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Problem 1

A statistical distribution often used to model income is the Pareto distribution. The associated
probability density function (pdf) is given as,

f(x|θ) =





1
θ
c

1
θ x−(1+ 1

θ
) for x > c ,

0 for x ≤ c ,

where θ is an unknown parameter and c > 0 is a known constant.

If the random variable X has the pdf f(x|θ) given above, then it can be shown that,

Eθ[X
k] =





ck

1−kθ
for k < 1

θ
,

∞ for k ≥ 1
θ
,

Let X1, . . . , Xn be a random sample from the given Pareto distribution.
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a) Determine the method of moments estimator (MME) Θ∗ of θ based on the random sample
X1, . . . , Xn.
Prove that Θ∗ is consistent for a suitable condition on θ.
SOLUTION:
Since µ1 = E[X] = c

1−θ
(for θ < 1), and m1 = 1

n

∑n
i=1 xi = x is the empirical mean from

a realization x1, . . . , xn of the random sample, the equation to �nd the MME will be

m1 =
c

1− θ∗
, that is , θ∗ = 1− c

x

This gives the MME
Θ∗ = 1− c

X

By the WLLN (weak law of large numbers), if µ2 = E[X2] < ∞, that is θ < 1/2, then
X

P−→
n→∞

µ1 = c
1−θ

. The function g(x) = 1 − c
x
is continuous on (0,∞). Then X

P−→
n→∞

µ1

implies that Θ∗ = g(X)
P−→

n→∞
g(µ1) = 1− c

µ1
= 1− c

c/(1−θ)
= θ. Hence, Θ∗ is consistent if

θ < 1/2. (Actually, the WLLN is true here if E[X] < ∞, that is, if θ < 1.)

b) Establish the approximate distribution for Θ∗ for large values of n.
For which values of θ is the approximation valid?
SOLUTION:
By the CLT (central limit theorem), √n

(
X − µ1

) d−→
n→∞

N(0, σ2) (convergence in distrib-
ution) if Var[Xi] = σ2 < ∞, that is θ < 1/2. Invoking the (�rst-order) Delta Method for
the function g(x) = 1− c

x
, if g′(µ1) exists and is non-zero, it is obtained that

√
n
(
g(X)− g(µ1)

) d−→
n→∞

N(0, σ2 g′(µ1)
2) ,

that is, √
n
(
Θ∗ − θ

) d−→
n→∞

N(0, σ2 g′(µ1)
2) ,

The function g is di�erentiable on (0,∞), and g′(x) = c
x2 . This gives g′(µ1) = c

µ2
1

=

c
c2/(1−θ)2

= (1−θ)2

c
> 0 for θ < 1.

σ2 = µ2 − µ2
1 =

c2

1− 2θ
− c2

(1− θ)2
=

c2θ2

(1− 2θ)(1− θ)2
,

which leads to
σ2 g′(µ1)

2 =
θ2(1− θ)2

(1− 2θ)
.
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Hence, for large values of n,

Θ∗ ≈ Yn ∼ N
(
θ,

θ2(1− θ)2

n(1− 2θ)

)
,

which is guaranteed if θ < 1/2.

c) Assume that X ∼ f(x|θ), and de�ne
U = ln X − ln c .

Show that U is exponentially distributed with pdf

fU(u|θ) =





1
θ
e−

u
θ for u > 0 ,

0 for u ≤ 0 ,

Use this result, or possibly some other way, to derive Cramér-Rao's lower bound on the
variance of unbiased estimators of θ. You do not need to verify the conditions for the
validity of the Cramér-Rao theorem (interchange of expectation and derivation).
SOLUTION:
For u > 0, that is x > c,

fU(u|θ) = f(ceu|θ)|dceu/du| = f(ceu|θ)ceu =
1

θ
c

1
θ (ceu)−(1+ 1

θ
)ceu =

1

θ
e−

u
θ , (u > 0) .

