Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 9

English

Contact during exam: Arvid Naess

 $73\,59\,70\,53/\,99\,53\,83\,50$

SOLUTIONS EXAM IN COURSE TMA4295 STATISTICAL INFERENCE

May 26, 2009 Time: 09:00-13:00

Permitted aids: Tabeller og formler i statistikk, Tapir Forlag K. Rottmann: Matematisk formelsamling Calculator HP30S / CITIZEN SR-270X Yellow, stamped A5-sheet with your own handwritten notes.

Examination results are due: June 16, 2009

Problem 1

A statistical distribution often used to model income is the Pareto distribution. The associated probability density function (pdf) is given as,

$$f(x|\theta) = \begin{cases} \frac{1}{\theta} c^{\frac{1}{\theta}} x^{-(1+\frac{1}{\theta})} & \text{for } x > c \,, \\\\ 0 & \text{for } x \le c \,, \end{cases}$$

where θ is an unknown parameter and c > 0 is a known constant.

If the random variable X has the pdf $f(x|\theta)$ given above, then it can be shown that,

$$\mathbf{E}_{\theta}[X^{k}] = \begin{cases} \frac{c^{k}}{1-k\theta} & \text{for } k < \frac{1}{\theta}, \\ \\ \infty & \text{for } k \ge \frac{1}{\theta}, \end{cases}$$

Let X_1, \ldots, X_n be a random sample from the given Pareto distribution.

a) Determine the method of moments estimator (MME) Θ^* of θ based on the random sample X_1, \ldots, X_n .

Prove that Θ^* is consistent for a suitable condition on θ .

SOLUTION:

Since $\mu_1 = E[X] = \frac{c}{1-\theta}$ (for $\theta < 1$), and $m_1 = \frac{1}{n} \sum_{i=1}^n x_i = \overline{x}$ is the empirical mean from a realization x_1, \ldots, x_n of the random sample, the equation to find the MME will be

$$m_1 = \frac{c}{1 - \theta^*}$$
, that is, $\theta^* = 1 - \frac{c}{\overline{x}}$

This gives the MME

$$\Theta^* = 1 - \frac{c}{\overline{X}}$$

By the WLLN (weak law of large numbers), if $\mu_2 = \mathbb{E}[X^2] < \infty$, that is $\theta < 1/2$, then $\overline{X} \xrightarrow{P}_{n \to \infty} \mu_1 = \frac{c}{1-\theta}$. The function $g(x) = 1 - \frac{c}{x}$ is continuous on $(0, \infty)$. Then $\overline{X} \xrightarrow{P}_{n \to \infty} \mu_1$ implies that $\Theta^* = g(\overline{X}) \xrightarrow{P}_{n \to \infty} g(\mu_1) = 1 - \frac{c}{\mu_1} = 1 - \frac{c}{c/(1-\theta)} = \theta$. Hence, Θ^* is consistent if $\theta < 1/2$. (Actually, the WLLN is true here if $\mathbb{E}[X] < \infty$, that is, if $\theta < 1$.)

b) Establish the approximate distribution for Θ^* for large values of n. For which values of θ is the approximation valid? <u>SOLUTION:</u>

By the CLT (central limit theorem), $\sqrt{n}(\overline{X} - \mu_1) \xrightarrow[n \to \infty]{d} N(0, \sigma^2)$ (convergence in distribution) if $\operatorname{Var}[X_i] = \sigma^2 < \infty$, that is $\theta < 1/2$. Invoking the (first-order) Delta Method for the function $g(x) = 1 - \frac{c}{x}$, if $g'(\mu_1)$ exists and is non-zero, it is obtained that

$$\sqrt{n}(g(\overline{X}) - g(\mu_1)) \xrightarrow[n \to \infty]{d} N(0, \sigma^2 g'(\mu_1)^2),$$

that is,

$$\sqrt{n} \left(\Theta^* - \theta \right) \xrightarrow[n \to \infty]{d} N(0, \sigma^2 g'(\mu_1)^2)$$

The function g is differentiable on $(0, \infty)$, and $g'(x) = \frac{c}{x^2}$. This gives $g'(\mu_1) = \frac{c}{\mu_1^2} = \frac{c}{c^2/(1-\theta)^2} = \frac{(1-\theta)^2}{c} > 0$ for $\theta < 1$.

