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1. A sample X1, ..., Xn is drawn from a uniform (θ, 2θ) distribution. Consider two

estimators of θ:

T1 =
1

2
max{X1, ..., Xn},

T2 =
2

3
X̄ =

2

3n
(X1 + ... + Xn).

a) Prove that both estimators are consistent.

b) Which one should be preffered and why?

Solution. Find MSE of both estimators (this will be used for both (a) and (b)).

The distribution function of Xi is

FXi
(x) =











0 for x < θ,
1
θ
x − 1 for θ ≤ x ≤ 2θ,

1 for x > 2θ,

therefore

FT1
(x) = [FXi

(2x)]n =











0 for x < θ/2,
(

2
θ
x − 1

)n
for θ/2 ≤ x ≤ θ,

1 for x > θ,

i.e. probability density function of T1 is

fT1
(x) = n

2

θ

(

2

θ
x − 1

)n−1
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on the interval [θ/2, θ] and zero outside this interval. Using this representation, we get

ET1 =
∫

xfT1
(x)dx =

2n + 1

2(n + 1)
θ,

the bias:

b(T1) = ET1 − θ = − θ

2(n + 1)
,

ET 2
1 =

∫

x2fT1
(x)dx =

2n2 + 4n + 1

2(n + 1)(n + 2)
θ2,

V ar(T1) = ET 2
1 − (ET1)

2 =
n

4(n + 1)2(n + 2)
θ2,

MSE(T1) = V ar(T1) + [b(T1)]
2 =

θ2

2(n + 1)(n + 2)
.

For T2 moments and MSE are found directly:

ET2 =
2

3
EX̄ = θ,

V ar(T2) =
4

9n
V ar(Xi) =

θ2

27n
= MSE(T2).

a) We get from the Chebychev inequality

P (|Ti − θ| ≥ ε) ≤ E(Ti − θ)2

ε2
=

MSE(Ti)

ε2
→ 0, n → ∞, i = 1, 2,

which implies

Ti
P−→ θ, n → ∞, i = 1, 2,

i.e. both estimators are consistent.

b)

MSE(T1) = O
(

1

n2

)

, n → ∞,

MSE(T2) = O
(

1

n

)

, n → ∞,

therefore the first estimator is better when the sample size is large. If n is small, then

MSE(T1) > MSE(T2) for n ≤ 10 (T2 is better) and MSE(T1) < MSE(T2) for n > 10

(T1 is better).

2. Let X1, ..., Xn be a sample taken from a gamma distribution with parameters

(2, 1/θ) i.e. distribution with pdf

f(x; θ) = θ2xe−θx, x > 0, θ > 0.
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a) Prove that this family of distributions has a monotone likelihood ratio.

b) Suppose that n is large enough so that the Central Limit Theorem can be used.

For testing H0 : θ ≤ θ0 versus H1 : θ > θ0 find the acceptance region of the significance

level α a UMP (uniformly most powerful) test.

c) Find the (1−α) one-sided confidence interval that results from inverting the test

of part (b).

Solution. a) The likelihood function is

L(θ; X) = θ2ne−θ
∑

Xi

n
∏

i=1

Xi,

therefore, if θ′ < θ′′, then the ratio

L(θ′; X)

L(θ′′; X)
=

(

θ′

θ′′

)2n

e(θ′′
−θ′)

∑

Xi

is a monotone (increasing) function of T (X) =
∑

Xi.

b) Due to part (a) the UMP test has form

n
∑

i=1

Xi < c =⇒ H1

where c is determined from condition

Pθ0
(
∑

Xi < c) = α.

To find c let us use CLT. We have EXi = 2/θ, V ar(Xi) = 2/θ2 therefore

α = Pθ0
(
∑

Xi < c) = Pθ0

(

∑

Xi − 2n/θ0√
2n/θ0

<
c − 2n/θ0√

2n/θ0

)

≈ Φ

(

c − 2n/θ0√
2n/θ0

)

and

c =
2n + zα

√
2n

θ0
.

Thus the acceptance region has form

n
∑

i=1

Xi ≥
2n + zα

√
2n

θ0

or

X̄ ≥ 2 + zα

√
2/
√

n

θ0

.
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c) Inverting the test of part (b) we obtain the following (1−α) one-sided confidence

interval:
[

2

X̄
+

zα

√
2

X̄
√

n
,∞

)

.

