LØSNINGSFORSLAG
EXAM IN TMA4295 STATISTICAL INFERENCE
Friday 19 May 2006
Time: 09:00-13:00

Oppgave 1

Suppose that X_{1}, \ldots, X_{n} are iid $\operatorname{Poisson}(\theta)$.
a) Find MLE of $(1+\theta) e^{-\theta}$.

Solution. MLE of θ is \bar{X}, therefore, due to the invariance principle

$$
T_{M L E}=(1+\bar{X}) e^{-\bar{X}}
$$

b) Find the best unbiased estimator of $(1+\theta) e^{-\theta}$.

Solution. $S=\sum_{i=1}^{n} X_{i}$ is a complete sufficient statistic. Set

$$
T= \begin{cases}1 & \text { if } X_{1}=0 \text { or } X_{1}=1 \\ 0 & \text { otherwise }\end{cases}
$$

T is an unbiased estimator of $(1+\theta) e^{-\theta}$ therefore $E(T \mid S)$ is the best unbiased. For any $m=0,1, \ldots$

$$
\begin{gathered}
E(T \mid S=m)=P(T=1 \mid S=m)=P\left(X_{1}=0 \mid S=m\right)+P\left(X_{1}=1 \mid S=m\right)= \\
=\frac{P\left(X_{1}=0, S=m\right)}{P(S=m)}+\frac{P\left(X_{1}=1, S=m\right)}{P(S=m)}=\frac{P\left(X_{1}=0, \sum_{2}^{n} X_{i}=m\right)}{P(S=m)}+ \\
+\frac{P\left(X_{1}=0, \sum_{2}^{n} X_{i}=m-1\right)}{P(S=m)}=\left(\frac{n-1}{n}\right)^{m}\left(1+\frac{m}{n-1}\right) .
\end{gathered}
$$

Thus

$$
T_{B U E}=\left(\frac{n-1}{n}\right)^{S}\left(1+\frac{S}{n-1}\right) .
$$

c) Using a comparison of these two estimators show that MLE is biased. (Hint: note that both estimators are functions of a complete sufficient statistic.)

Solution. It follows from the Rao-Blackwell theorem and the uniqueness of the best unbiased estimator that for any function of the parameter there can be only one unbiased estimator which is a function of a complete sufficient statistic (If S is a complete sufficient statistic, and $T_{1}=f_{1}(S), T_{2}=f_{2}(S), E T_{1}=\tau(\theta), E T_{2}=\tau(\theta)$, then $0=E\left(T_{1}-T_{2}\right)=$ $E\left(f_{1}(S)-f_{2}(S)\right)$ and therefore $f_{1}(S)=f_{2}(S)$ a.s.). Both $T_{M L E}$ and $T_{B U E}$ are functions of $S=\sum_{i=1}^{n} X_{i}$, a complete sufficient statistic. It is easy to see that the two estimator do not coincide, therefore, since $T_{B U E}$ is unbiased, $T_{M L E}$ is biased.

Oppgave 2

Let X_{1}, \ldots, X_{n} be iid from a distribution with pmf

$$
\left(\frac{\theta}{2}\right)^{|x|}(1-\theta)^{1-|x|}, \quad x=-1,0,1, \quad 0<\theta<1
$$

Suppose that n is large enough so that the Central Limit Theorem can be used.
a) For testing $H_{0}: \theta \leq \theta_{0}$ versus $H_{1}: \theta>\theta_{0}$ find an (approximate) level α UMP test.

Solution. The likelihood function is

$$
L(\theta ; X)=\left(\frac{\theta}{2}\right)^{\sum\left|X_{i}\right|}(1-\theta)^{n-\sum\left|X_{i}\right|}
$$

therefore, if $\theta^{\prime}<\theta^{\prime \prime}$, then the ratio

$$
\frac{L\left(\theta^{\prime} ; X\right)}{L\left(\theta^{\prime \prime} ; X\right)}=\left(\frac{1-\theta^{\prime}}{1-\theta^{\prime \prime}}\right)^{n}\left[\frac{\theta^{\prime}\left(1-\theta^{\prime \prime}\right)}{\theta^{\prime \prime}\left(1-\theta^{\prime}\right)}\right]^{\sum\left|X_{i}\right|}
$$

is a monotone (decreasing) function of $T(X)=\sum\left|X_{i}\right|$. Therefore the UMP test has form

$$
\sum_{i=1}^{n}\left|X_{i}\right|>c \Longrightarrow H_{1}
$$

where c is determined from condition

$$
P_{\theta_{0}}\left(\sum\left|X_{i}\right|>c\right)=\alpha
$$

To find c let us use CLT. We have $E\left|X_{i}\right|=\theta, \operatorname{Var}\left(\left|X_{i}\right|\right)=\theta(1-\theta)$ therefore

