English

Contact during exam:
Arvid Naess

SOLUTIONS EXAM IN COURSE TMA4295 STATISTICAL INFERENCE

May 26, 2009
Time: 09:00-13:00
Permitted aids: Tabeller og formler i statistikk, Tapir Forlag
K. Rottmann: Matematisk formelsamling

Calculator HP30S / CITIZEN SR-270X
Yellow, stamped A5-sheet with your own handwritten notes.
Examination results are due: June 16, 2009

Problem 1

A statistical distribution often used to model income is the Pareto distribution. The associated probability density function (pdf) is given as,

$$
f(x \mid \theta)= \begin{cases}\frac{1}{\theta} c^{\frac{1}{\theta}} x^{-\left(1+\frac{1}{\theta}\right)} & \text { for } x>c \\ 0 & \text { for } x \leq c\end{cases}
$$

where θ is an unknown parameter and $c>0$ is a known constant.
If the random variable X has the pdf $f(x \mid \theta)$ given above, then it can be shown that,

$$
\mathrm{E}_{\theta}\left[X^{k}\right]= \begin{cases}\frac{c^{k}}{1-k \theta} & \text { for } k<\frac{1}{\theta} \\ \infty & \text { for } k \geq \frac{1}{\theta}\end{cases}
$$

Let X_{1}, \ldots, X_{n} be a random sample from the given Pareto distribution.
a) Determine the method of moments estimator (MME) Θ^{*} of θ based on the random sample X_{1}, \ldots, X_{n}.

Prove that Θ^{*} is consistent for a suitable condition on θ.

SOLUTION:

Since $\mu_{1}=\mathrm{E}[X]=\frac{c}{1-\theta}($ for $\theta<1)$, and $m_{1}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\bar{x}$ is the empirical mean from a realization x_{1}, \ldots, x_{n} of the random sample, the equation to find the MME will be

$$
m_{1}=\frac{c}{1-\theta^{*}}, \text { that is, } \theta^{*}=1-\frac{c}{\bar{x}}
$$

This gives the MME

$$
\Theta^{*}=1-\frac{c}{\bar{X}}
$$

By the WLLN (weak law of large numbers), if $\mu_{2}=\mathrm{E}\left[X^{2}\right]<\infty$, that is $\theta<1 / 2$, then $\bar{X} \xrightarrow[n \rightarrow \infty]{P} \mu_{1}=\frac{c}{1-\theta}$. The function $g(x)=1-\frac{c}{x}$ is continuous on $(0, \infty)$. Then $\bar{X} \xrightarrow[n \rightarrow \infty]{P} \mu_{1}$ implies that $\Theta^{*}=g(\bar{X}) \xrightarrow[n \rightarrow \infty]{P} g\left(\mu_{1}\right)=1-\frac{c}{\mu_{1}}=1-\frac{c}{c /(1-\theta)}=\theta$. Hence, Θ^{*} is consistent if $\theta<1 / 2$. (Actually, the WLLN is true here if $\mathrm{E}[X]<\infty$, that is, if $\theta<1$.)
b) Establish the approximate distribution for Θ^{*} for large values of n.

For which values of θ is the approximation valid?
SOLUTION:
By the CLT (central limit theorem), $\sqrt{n}\left(\bar{X}-\mu_{1}\right) \xrightarrow[n \rightarrow \infty]{\stackrel{d}{\longrightarrow}} N\left(0, \sigma^{2}\right)$ (convergence in distribution) if $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}<\infty$, that is $\theta<1 / 2$. Invoking the (first-order) Delta Method for the function $g(x)=1-\frac{c}{x}$, if $g^{\prime}\left(\mu_{1}\right)$ exists and is non-zero, it is obtained that

$$
\sqrt{n}\left(g(\bar{X})-g\left(\mu_{1}\right)\right) \underset{n \rightarrow \infty}{\stackrel{d}{\longrightarrow}} N\left(0, \sigma^{2} g^{\prime}\left(\mu_{1}\right)^{2}\right),
$$

that is,

$$
\sqrt{n}\left(\Theta^{*}-\theta\right) \underset{n \rightarrow \infty}{\stackrel{d}{\longrightarrow}} N\left(0, \sigma^{2} g^{\prime}\left(\mu_{1}\right)^{2}\right),
$$