For u ≤ 0, that is, x ≤ c, clearly, fU(u|θ) = 0.
Due to the one-to-one character of the mapping X → U , any unbiased estimator T (X)
(X = (X1, . . . , Xn)) is equivalent with an unbiased estimator W (U). Hence,

Var[T (X)] = Var[W (U)] ≥ 1

nI0(θ)
,

where the Fisher information I0(θ) is given as,

I0(θ) = Eθ

[( ∂

∂θ
ln fU(U |θ)

)2]
,

Now, ( ∂

∂θ
ln fU(U |θ)

)2

=
(
− 1

θ
+

U

θ2

)2

=
1

θ2
− 2

θ3
U +

1

θ4
U2 ,

which gives,

I0(θ) = Eθ

[( ∂

∂θ
ln fU(U |θ)

)2]
=

1

θ2

(
1− 2

θ
θ +

1

θ2
2θ2

)
=

1

θ2
.

Hence,
Var[T (X)] = Var[W (U)] ≥ θ2

n
.
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d) Show that the maximum likelihood estimator Θ̂ of θ based on the random sample
X1, . . . , Xn is given by

Θ̂ =
1

n

n∑
i=1

ln Xi − ln c .

Is Θ̂ an UMVUE (uniform minimum variance unbiased estimator)?
SOLUTION:
We may calculate the MLE using the random sample U1, . . . , Un. For a realization
u1, . . . , un, the loglikelihood function l(θ|u1, . . . , un) becomes,

l(θ|u1, . . . , un) = −n ln θ − 1

θ

n∑
i=1

ui .

dl(θ|u1, . . . , un)/dθ = −n

θ
+

1

θ2

n∑
i=1

ui = 0 =⇒ θ̂ =
1

n

n∑
i=1

ui.

Hence, the MLE Θ̂ of θ is given as,

Θ̂ =
1

n

n∑
i=1

Ui =
1

n

n∑
i=1

ln Xi − ln c.

It is found that
E[Θ̂] =

1

n

n∑
i=1

E[Ui] =
1

n

n∑
i=1

θ = θ ,

so that Θ̂ is an unbiased estimator of θ. Also,

Var[Θ̂] =
1

n2

n∑
i=1

Var[Ui] =
1

n2

n∑
i=1

θ2 =
θ2

n
.

Comparing with the result from c), it follows that Θ̂ is an e�cient estimator of θ. Hence,
we may conclude that Θ̂ is UMVUE.

e) Derive an exact 1 − α con�dence interval for θ based on the observations x1, . . . , xn of
the random sample X1, . . . , Xn. (Hint: Find the pdf of 2U/θ.) If you are unable derive
the exact con�dence interval, you will get half credit for an approximate 1−α con�dence
interval.
SOLUTION:
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The RV V = 2U/θ has the pdf fV (v) = 1
2
e−

v
2 (v > 0), which shows that V a χ2 variable

with 2 degrees of freedom. By the addition theorem for independent χ2 variables,

2nΘ̂

θ
=

n∑
i=1

Vi

becomes a χ2 variable with 2n degrees of freedom χ2
2n. Therefore (Prob(χ2

2n ≤ χ2
2n,γ) =

1− γ),

Prob
(
χ2

2n,1−α
2
≤ 2nΘ̂

θ
≤ χ2

2n, α
2

)
= 1− α ,

which can be written as,

Prob
( 2nΘ̂

χ2
2n, α

2

≤ θ ≤ 2nΘ̂

χ2
2n,1−α

2

)
= 1− α .

This leads to the following exact 1 − α con�dence interval for θ based on a realization
x1, . . . , xn of the random sample X1, . . . , Xn:

[2
∑n

i=1 ln xi − 2n ln c

χ2
2n, α

2

,
2
∑n

i=1 ln xi − 2n ln c

χ2
2n,1−α

2

]
.

An approximate con�dence interval can be derived from the asymptotic result that
(CLT), √

n
(
Θ̂− θ

)

θ

d−→
n→∞

N(0, 1) .