$$
\alpha=P_{\theta_{0}}\left(\sum\left|X_{i}\right|>c\right)=P_{\theta_{0}}\left(\frac{\sum\left|X_{i}\right|-n \theta_{0}}{\sqrt{n \theta_{0}\left(1-\theta_{0}\right)}}>\frac{c-n \theta_{0}}{\sqrt{n \theta_{0}\left(1-\theta_{0}\right)}}\right) \approx
$$

$$
\approx 1-\Phi\left(\frac{c-n \theta_{0}}{\sqrt{n \theta_{0}\left(1-\theta_{0}\right)}}\right)
$$

and

$$
c=n \theta_{0}+\sqrt{n \theta_{0}\left(1-\theta_{0}\right)} z_{1-\alpha} .
$$

b) For the specific case $\theta_{0}=1 / 3, \alpha=0.05$ determine the sample size n for which the probability of the Type II error for $\theta=2 / 3$ is no greater than 0.0001 .
5 Solution. The power function is

$$
\begin{gathered}
\pi(\theta)=P_{\theta}\left(\sum\left|X_{i}\right|>c\right)= \\
=P_{\theta}\left(\frac{\sum\left|X_{i}\right|-n \theta}{\sqrt{n \theta(1-\theta)}}>\frac{n\left(\theta_{0}-\theta\right)+\sqrt{n \theta_{0}\left(1-\theta_{0}\right)} z_{1-\alpha}}{\sqrt{n \theta(1-\theta)}}\right) \approx \\
\approx 1-\Phi\left(\frac{\sqrt{n}\left(\theta_{0}-\theta\right)+\sqrt{\theta_{0}\left(1-\theta_{0}\right)} z_{1-\alpha}}{\sqrt{\theta(1-\theta)}}\right),
\end{gathered}
$$

therefore condition $1-\pi(1 / 3)<0.0001$ is equivalent to

$$
n>55 .
$$

c) Prove that there does not exist a level α UMP test of $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta \neq \theta_{0}$, $0<\alpha<1$.
Solution. Suppose it exists. Denote C its critical region. Consider two values θ_{1} and θ_{2} such that $\theta_{1}<\theta_{0}<\theta_{2}$. Then

$$
P_{\theta_{0}}(X \in C)=\alpha
$$

and

$$
P_{\theta_{1}}(X \in C) \geq P_{\theta_{1}}\left(X \in C^{\prime}\right), \quad P_{\theta_{2}}(X \in C) \geq P_{\theta_{2}}\left(X \in C^{\prime}\right)
$$

for any C^{\prime} such that

$$
P_{\theta_{0}}\left(X \in C^{\prime}\right) \leq \alpha
$$

i.e. C is the most powerful level α test for both problems (a) $H_{0}: \theta=\theta_{0}, H_{1}: \theta=\theta_{1}$ and (b) $H_{0}: \theta=\theta_{0}, H_{1}: \theta=\theta_{2}$. Due to the Neyman-Pearson Lemma, this means that C is NPT (Neyman-Pearson test) for problem (a) and for problem (b). But NPT for (a) has form $\bar{X}<t^{\prime} \Rightarrow H_{1}$ while for (b) it has form $\bar{X}>t^{\prime \prime} \Rightarrow H_{1}$. Contradiction.

Oppgave 3

Let X be one observation from a distribution with $\operatorname{pdf} \theta x^{\theta-1}, 0<x<1, \theta>0$.
a) Prove that X^{θ} is a pivotal quantity. Find its distribution.

Solution. X^{θ} has the uniform $(0,1)$ distribution (this is found either directly or using theory - distribtions of functions of random variables).
b) Using this pivot construct a ($1-\alpha$) confidence interval for $\theta, 0<\alpha<1$.

Solution. Let $\alpha_{1}+\alpha_{2}=\alpha,\left(\alpha_{1}>0, \alpha_{2}>0\right)$. Then

$$
\alpha=P\left(\alpha_{1} \leq X^{\theta} \leq 1-\alpha_{2}\right)=P\left(\frac{\ln \left(1 /\left(1-\alpha_{2}\right)\right)}{\ln (1 / X)} \leq \theta \leq \frac{\ln \left(1 / \alpha_{1}\right)}{\ln (1 / X)}\right)
$$

therefore each interval

$$
\left[\frac{\ln \left(1 /\left(1-\alpha_{2}\right)\right)}{\ln (1 / X)}, \frac{\ln \left(1 / \alpha_{1}\right)}{\ln (1 / X)}\right]
$$

is a $(1-\alpha)$ confidence interval for θ.