The function g is differentiable on $(0, \infty)$, and $g^{\prime}(x)=\frac{c}{x^{2}}$. This gives $g^{\prime}\left(\mu_{1}\right)=\frac{c}{\mu_{1}^{2}}=$ $\frac{c}{c^{2} /(1-\theta)^{2}}=\frac{(1-\theta)^{2}}{c}>0$ for $\theta<1$.

$$
\sigma^{2}=\mu_{2}-\mu_{1}^{2}=\frac{c^{2}}{1-2 \theta}-\frac{c^{2}}{(1-\theta)^{2}}=\frac{c^{2} \theta^{2}}{(1-2 \theta)(1-\theta)^{2}}
$$

which leads to

$$
\sigma^{2} g^{\prime}\left(\mu_{1}\right)^{2}=\frac{\theta^{2}(1-\theta)^{2}}{(1-2 \theta)}
$$

Hence, for large values of n,

$$
\Theta^{*} \approx Y_{n} \sim N\left(\theta, \frac{\theta^{2}(1-\theta)^{2}}{n(1-2 \theta)}\right)
$$

which is guaranteed if $\theta<1 / 2$.
c) Assume that $X \sim f(x \mid \theta)$, and define

$$
U=\ln X-\ln c
$$

Show that U is exponentially distributed with pdf

$$
f_{U}(u \mid \theta)= \begin{cases}\frac{1}{\theta} e^{-\frac{u}{\theta}} & \text { for } u>0 \\ 0 & \text { for } u \leq 0\end{cases}
$$

Use this result, or possibly some other way, to derive Cramér-Rao's lower bound on the variance of unbiased estimators of θ. You do not need to verify the conditions for the validity of the Cramér-Rao theorem (interchange of expectation and derivation).

SOLUTION:

For $u>0$, that is $x>c$,

$$
f_{U}(u \mid \theta)=f\left(c e^{u} \mid \theta\right)\left|d c e^{u} / d u\right|=f\left(c e^{u} \mid \theta\right) c e^{u}=\frac{1}{\theta} c^{\frac{1}{\theta}}\left(c e^{u}\right)^{-\left(1+\frac{1}{\theta}\right)} c e^{u}=\frac{1}{\theta} e^{-\frac{u}{\theta}},(u>0) .
$$

For $u \leq 0$, that is, $x \leq c$, clearly, $f_{U}(u \mid \theta)=0$.
Due to the one-to-one character of the mapping $X \rightarrow U$, any unbiased estimator $T(\mathbf{X})$ $\left(\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)\right)$ is equivalent with an unbiased estimator $W(\mathbf{U})$. Hence,

$$
\operatorname{Var}[T(\mathbf{X})]=\operatorname{Var}[W(\mathbf{U})] \geq \frac{1}{n I_{0}(\theta)}
$$

where the Fisher information $I_{0}(\theta)$ is given as,

$$
I_{0}(\theta)=\mathrm{E}_{\theta}\left[\left(\frac{\partial}{\partial \theta} \ln f_{U}(U \mid \theta)\right)^{2}\right]
$$

Now,

$$
\left(\frac{\partial}{\partial \theta} \ln f_{U}(U \mid \theta)\right)^{2}=\left(-\frac{1}{\theta}+\frac{U}{\theta^{2}}\right)^{2}=\frac{1}{\theta^{2}}-\frac{2}{\theta^{3}} U+\frac{1}{\theta^{4}} U^{2},
$$

which gives,

$$
I_{0}(\theta)=\mathrm{E}_{\theta}\left[\left(\frac{\partial}{\partial \theta} \ln f_{U}(U \mid \theta)\right)^{2}\right]=\frac{1}{\theta^{2}}\left(1-\frac{2}{\theta} \theta+\frac{1}{\theta^{2}} 2 \theta^{2}\right)=\frac{1}{\theta^{2}}
$$