3. A sample X1, ..., Xn is drawn from a beta distribution with parameters θ and

θ + 5 i. e. pdf of Xi is

f(x; θ) =
Γ(2θ + 5)

Γ(θ)Γ(θ + 5)
xθ−1(1 − x)θ+4, 0 < x < 1, θ > 0.

a) Find a one-dimensional sufficient statistic for θ.

b) Find MME (the method of moments estimator) of θ.

c) Show that MME differs from MLE (the maximum likelihood estimator) in the

considered case. (Do not try to find MLE! Just use your result of part (a)).

Solution. a) The likelihood function is

L(θ; X1, ..., Xn) =

[

Γ(2θ + 5)

Γ(θ)Γ(θ + 5)

]n [ n
∏

i=1

Xi(1 − Xi)

]θ−1 [ n
∏

i=1

(1 − Xi)

]5

.

Put

T (X1, ..., Xn) =
n
∏

i=1

Xi(1 − Xi),

g(T, θ) =

[

Γ(2θ + 5)

Γ(θ)Γ(θ + 5)

]n

[T (X1, ..., Xn)]θ−1,

and

h(X1, ..., Xn) =

[

n
∏

i=1

(1 − Xi)

]5

.

Then

L(θ; X1, ..., Xn) = g(T (X1, ..., Xn), θ)h(X1, ..., Xn)

and hence, due to the factorization theorem, T (X1, ..., Xn) is a (univariate) sufficient

statistic.

b)

µ1 = EXi =
θ

2θ + 5
or

θ =
5µ1

1 − 2µ1
,

therefore

θ̂MME =
5X̄

1 − 2X̄
.
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c) θ̂MLE must be a function of any sufficient statistic, including in particular the

sufficient statistic obtained in (a): T (X) =
∏n

i=1 Xi(1−Xi). But θ̂MME = 5X̄/(1−2X̄)

is not a function of T (X). Indeed, there exist two samples X (1) and X (2) such that

5X̄(1)

1 − 2X̄(1)
6= 5X̄(2)

1 − 2X̄(2)

but

T (X(1)) = T (X (2)).

For example,

X
(1)
1 = X

(1)
2 = ... = X (1)

n = 1/3

and

X
(2)
1 = X

(2)
2 = ... = X (2)

n = 2/3.

4. Let Y1, ..., Yn be observations. Consider the following two models:

Yi = tan(βxi) + εi (1)

(β is the parameter to be estimated, |β| ≤ 1, |xi| < π/2),

Yi = β0 + β2
1xi + εi (2)

(β0 and β1 are parameters to be estimated), where ε1, ..., εn are independent identically

distributed random variables having normal (0, σ2) distribution (σ2 is known).

a) Which of these two models is a generalized linear model and which is not? Why?

What is the link function of the generalized linear model?

b) Suppose that n is even: n = 2m, and x1 = ... = xm = x 6= 0, xm+1 = ... = xn =

−x. For model (1) find MLE (maximum likelihood estimator) of β.

Solution. a) Model (1) is a GLM, model (2) is not a GML (by definition). The

link function in model (1) is arctan(·).

b) We have

fYi
(y) =

1√
2πσ

exp

{

−y − tan(βxi)
2

2σ2

}

hence the likelihood function is

L(β; Y ) = (2π)−n/2σ−n exp
{

− 1

2σ2

∑

(Yi − tan(βxi))
2
}

and

∂ ln L

∂β
=

1

σ2

n
∑

i=1

(Yi−tan(βxi))
xi

cos2 βxi
=

x

σ2 cos2 βx



−
m
∑

i=1

Yi +
n
∑

i=m+1

Yi + 2m tan(βx)



 .
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Solving equation
∂ ln L

∂β
= 0

and taking into account that |β| ≤ 1 we obtain

β̂MLE(x) =















b = 1
x

arctan
[

1
n

(

∑m
i=1 Yi −

∑n
i=m+1 Yi

)]

if |b| ≤ 1,

1 if b > 1,

−1 if b < −1.

6