$$\sigma^2 = \mu_2 - \mu_1^2 = \frac{c^2}{1 - 2\theta} - \frac{c^2}{(1 - \theta)^2} = \frac{c^2 \theta^2}{(1 - 2\theta)(1 - \theta)^2},$$

which leads to

$$\sigma^2 g'(\mu_1)^2 = \frac{\theta^2 (1-\theta)^2}{(1-2\theta)} \,.$$

TMA4295 Statistical Inference

Hence, for large values of n,

$$\Theta^* \approx Y_n \sim N\left(\theta, \frac{\theta^2(1-\theta)^2}{n(1-2\theta)}\right),$$

which is guaranteed if $\theta < 1/2$.

c) Assume that $X \sim f(x|\theta)$, and define

$$U = \ln X - \ln c \,.$$

Show that U is exponentially distributed with pdf

$$f_U(u|\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{u}{\theta}} & \text{for } u > 0, \\ \\ 0 & \text{for } u \le 0, \end{cases}$$

Use this result, or possibly some other way, to derive Cramér-Rao's lower bound on the variance of unbiased estimators of θ . You do not need to verify the conditions for the validity of the Cramér-Rao theorem (interchange of expectation and derivation).

SOLUTION:

For u > 0, that is x > c,

$$f_U(u|\theta) = f(ce^u|\theta)|dce^u/du| = f(ce^u|\theta)ce^u = \frac{1}{\theta}c^{\frac{1}{\theta}}(ce^u)^{-(1+\frac{1}{\theta})}ce^u = \frac{1}{\theta}e^{-\frac{u}{\theta}}, \ (u>0)$$

For $u \leq 0$, that is, $x \leq c$, clearly, $f_U(u|\theta) = 0$.

Due to the one-to-one character of the mapping $X \to U$, any unbiased estimator $T(\mathbf{X})$ $(\mathbf{X} = (X_1, \ldots, X_n))$ is equivalent with an unbiased estimator $W(\mathbf{U})$. Hence,

$$\operatorname{Var}[T(\mathbf{X})] = \operatorname{Var}[W(\mathbf{U})] \ge \frac{1}{nI_0(\theta)},$$

where the Fisher information $I_0(\theta)$ is given as,

$$I_0(\theta) = \mathcal{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \ln f_U(U|\theta) \right)^2 \right],$$

Now,

$$\left(\frac{\partial}{\partial\theta}\ln f_U(U|\theta)\right)^2 = \left(-\frac{1}{\theta} + \frac{U}{\theta^2}\right)^2 = \frac{1}{\theta^2} - \frac{2}{\theta^3}U + \frac{1}{\theta^4}U^2,$$

which gives,

$$I_0(\theta) = \mathcal{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \ln f_U(U|\theta) \right)^2 \right] = \frac{1}{\theta^2} \left(1 - \frac{2}{\theta} \theta + \frac{1}{\theta^2} 2\theta^2 \right) = \frac{1}{\theta^2} d\theta^2$$

Hence,

$$\operatorname{Var}[T(\mathbf{X})] = \operatorname{Var}[W(\mathbf{U})] \ge \frac{\theta^2}{n}$$

Page 3 of 9

TMA4295 Statistical Inference

d) Show that the maximum likelihood estimator $\hat{\Theta}$ of θ based on the random sample X_1, \ldots, X_n is given by

$$\hat{\Theta} = \frac{1}{n} \sum_{i=1}^{n} \ln X_i - \ln c \,.$$

Is $\hat{\Theta}$ an UMVUE (uniform minimum variance unbiased estimator)? SOLUTION:

We may calculate the MLE using the random sample U_1, \ldots, U_n . For a realization u_1, \ldots, u_n , the loglikelihood function $l(\theta|u_1, \ldots, u_n)$ becomes,

$$l(\theta|u_1, \dots, u_n) = -n \ln \theta - \frac{1}{\theta} \sum_{i=1}^n u_i.$$
$$dl(\theta|u_1, \dots, u_n)/d\theta = -\frac{n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^n u_i = 0 \implies \hat{\theta} = \frac{1}{n} \sum_{i=1}^n u_i$$