Hence,

$$
\operatorname{Var}[T(\mathbf{X})]=\operatorname{Var}[W(\mathbf{U})] \geq \frac{\theta^{2}}{n}
$$

d) Show that the maximum likelihood estimator $\hat{\Theta}$ of θ based on the random sample X_{1}, \ldots, X_{n} is given by

$$
\hat{\Theta}=\frac{1}{n} \sum_{i=1}^{n} \ln X_{i}-\ln c .
$$

Is $\hat{\Theta}$ an UMVUE (uniform minimum variance unbiased estimator)?
SOLUTION:
We may calculate the MLE using the random sample U_{1}, \ldots, U_{n}. For a realization u_{1}, \ldots, u_{n}, the loglikelihood function $l\left(\theta \mid u_{1}, \ldots, u_{n}\right)$ becomes,

$$
\begin{gathered}
l\left(\theta \mid u_{1}, \ldots, u_{n}\right)=-n \ln \theta-\frac{1}{\theta} \sum_{i=1}^{n} u_{i} . \\
d l\left(\theta \mid u_{1}, \ldots, u_{n}\right) / d \theta=-\frac{n}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{n} u_{i}=0 \Longrightarrow \hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} u_{i} .
\end{gathered}
$$

Hence, the MLE $\hat{\Theta}$ of θ is given as,

$$
\hat{\Theta}=\frac{1}{n} \sum_{i=1}^{n} U_{i}=\frac{1}{n} \sum_{i=1}^{n} \ln X_{i}-\ln c .
$$

It is found that

$$
\mathrm{E}[\hat{\Theta}]=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left[U_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \theta=\theta
$$

so that $\hat{\Theta}$ is an unbiased estimator of θ. Also,

$$
\operatorname{Var}[\hat{\Theta}]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[U_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \theta^{2}=\frac{\theta^{2}}{n}
$$

Comparing with the result from c), it follows that $\hat{\Theta}$ is an efficient estimator of θ. Hence, we may conclude that $\hat{\Theta}$ is UMVUE.
e) Derive an exact $1-\alpha$ confidence interval for θ based on the observations x_{1}, \ldots, x_{n} of the random sample X_{1}, \ldots, X_{n}. (Hint: Find the pdf of $2 U / \theta$.) If you are unable derive the exact confidence interval, you will get half credit for an approximate $1-\alpha$ confidence interval.

SOLUTION:

The RV $V=2 U / \theta$ has the pdf $f_{V}(v)=\frac{1}{2} e^{-\frac{v}{2}}(v>0)$, which shows that V a χ^{2} variable with 2 degrees of freedom. By the addition theorem for independent χ^{2} variables,

$$
\frac{2 n \hat{\Theta}}{\theta}=\sum_{i=1}^{n} V_{i}
$$

becomes a χ^{2} variable with $2 n$ degrees of freedom $\chi_{2 n}^{2}$. Therefore $\left(\operatorname{Prob}\left(\chi_{2 n}^{2} \leq \chi_{2 n, \gamma}^{2}\right)=\right.$ $1-\gamma$),

$$
\operatorname{Prob}\left(\chi_{2 n, 1-\frac{\alpha}{2}}^{2} \leq \frac{2 n \hat{\Theta}}{\theta} \leq \chi_{2 n, \frac{\alpha}{2}}^{2}\right)=1-\alpha
$$

which can be written as,

$$
\operatorname{Prob}\left(\frac{2 n \hat{\Theta}}{\chi_{2 n, \frac{\alpha}{2}}^{2}} \leq \theta \leq \frac{2 n \hat{\Theta}}{\chi_{2 n, 1-\frac{\alpha}{2}}^{2}}\right)=1-\alpha
$$