Hence, for large n,

Prob
(
− zα

2
≤
√

n
(
Θ̂− θ

)

θ
≤ zα

2

)
≈ 1− α ,

that is,

Prob
( Θ̂

1− zα
2
/
√

n
≤ θ ≤ Θ̂

1 + zα
2
/
√

n

)
≈ 1− α ,

This leads to the following approximate 1− α con�dence interval for θ based on a real-
ization x1, . . . , xn of the random sample X1, . . . , Xn for large n:

[ 1
n

∑n
i=1 ln xi − ln c

1− zα
2
/
√

n
,

1
n

∑n
i=1 ln xi − ln c

1 + zα
2
/
√

n

]
.
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Problem 2

a) Let X1, . . . , Xn be a random sample from a pdf f(x|θθθ) that belongs to an exponential
family given by

f(x|θθθ) = h(x)c(θθθ) exp

(
k∑

i=1

wi(θθθ)ti(x)

)
,

where θθθ = (θ1, . . . , θd), d ≤ k.
By using the Factorization Theorem, prove that

T (X) =
( n∑

j=1

t1(Xj), . . . ,
n∑

j=1

tk(Xj)
)

is a su�cient statistic for θθθ.
SOLUTION:
The sample joint pdf is given as

f(x|θθθ) =
n∏

j=1

f(xj|θθθ) =
n∏

j=1

h(xj)c(θθθ) exp

(
k∑

i=1

wi(θθθ)ti(xj)

)
,

=
( n∏

j=1

h(xj)
)
(c(θθθ))n exp

(
w1(θθθ)

n∑
j=1

t1(xj) + . . . + wk(θθθ)
n∑

j=1

tk(xj)

)
,

= (c(θθθ))n exp (w1(θθθ)T1(x) + . . . + wk(θθθ)Tk(x))
( n∏

j=1

h(xj)
)
,

= (c(θθθ))n exp
(
w(θθθ)T (x)>

)
h̃(x) ,

where Ti(x) =
∑n

j=1 ti(xj) for i = 1, . . . , k, w(θθθ) = (w1(θθθ), . . . , wk(θθθ)), T (x) = (T1(x), . . . , Tk(x))

and h̃(x) =
∏n

j=1 h(xj).
Hence, it is clear that f(x|θθθ) = g̃(T (x), θθθ) h̃(x) for suitable functions g̃ and h̃. By the
factorization theorem it now follows that T (X) = (T1(X), . . . , Tk(X)) is then a su�cient
statistic for θθθ.

b) Show that the inverse Gaussian pdf

f(x|µ, λ) =





(
λ

2πx3

)1/2
exp

(
− λ(x−µ)2

2µ2x

)
for x > 0 ,

0 for x ≤ 0 ,
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where µ and λ are positive constants, belongs to an exponential family. Use the result
from point a) to �nd a su�cient statistic for θθθ = (µ, λ).
SOLUTION:
For x > 0,

f(x|µ, λ) = x−3/2

(
λ

2π

)1/2

exp

(
− λ

2µ2
x +

λ

µ
− λ

2x

)

= x−3/2

(
λ

2π

)1/2

exp

(
λ

µ

)
exp

(
− λ

2µ2
x− λ

2x

)
,

which is seen to belong to an exponential family with k = 2, θθθ = (µ, λ), h(x) = x−3/2,
c(θθθ) =

(
λ
2π

)1/2
exp

(
λ
µ

)
, w1(θθθ) = − λ

2µ2 , w2(θθθ) = −λ
2
, t1(x) = x and t2(x) = 1/x.

According to point a), a su�cient statistic for θθθ = (µ, λ) is then

T (X) =
( n∑

j=1

Xj,

n∑
j=1

1/Xj

)

c) Show that the maximum likelihood estimators of the parameters µ and λ in b) are

M̂ = X =
1

n

n∑
j=1

Xj ,

and
Λ̂ =

n∑n
j=1

(
1

Xj
− 1

X

) .

SOLUTION:
For a realization x1, . . . , xn of the random sample, the likelihood function becomes,

L(µ, λ|x1, . . . , xn) =
n∏

i=1

x
−3/2
i (2π)−n/2λn/2 exp

(
nλ

µ

)
exp

(
− λ

2µ2

n∑
i=1

xi − λ

2

n∑
i=1

1/xi

)
,

A (reduced) log-likelihood function is then,

l(µ, λ|x1, . . . , xn) =
n

2
ln λ +

nλ

µ
− λ

2µ2

n∑
i=1

xi − λ

2

n∑
i=1

1/xi .

dl(µ, λ|x1, . . . , xn)

dµ
= −nλ

µ2
+

λ

µ3

n∑
i=1

xi = 0 ,
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gives the point estimate

µ̂ =
1

n

n∑
i=1

xi = x .

dl(µ, λ|x1, . . . , xn)

dλ
=

n

2λ
+

n

µ
− 1

2µ2

n∑
i=1

xi − 1

2

n∑
i=1

1/xi = 0 ,

Substituting the point estimate µ̂ = x for µ, provides the following equation to determine
the point estimate λ̂,

n

2λ̂
+

n

2x
− 1

2

n∑
i=1

1/xi = 0 ,

which leads to the result,

λ̂ =
1

1
n

∑n
i=1

1
xi
− 1

x

=
n∑n

j=1

(
1
xj
− 1

x

) .