Hence, the MLE $\hat{\Theta}$ of θ is given as,

$$\hat{\Theta} = \frac{1}{n} \sum_{i=1}^{n} U_i = \frac{1}{n} \sum_{i=1}^{n} \ln X_i - \ln c.$$

It is found that

$$\mathbf{E}[\hat{\Theta}] = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}[U_i] = \frac{1}{n} \sum_{i=1}^{n} \theta = \theta,$$

so that $\hat{\Theta}$ is an unbiased estimator of θ . Also,

$$\operatorname{Var}[\hat{\Theta}] = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}[U_i] = \frac{1}{n^2} \sum_{i=1}^n \theta^2 = \frac{\theta^2}{n}.$$

Comparing with the result from c), it follows that $\hat{\Theta}$ is an efficient estimator of θ . Hence, we may conclude that $\hat{\Theta}$ is UMVUE.

e) Derive an exact $1 - \alpha$ confidence interval for θ based on the observations x_1, \ldots, x_n of the random sample X_1, \ldots, X_n . (Hint: Find the pdf of $2U/\theta$.) If you are unable derive the exact confidence interval, you will get half credit for an approximate $1 - \alpha$ confidence interval.

SOLUTION:

The RV $V = 2U/\theta$ has the pdf $f_V(v) = \frac{1}{2}e^{-\frac{v}{2}}$ (v > 0), which shows that V a χ^2 variable with 2 degrees of freedom. By the addition theorem for independent χ^2 variables,

$$\frac{2n\hat{\Theta}}{\theta} = \sum_{i=1}^{n} V_i$$

becomes a χ^2 variable with 2n degrees of freedom χ^2_{2n} . Therefore $(\operatorname{Prob}(\chi^2_{2n} \leq \chi^2_{2n,\gamma}) = 1 - \gamma)$,

$$\operatorname{Prob}\left(\chi_{2n,1-\frac{\alpha}{2}}^{2} \leq \frac{2n\widehat{\Theta}}{\theta} \leq \chi_{2n,\frac{\alpha}{2}}^{2}\right) = 1 - \alpha \,,$$

which can be written as,

$$\operatorname{Prob}\left(\frac{2n\hat{\Theta}}{\chi^2_{2n,\frac{\alpha}{2}}} \le \theta \le \frac{2n\hat{\Theta}}{\chi^2_{2n,1-\frac{\alpha}{2}}}\right) = 1 - \alpha \,.$$

This leads to the following exact $1 - \alpha$ confidence interval for θ based on a realization x_1, \ldots, x_n of the random sample X_1, \ldots, X_n :

$$\left[\frac{2\sum_{i=1}^{n}\ln x_{i}-2n\ln c}{\chi_{2n,\frac{\alpha}{2}}^{2}},\frac{2\sum_{i=1}^{n}\ln x_{i}-2n\ln c}{\chi_{2n,1-\frac{\alpha}{2}}^{2}}\right].$$

An approximate confidence interval can be derived from the asymptotic result that (CLT),

$$\frac{\sqrt{n}(\Theta - \theta)}{\theta} \xrightarrow[n \to \infty]{d} N(0, 1).$$

Hence, for large n,

$$\operatorname{Prob}\left(-z_{\frac{\alpha}{2}} \leq \frac{\sqrt{n}(\hat{\Theta}-\theta)}{\theta} \leq z_{\frac{\alpha}{2}}\right) \approx 1-\alpha,$$

that is,

$$\operatorname{Prob}\left(\frac{\hat{\Theta}}{1-z_{\frac{\alpha}{2}}/\sqrt{n}} \le \theta \le \frac{\hat{\Theta}}{1+z_{\frac{\alpha}{2}}/\sqrt{n}}\right) \approx 1-\alpha,$$

This leads to the following approximate $1 - \alpha$ confidence interval for θ based on a realization x_1, \ldots, x_n of the random sample X_1, \ldots, X_n for large n:

$$\left[\frac{\frac{1}{n}\sum_{i=1}^{n}\ln x_{i} - \ln c}{1 - z_{\frac{\alpha}{2}}/\sqrt{n}}, \frac{\frac{1}{n}\sum_{i=1}^{n}\ln x_{i} - \ln c}{1 + z_{\frac{\alpha}{2}}/\sqrt{n}}\right].$$

Problem 2

a) Let X_1, \ldots, X_n be a random sample from a pdf $f(x|\theta)$ that belongs to an exponential family given by

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x)\right),$$

where $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d), d \leq k$.