This leads to the following exact $1-\alpha$ confidence interval for θ based on a realization x_{1}, \ldots, x_{n} of the random sample X_{1}, \ldots, X_{n} :

$$
\left[\frac{2 \sum_{i=1}^{n} \ln x_{i}-2 n \ln c}{\chi_{2 n, \frac{\alpha}{2}}^{2}}, \frac{2 \sum_{i=1}^{n} \ln x_{i}-2 n \ln c}{\chi_{2 n, 1-\frac{\alpha}{2}}^{2}}\right]
$$

An approximate confidence interval can be derived from the asymptotic result that (CLT),

$$
\frac{\sqrt{n}(\hat{\Theta}-\theta)}{\theta} \underset{n \rightarrow \infty}{d} N(0,1) .
$$

Hence, for large n,

$$
\operatorname{Prob}\left(-z_{\frac{\alpha}{2}} \leq \frac{\sqrt{n}(\hat{\Theta}-\theta)}{\theta} \leq z_{\frac{\alpha}{2}}\right) \approx 1-\alpha
$$

that is,

$$
\operatorname{Prob}\left(\frac{\hat{\Theta}}{1-z_{\frac{\alpha}{2}} / \sqrt{n}} \leq \theta \leq \frac{\hat{\Theta}}{1+z_{\frac{\alpha}{2}} / \sqrt{n}}\right) \approx 1-\alpha
$$

This leads to the following approximate $1-\alpha$ confidence interval for θ based on a realization x_{1}, \ldots, x_{n} of the random sample X_{1}, \ldots, X_{n} for large n :

$$
\left[\frac{\frac{1}{n} \sum_{i=1}^{n} \ln x_{i}-\ln c}{1-z_{\frac{\alpha}{2}} / \sqrt{n}}, \frac{\frac{1}{n} \sum_{i=1}^{n} \ln x_{i}-\ln c}{1+z_{\frac{\alpha}{2}} / \sqrt{n}}\right] .
$$

Problem 2

a) Let X_{1}, \ldots, X_{n} be a random sample from a pdf $f(x \mid \boldsymbol{\theta})$ that belongs to an exponential family given by

$$
f(x \mid \boldsymbol{\theta})=h(x) c(\boldsymbol{\theta}) \exp \left(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x)\right)
$$

where $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{d}\right), d \leq k$.
By using the Factorization Theorem, prove that

$$
T(\mathbf{X})=\left(\sum_{j=1}^{n} t_{1}\left(X_{j}\right), \ldots, \sum_{j=1}^{n} t_{k}\left(X_{j}\right)\right)
$$

is a sufficient statistic for $\boldsymbol{\theta}$.

SOLUTION:

The sample joint pdf is given as

$$
\begin{gathered}
f(\mathbf{x} \mid \boldsymbol{\theta})=\prod_{j=1}^{n} f\left(x_{j} \mid \boldsymbol{\theta}\right)=\prod_{j=1}^{n} h\left(x_{j}\right) c(\boldsymbol{\theta}) \exp \left(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}\left(x_{j}\right)\right) \\
=\left(\prod_{j=1}^{n} h\left(x_{j}\right)\right)(c(\boldsymbol{\theta}))^{n} \exp \left(w_{1}(\boldsymbol{\theta}) \sum_{j=1}^{n} t_{1}\left(x_{j}\right)+\ldots+w_{k}(\boldsymbol{\theta}) \sum_{j=1}^{n} t_{k}\left(x_{j}\right)\right), \\
=(c(\boldsymbol{\theta}))^{n} \exp \left(w_{1}(\boldsymbol{\theta}) T_{1}(\mathbf{x})+\ldots+w_{k}(\boldsymbol{\theta}) T_{k}(\mathbf{x})\right)\left(\prod_{j=1}^{n} h\left(x_{j}\right)\right) \\
=(c(\boldsymbol{\theta}))^{n} \exp \left(w(\boldsymbol{\theta}) T(\mathbf{x})^{\top}\right) \tilde{h}(\mathbf{x})
\end{gathered}
$$