Hence, it follows that the MLE will be given as,

M̂ = X .

and
Λ̂ =

n∑n
j=1

(
1

Xj
− 1

X

) .

d) Prove that a one-to-one function of a su�cient statistic is a su�cient statistic. Use
this property together with the result from b) to show that T ∗(X) =

(
M̂, Λ̂

)
is also a

su�cient statistic for (µ, λ).
SOLUTION:
Assume that T (X) is a su�cient statistic, and de�ne T ∗(x) = r

(
T (x)

)
for all x, where

r is a one-to-one function with inverse r−1. By the factorization theorem there exist
functions g and h such that

f(x|θθθ) = g(T (x), θθθ) h(x) = g(r−1
(
T ∗(x)

)
, θθθ) h(x) = g∗(T ∗(x), θθθ) h(x) ,

where g∗(t, θθθ) = g
(
r−1(t), θθθ

)
. Again, by the factorization theorem, it follows that T ∗(X)

is a su�cient statistic for θθθ.

T (X) =
( ∑n

j=1 Xj,
∑n

j=1 1/Xj

)
is su�cient by b). Obviously T1(X) =

(
1
n

∑n
j=1 Xj,

1
n

∑n
j=1 1/Xj

)
=

(
X, 1

n

∑n
j=1 1/Xj

)
is obtained from T (X) by a one-to-one mapping.

Then, de�ne T2(X) =
(
X, 1

n

∑n
j=1 1/Xj − 1

X

)
= r1

(
T1(X)

)
. Assume that r1(x, y) =
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r1(u, v), which gives x = u and y−1/x = v−1/u = v−1/x, and therefore y = v. Hence,
r1 is a one-to-one mapping. Finally, de�ne T3(X) = r2

(
T2(X)

)
, where r2(x, y) = (x, 1/y).

Clearly, r2 is a one-to-one mapping. It is seen that T3(X) =
(
M̂, Λ̂

)
. Since T3(X) is

obtained by a sequence of one-to-one mappings of T (X), which is then also one-to-one,
T3(X) is therefore also su�cient.

e) Use Jensen's inequality, or any other suitable method, to verify that the estimator Λ̂ in c)
is positive and �nite (a.s.). That is, verify that 1

n

∑n
j=1

(
1

Xj
− 1

X

)
> 0, or, 1

n

∑n
j=1

1
Xj

> 1
X
.

Jensen's inequality: If g(·) is a strictly convex function on the value range of a non-
constant random variable Y , 0 < E[|Y |] < ∞, then E[g(Y )] > g(E[Y ]). (Note: g(x) =
1/x is a strictly convex function on (0,∞).)
SOLUTION:
We need to prove that 1

n

∑n
j=1

1
xj

> 1
x
for any realization x1, . . . , xn of the random sample.

De�ne the discrete random variable Y with values x1, . . . , xn by Prob(Y = xj) = 1/n,
j = 1, . . . , n. Y > 0 and non-constant (a.s.). Since g(x) = 1/x is a strictly convex
function on (0,∞), it follows from the Jensen inequality above that

E
[ 1

Y

]
=

n∑
j=1

1

xj

1

n
>

1

E[Y ]
=

1∑n
j=1 xj

1
n

(a.s.) ,

which is exactly what we needed to prove.
An alternative proof by Cauchy-Schwartz inequality:

n2 =
( n∑

j=1

1√
xj

√
xj

)2

≤ ( n∑
j=1

1

xj

)( n∑
j=1

xj

)
,

which is seen to give the desired result if the inequality is strict. Equality can only
occur if xi = c/xi for every i = 1, . . . , n, for some constant c > 0, that is, xi =

√
c for

i = 1, . . . , n. But this is impossible (a.s.), so the inequality is strict.