By using the Factorization Theorem, prove that

$$T(\mathbf{X}) = \left(\sum_{j=1}^{n} t_1(X_j), \dots, \sum_{j=1}^{n} t_k(X_j)\right)$$

is a sufficient statistic for $\boldsymbol{\theta}$.

SOLUTION:

The sample joint pdf is given as

$$f(\mathbf{x}|\boldsymbol{\theta}) = \prod_{j=1}^{n} f(x_j|\boldsymbol{\theta}) = \prod_{j=1}^{n} h(x_j)c(\boldsymbol{\theta}) \exp\left(\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x_j)\right),$$

$$= \left(\prod_{j=1}^{n} h(x_j)\right)(c(\boldsymbol{\theta}))^n \exp\left(w_1(\boldsymbol{\theta})\sum_{j=1}^{n} t_1(x_j) + \ldots + w_k(\boldsymbol{\theta})\sum_{j=1}^{n} t_k(x_j)\right),$$

$$= (c(\boldsymbol{\theta}))^n \exp\left(w_1(\boldsymbol{\theta})T_1(\mathbf{x}) + \ldots + w_k(\boldsymbol{\theta})T_k(\mathbf{x})\right) \left(\prod_{j=1}^{n} h(x_j)\right),$$

$$= (c(\boldsymbol{\theta}))^n \exp\left(w(\boldsymbol{\theta})T(\mathbf{x})^{\top}\right) \tilde{h}(\mathbf{x}),$$

where $T_i(\mathbf{x}) = \sum_{j=1}^n t_i(x_j)$ for $i = 1, ..., k, w(\boldsymbol{\theta}) = (w_1(\boldsymbol{\theta}), ..., w_k(\boldsymbol{\theta})), T(\mathbf{x}) = (T_1(\mathbf{x}), ..., T_k(\mathbf{x}))$ and $\tilde{h}(\mathbf{x}) = \prod_{j=1}^n h(x_j)$.

Hence, it is clear that $f(\mathbf{x}|\boldsymbol{\theta}) = \tilde{g}(T(\mathbf{x}),\boldsymbol{\theta}) \tilde{h}(\mathbf{x})$ for suitable functions \tilde{g} and \tilde{h} . By the factorization theorem it now follows that $T(\mathbf{X}) = (T_1(\mathbf{X}), \ldots, T_k(\mathbf{X}))$ is then a sufficient statistic for $\boldsymbol{\theta}$.

b) Show that the inverse Gaussian pdf

$$f(x|\mu,\lambda) = \begin{cases} \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left(-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right) & \text{for } x > 0, \\ 0 & \text{for } x \le 0, \end{cases}$$

where μ and λ are positive constants, belongs to an exponential family. Use the result

SOLUTION:

For x > 0,

$$f(x|\mu,\lambda) = x^{-3/2} \left(\frac{\lambda}{2\pi}\right)^{1/2} \exp\left(-\frac{\lambda}{2\mu^2}x + \frac{\lambda}{\mu} - \frac{\lambda}{2x}\right)$$
$$= x^{-3/2} \left(\frac{\lambda}{2\pi}\right)^{1/2} \exp\left(\frac{\lambda}{\mu}\right) \exp\left(-\frac{\lambda}{2\mu^2}x - \frac{\lambda}{2x}\right),$$

which is seen to belong to an exponential family with k = 2, $\boldsymbol{\theta} = (\mu, \lambda)$, $h(x) = x^{-3/2}$, $c(\boldsymbol{\theta}) = \left(\frac{\lambda}{2\pi}\right)^{1/2} \exp\left(\frac{\lambda}{\mu}\right), \quad w_1(\boldsymbol{\theta}) = -\frac{\lambda}{2\mu^2}, \quad w_2(\boldsymbol{\theta}) = -\frac{\lambda}{2}, \quad t_1(x) = x \text{ and } t_2(x) = 1/x.$