where $T_{i}(\mathbf{x})=\sum_{j=1}^{n} t_{i}\left(x_{j}\right)$ for $i=1, \ldots, k, w(\boldsymbol{\theta})=\left(w_{1}(\boldsymbol{\theta}), \ldots, w_{k}(\boldsymbol{\theta})\right), T(\mathbf{x})=\left(T_{1}(\mathbf{x}), \ldots, T_{k}(\mathbf{x})\right)$ and $\tilde{h}(\mathbf{x})=\prod_{j=1}^{n} h\left(x_{j}\right)$.
Hence, it is clear that $f(\mathbf{x} \mid \boldsymbol{\theta})=\tilde{g}(T(\mathbf{x}), \boldsymbol{\theta}) \tilde{h}(\mathbf{x})$ for suitable functions \tilde{g} and \tilde{h}. By the factorization theorem it now follows that $T(\mathbf{X})=\left(T_{1}(\mathbf{X}), \ldots, T_{k}(\mathbf{X})\right)$ is then a sufficient statistic for $\boldsymbol{\theta}$.
b) Show that the inverse Gaussian pdf

$$
f(x \mid \mu, \lambda)= \begin{cases}\left(\frac{\lambda}{2 \pi x^{3}}\right)^{1 / 2} \exp \left(-\frac{\lambda(x-\mu)^{2}}{2 \mu^{2} x}\right) & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{cases}
$$

where μ and λ are positive constants, belongs to an exponential family. Use the result from point a) to find a sufficient statistic for $\boldsymbol{\theta}=(\mu, \lambda)$.

SOLUTION:

For $x>0$,

$$
\begin{aligned}
& f(x \mid \mu, \lambda)=x^{-3 / 2}\left(\frac{\lambda}{2 \pi}\right)^{1 / 2} \exp \left(-\frac{\lambda}{2 \mu^{2}} x+\frac{\lambda}{\mu}-\frac{\lambda}{2 x}\right) \\
& =x^{-3 / 2}\left(\frac{\lambda}{2 \pi}\right)^{1 / 2} \exp \left(\frac{\lambda}{\mu}\right) \exp \left(-\frac{\lambda}{2 \mu^{2}} x-\frac{\lambda}{2 x}\right)
\end{aligned}
$$

which is seen to belong to an exponential family with $k=2, \boldsymbol{\theta}=(\mu, \lambda), h(x)=x^{-3 / 2}$, $c(\boldsymbol{\theta})=\left(\frac{\lambda}{2 \pi}\right)^{1 / 2} \exp \left(\frac{\lambda}{\mu}\right), w_{1}(\boldsymbol{\theta})=-\frac{\lambda}{2 \mu^{2}}, w_{2}(\boldsymbol{\theta})=-\frac{\lambda}{2}, t_{1}(x)=x$ and $t_{2}(x)=1 / x$.
According to point a), a sufficient statistic for $\boldsymbol{\theta}=(\mu, \lambda)$ is then

$$
T(\mathbf{X})=\left(\sum_{j=1}^{n} X_{j}, \sum_{j=1}^{n} 1 / X_{j}\right)
$$

c) Show that the maximum likelihood estimators of the parameters μ and λ in b) are

$$
\hat{M}=\bar{X}=\frac{1}{n} \sum_{j=1}^{n} X_{j},
$$

and

$$
\hat{\Lambda}=\frac{n}{\sum_{j=1}^{n}\left(\frac{1}{X_{j}}-\frac{1}{X}\right)}
$$

SOLUTION:

