{X}/(1-2\bar{X})$ is not a function of T(X). Indeed, there exist two samples $X^{(1)}$ and $X^{(2)}$ such that

$$\frac{5\bar{X}^{(1)}}{1-2\bar{X}^{(1)}} \neq \frac{5\bar{X}^{(2)}}{1-2\bar{X}^{(2)}}$$

but

$$T(X^{(1)}) = T(X^{(2)}).$$

For example,

$$X_1^{(1)} = X_2^{(1)} = \dots = X_n^{(1)} = 1/3$$

and

$$X_1^{(2)} = X_2^{(2)} = \dots = X_n^{(2)} = 2/3.$$

4. Let $Y_1, ..., Y_n$ be observations. Consider the following two models:

$$Y_i = \tan(\beta x_i) + \epsilon_i \tag{1}$$

(β is the parameter to be estimated, $|\beta| \le 1$, $|x_i| < \pi/2$),

$$Y_i = \beta_0 + \beta_1^2 x_i + \epsilon_i \tag{2}$$

(β_0 and β_1 are parameters to be estimated), where $\epsilon_1, ..., \epsilon_n$ are independent identically distributed random variables having normal $(0, \sigma^2)$ distribution (σ^2 is known).

a) Which of these two models is a generalized linear model and which is not? Why? What is the link function of the generalized linear model?

b) Suppose that n is even: n = 2m, and $x_1 = ... = x_m = x \neq 0$, $x_{m+1} = ... = x_n = -x$. For model (1) find MLE (maximum likelihood estimator) of β .

Solution. a) Model (1) is a GLM, model (2) is not a GML (by definition). The link function in model (1) is $\arctan(\cdot)$.

b) We have

$$f_{Y_i}(y) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{y - \tan(\beta x_i)^2}{2\sigma^2}\right\}$$

hence the likelihood function is

$$L(\beta; Y) = (2\pi)^{-n/2} \sigma^{-n} \exp\left\{-\frac{1}{2\sigma^2} \sum (Y_i - \tan(\beta x_i))^2\right\}$$

and

$$\frac{\partial \ln L}{\partial \beta} = \frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - \tan(\beta x_i)) \frac{x_i}{\cos^2 \beta x_i} = \frac{x}{\sigma^2 \cos^2 \beta x} \left(-\sum_{i=1}^m Y_i + \sum_{i=m+1}^n Y_i + 2m \tan(\beta x) \right).$$

Solving equation

$$\frac{\partial \ln L}{\partial \beta} = 0$$

and taking into account that $|\beta| \leq 1$ we obtain

$$\hat{\beta}_{MLE}(x) = \begin{cases} b = \frac{1}{x} \arctan\left[\frac{1}{n} \left(\sum_{i=1}^{m} Y_i - \sum_{i=m+1}^{n} Y_i\right)\right] & \text{if } |b| \le 1, \\ 1 & \text{if } b > 1, \\ -1 & \text{if } b < -1. \end{cases}$$