According to point a), a sufficient statistic for $\boldsymbol{\theta} = (\mu, \lambda)$ is then

from point a) to find a sufficient statistic for $\boldsymbol{\theta} = (\mu, \lambda)$.

$$T(\mathbf{X}) = \left(\sum_{j=1}^{n} X_j, \sum_{j=1}^{n} 1/X_j\right)$$

c) Show that the maximum likelihood estimators of the parameters μ and λ in b) are

$$\hat{M} = \overline{X} = \frac{1}{n} \sum_{j=1}^{n} X_j \,,$$

and

$$\hat{\Lambda} = \frac{n}{\sum_{j=1}^{n} \left(\frac{1}{X_j} - \frac{1}{\overline{X}}\right)}.$$

SOLUTION:

For a realization x_1, \ldots, x_n of the random sample, the likelihood function becomes,

$$L(\mu, \lambda | x_1, \dots, x_n) = \prod_{i=1}^n x_i^{-3/2} (2\pi)^{-n/2} \lambda^{n/2} \exp\left(\frac{n\lambda}{\mu}\right) \exp\left(-\frac{\lambda}{2\mu^2} \sum_{i=1}^n x_i - \frac{\lambda}{2} \sum_{i=1}^n 1/x_i\right),$$

A (reduced) log-likelihood function is then,

$$l(\mu,\lambda|x_1,\ldots,x_n) = \frac{n}{2}\ln\lambda + \frac{n\lambda}{\mu} - \frac{\lambda}{2\mu^2}\sum_{i=1}^n x_i - \frac{\lambda}{2}\sum_{i=1}^n 1/x_i.$$
$$\frac{dl(\mu,\lambda|x_1,\ldots,x_n)}{d\mu} = -\frac{n\lambda}{\mu^2} + \frac{\lambda}{\mu^3}\sum_{i=1}^n x_i = 0,$$

TMA4295 Statistical Inference

gives the point estimate

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}.$$
$$\frac{dl(\mu, \lambda | x_1, \dots, x_n)}{d\lambda} = \frac{n}{2\lambda} + \frac{n}{\mu} - \frac{1}{2\mu^2} \sum_{i=1}^{n} x_i - \frac{1}{2} \sum_{i=1}^{n} 1/x_i = 0,$$

Substituting the point estimate $\hat{\mu} = \overline{x}$ for μ , provides the following equation to determine the point estimate $\hat{\lambda}$,

$$\frac{n}{2\hat{\lambda}} + \frac{n}{2\overline{x}} - \frac{1}{2}\sum_{i=1}^{n} 1/x_i = 0\,,$$

which leads to the result,

$$\hat{\lambda} = \frac{1}{\frac{1}{n}\sum_{i=1}^{n}\frac{1}{x_i} - \frac{1}{\overline{x}}} = \frac{n}{\sum_{j=1}^{n}\left(\frac{1}{x_j} - \frac{1}{\overline{x}}\right)}.$$

Hence, it follows that the MLE will be given as,

$$\hat{M} = \overline{X}$$
.

and

$$\hat{\Lambda} = \frac{n}{\sum_{j=1}^{n} \left(\frac{1}{X_j} - \frac{1}{\overline{X}}\right)} \,.$$

d) Prove that a one-to-one function of a sufficient statistic is a sufficient statistic. Use this property together with the result from b) to show that $T^*(\mathbf{X}) = (\hat{M}, \hat{\Lambda})$ is also a sufficient statistic for (μ, λ) .

SOLUTION:

Assume that $T(\mathbf{X})$ is a sufficient statistic, and define $T^*(\mathbf{x}) = r(T(\mathbf{x}))$ for all \mathbf{x} , where r is a one-to-one function with inverse r^{-1} . By the factorization theorem there exist functions g and h such that

$$f(\mathbf{x}|\boldsymbol{\theta}) = g(T(\mathbf{x}), \boldsymbol{\theta}) h(\mathbf{x}) = g(r^{-1}(T^*(\mathbf{x})), \boldsymbol{\theta}) h(\mathbf{x}) = g^*(T^*(\mathbf{x}), \boldsymbol{\theta}) h(\mathbf{x})$$

where $g^*(t, \theta) = g(r^{-1}(t), \theta)$. Again, by the factorization theorem, it follows that $T^*(\mathbf{X})$ is a sufficient statistic for θ .