For a realization x_{1}, \ldots, x_{n} of the random sample, the likelihood function becomes,

$$
L\left(\mu, \lambda \mid x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} x_{i}^{-3 / 2}(2 \pi)^{-n / 2} \lambda^{n / 2} \exp \left(\frac{n \lambda}{\mu}\right) \exp \left(-\frac{\lambda}{2 \mu^{2}} \sum_{i=1}^{n} x_{i}-\frac{\lambda}{2} \sum_{i=1}^{n} 1 / x_{i}\right)
$$

A (reduced) \log-likelihood function is then,

$$
\begin{gathered}
l\left(\mu, \lambda \mid x_{1}, \ldots, x_{n}\right)=\frac{n}{2} \ln \lambda+\frac{n \lambda}{\mu}-\frac{\lambda}{2 \mu^{2}} \sum_{i=1}^{n} x_{i}-\frac{\lambda}{2} \sum_{i=1}^{n} 1 / x_{i} . \\
\frac{d l\left(\mu, \lambda \mid x_{1}, \ldots, x_{n}\right)}{d \mu}=-\frac{n \lambda}{\mu^{2}}+\frac{\lambda}{\mu^{3}} \sum_{i=1}^{n} x_{i}=0,
\end{gathered}
$$

gives the point estimate

$$
\begin{gathered}
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\bar{x} \\
\frac{d l\left(\mu, \lambda \mid x_{1}, \ldots, x_{n}\right)}{d \lambda}=\frac{n}{2 \lambda}+\frac{n}{\mu}-\frac{1}{2 \mu^{2}} \sum_{i=1}^{n} x_{i}-\frac{1}{2} \sum_{i=1}^{n} 1 / x_{i}=0
\end{gathered}
$$

Substituting the point estimate $\hat{\mu}=\bar{x}$ for μ, provides the following equation to determine the point estimate $\hat{\lambda}$,

$$
\frac{n}{2 \hat{\lambda}}+\frac{n}{2 \bar{x}}-\frac{1}{2} \sum_{i=1}^{n} 1 / x_{i}=0
$$

which leads to the result,

$$
\hat{\lambda}=\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}-\frac{1}{\bar{x}}}=\frac{n}{\sum_{j=1}^{n}\left(\frac{1}{x_{j}}-\frac{1}{\bar{x}}\right)} .
$$

Hence, it follows that the MLE will be given as,

$$
\hat{M}=\bar{X}
$$

and

$$
\hat{\Lambda}=\frac{n}{\sum_{j=1}^{n}\left(\frac{1}{X_{j}}-\frac{1}{\bar{X}}\right)}
$$

d) Prove that a one-to-one function of a sufficient statistic is a sufficient statistic. Use this property together with the result from b) to show that $T^{*}(\mathbf{X})=(\hat{M}, \hat{\Lambda})$ is also a sufficient statistic for (μ, λ).

SOLUTION:

Assume that $T(\mathbf{X})$ is a sufficient statistic, and define $T^{*}(\mathbf{x})=r(T(\mathbf{x}))$ for all \mathbf{x}, where r is a one-to-one function with inverse r^{-1}. By the factorization theorem there exist functions g and h such that

$$
f(\mathbf{x} \mid \boldsymbol{\theta})=g(T(\mathbf{x}), \boldsymbol{\theta}) h(\mathbf{x})=g\left(r^{-1}\left(T^{*}(\mathbf{x})\right), \boldsymbol{\theta}\right) h(\mathbf{x})=g^{*}\left(T^{*}(\mathbf{x}), \boldsymbol{\theta}\right) h(\mathbf{x}),
$$

where $g^{*}(t, \boldsymbol{\theta})=g\left(r^{-1}(t), \boldsymbol{\theta}\right)$. Again, by the factorization theorem, it follows that $T^{*}(\mathbf{X})$ is a sufficient statistic for $\boldsymbol{\theta}$.
$T(\mathbf{X})=\left(\sum_{j=1}^{n} X_{j}, \sum_{j=1}^{n} 1 / X_{j}\right)$ is sufficient by b). Obviously $T_{1}(\mathbf{X})=\left(\frac{1}{n} \sum_{j=1}^{n} X_{j}\right.$, $\left.\frac{1}{n} \sum_{j=1}^{n} 1 / X_{j}\right)=\left(\bar{X}, \frac{1}{n} \sum_{j=1}^{n} 1 / X_{j}\right)$ is obtained from $T(\mathbf{X})$ by a one-to-one mapping. Then, define $T_{2}(\mathbf{X})=\left(\bar{X}, \frac{1}{n} \sum_{j=1}^{n} 1 / X_{j}-\frac{1}{\bar{X}}\right)=r_{1}\left(T_{1}(\mathbf{X})\right)$. Assume that $r_{1}(x, y)=$
$r_{1}(u, v)$, which gives $x=u$ and $y-1 / x=v-1 / u=v-1 / x$, and therefore $y=v$. Hence, r_{1} is a one-to-one mapping. Finally, define $T_{3}(\mathbf{X})=r_{2}\left(T_{2}(\mathbf{X})\right)$, where $r_{2}(x, y)=(x, 1 / y)$. Clearly, r_{2} is a one-to-one mapping. It is seen that $T_{3}(\mathbf{X})=(\hat{M}, \hat{\Lambda})$. Since $T_{3}(\mathbf{X})$ is obtained by a sequence of one-to-one mappings of $T(\mathbf{X})$, which is then also one-to-one, $T_{3}(\mathbf{X})$ is therefore also sufficient.
e) Use Jensen's inequality, or any other suitable method, to verify that the estimator $\hat{\Lambda}$ in c) is positive and finite (a.s.). That is, verify that $\frac{1}{n} \sum_{j=1}^{n}\left(\frac{1}{X_{j}}-\frac{1}{\bar{X}}\right)>0$, or, $\frac{1}{n} \sum_{j=1}^{n} \frac{1}{X_{j}}>\frac{1}{\bar{X}}$. Jensen's inequality: If $g(\cdot)$ is a strictly convex function on the value range of a nonconstant random variable $Y, 0<\mathrm{E}[|Y|]<\infty$, then $\mathrm{E}[g(Y)]>g(\mathrm{E}[Y])$. (Note: $g(x)=$ $1 / x$ is a strictly convex function on $(0, \infty)$.)

SOLUTION:

We need to prove that $\frac{1}{n} \sum_{j=1}^{n} \frac{1}{x_{j}}>\frac{1}{\bar{x}}$ for any realization x_{1}, \ldots, x_{n} of the random sample. Define the discrete random variable Y with values x_{1}, \ldots, x_{n} by $\operatorname{Prob}\left(Y=x_{j}\right)=1 / n$, $j=1, \ldots, n . \quad Y>0$ and non-constant (a.s.). Since $g(x)=1 / x$ is a strictly convex function on $(0, \infty)$, it follows from the Jensen inequality above that

$$
\mathrm{E}\left[\frac{1}{Y}\right]=\sum_{j=1}^{n} \frac{1}{x_{j}} \frac{1}{n}>\frac{1}{\mathrm{E}[Y]}=\frac{1}{\sum_{j=1}^{n} x_{j} \frac{1}{n}} \text { (a.s.) }
$$

which is exactly what we needed to prove.
An alternative proof by Cauchy-Schwartz inequality:

$$
n^{2}=\left(\sum_{j=1}^{n} \frac{1}{\sqrt{x_{j}}} \sqrt{x_{j}}\right)^{2} \leq\left(\sum_{j=1}^{n} \frac{1}{x_{j}}\right)\left(\sum_{j=1}^{n} x_{j}\right)
$$

which is seen to give the desired result if the inequality is strict. Equality can only occur if $x_{i}=c / x_{i}$ for every $i=1, \ldots, n$, for some constant $c>0$, that is, $x_{i}=\sqrt{c}$ for $i=1, \ldots, n$. But this is impossible (a.s.), so the inequality is strict.