 $T(\mathbf{X}) = \left(\sum_{j=1}^{n} X_j, \sum_{j=1}^{n} 1/X_j\right) \text{ is sufficient by b}. \text{ Obviously } T_1(\mathbf{X}) = \left(\frac{1}{n} \sum_{j=1}^{n} X_j, \frac{1}{n} \sum_{j=1}^{n} 1/X_j\right) = \left(\overline{X}, \frac{1}{n} \sum_{j=1}^{n} 1/X_j\right) \text{ is obtained from } T(\mathbf{X}) \text{ by a one-to-one mapping.}$ Then, define $T_2(\mathbf{X}) = \left(\overline{X}, \frac{1}{n} \sum_{j=1}^{n} 1/X_j - \frac{1}{\overline{X}}\right) = r_1(T_1(\mathbf{X})).$ Assume that $r_1(x, y) = T_1(x, y) = T_1(x, y)$

Page 8 of 9

 $r_1(u, v)$, which gives x = u and y - 1/x = v - 1/u = v - 1/x, and therefore y = v. Hence, r_1 is a one-to-one mapping. Finally, define $T_3(\mathbf{X}) = r_2(T_2(\mathbf{X}))$, where $r_2(x, y) = (x, 1/y)$. Clearly, r_2 is a one-to-one mapping. It is seen that $T_3(\mathbf{X}) = (\hat{M}, \hat{\Lambda})$. Since $T_3(\mathbf{X})$ is obtained by a sequence of one-to-one mappings of $T(\mathbf{X})$, which is then also one-to-one, $T_3(\mathbf{X})$ is therefore also sufficient.

e) Use Jensen's inequality, or any other suitable method, to verify that the estimator $\hat{\Lambda}$ in c) is positive and finite (a.s.). That is, verify that $\frac{1}{n}\sum_{j=1}^{n}\left(\frac{1}{X_{j}}-\frac{1}{\overline{X}}\right) > 0$, or, $\frac{1}{n}\sum_{j=1}^{n}\frac{1}{X_{j}} > \frac{1}{\overline{X}}$.

<u>Jensen's inequality</u>: If $g(\cdot)$ is a strictly convex function on the value range of a nonconstant random variable Y, $0 < \mathbb{E}[|Y|] < \infty$, then $\mathbb{E}[g(Y)] > g(\mathbb{E}[Y])$. (Note: g(x) = 1/x is a strictly convex function on $(0, \infty)$.)

SOLUTION:

We need to prove that $\frac{1}{n} \sum_{j=1}^{n} \frac{1}{x_j} > \frac{1}{x}$ for any realization x_1, \ldots, x_n of the random sample. Define the discrete random variable Y with values x_1, \ldots, x_n by $\operatorname{Prob}(Y = x_j) = 1/n$, $j = 1, \ldots, n$. Y > 0 and non-constant (a.s.). Since g(x) = 1/x is a strictly convex function on $(0, \infty)$, it follows from the Jensen inequality above that

$$E\left[\frac{1}{Y}\right] = \sum_{j=1}^{n} \frac{1}{x_j} \frac{1}{n} > \frac{1}{E[Y]} = \frac{1}{\sum_{j=1}^{n} x_j \frac{1}{n}} \quad (a.s.),$$

which is exactly what we needed to prove.

An alternative proof by Cauchy-Schwartz inequality:

$$n^{2} = \left(\sum_{j=1}^{n} \frac{1}{\sqrt{x_{j}}} \sqrt{x_{j}}\right)^{2} \le \left(\sum_{j=1}^{n} \frac{1}{x_{j}}\right) \left(\sum_{j=1}^{n} x_{j}\right),$$

which is seen to give the desired result if the inequality is strict. Equality can only occur if $x_i = c/x_i$ for every i = 1, ..., n, for some constant c > 0, that is, $x_i = \sqrt{c}$ for i = 1, ..., n. But this is impossible (a.s.), so the inequality is strict.