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TMA4295 Stastistical inference
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Solutions

(Corrected 20 December 2011)

Problem 1

a) The likelihood function is given by L(λ) = λ
∑

xie−nλ/
∏
xi!, lnL(λ) = ∑

xi ln λ− nλ+
ln∏xi!, ∂ lnL(λ)/∂λ = ∑

xi/λ− n, ∂2 lnL(λ)/∂λ2 = −∑xi/λ
2 < 0, so that the MLE

λ̂ of λ is given by ∑Xi/λ̂ − n = 0, λ̂ = ∑
Xi/n = X̄, and by the invariance property

the MLE of e−λ is θ̂ = e−X̄ .

b) ln f(x) = x ln λ − λ − ln x!, ∂ ln f(x)/∂λ = x/λ − 1, ∂2f(x)/∂λ2 = −x/λ2, so the
Cramér–Rao bound of an unbiased estimator of e−λ is (de−λ/dλ)2/(−nE∂2f(Xi)/∂λ2) =
e−2λ/(nλ/λ2) = λe−2λ/n.

c) ∑
Ui has the binomial (n, e−λ) distribution, and by the central limit theorem√
n(θ̃ − e−λ) → N(0, e−λ(1 − e−λ)) in distribution. By asymptotic efficiency of MLEs√
n(θ̂ − e−λ)→ N(0, λe−2λ) (the same result would have been obtained by applying the

central limit theorem to X̄ and then the Delta method to θ̂ = e−X̄). Then the ARE of
θ̃ with respect to θ̂ is λe−2λ/(e−λ(1− e−λ)) = λ/(eλ − 1). The preferable estimator is θ̂,
since the ARE is near one only for λ near zero (the limit when λ→ 0+ is 1 by L’Hôpital’s
rule) and always less than one (eλ − 1 > λ because eλ − 1− λ is an increasing function
for λ > 0) and has limit 0 when λ→∞.
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d) f(x) = 1/x! · e−λ · e(lnλ)x, showing that f is an exponential family and identifying∑
Xi as a complete sufficient statistic for λ. Since U1 is an unbiased estimator of e−λ,

θ∗ = E(U1 |
∑
Xi) also has expected value e−λ and is a function of a complete sufficient

statistic for λ, and is thus the UMVUE. To find that function explicitely, we first compute

E

(
U1

∣∣∣∣∣
n∑
i=1

Xi = m

)
= P

(
U1 = 1

∣∣∣∣∣
n∑
i=1

Xi = m

)
= P (U1 = 1,∑n

i=1Xi = m)
P (∑n

i=1Xi = m)

= P (X1 = 0,∑n
i=2Xi = m)

P (∑n
i=1Xi = m) = P (X1 = 0)P (∑n

i=2Xi = m)
P (∑n

i=1Xi = m)

= e−λ · ((n− 1)λ)me−(n−1)λ/m!
(nλ)me−nλ/m! =

(
n− 1
n

)m
=
(

1− 1
n

)m
,

where we have used the fact that ∑n
i=1Xi and

∑n
i=2Xi have the Poisson distribution

with parameter nλ and (n− 1)λ, respectively. So the UMVUE is θ∗ = (1− 1/n)
∑

Xi =
(1− 1/n)nX̄ . Note that limn→∞(1− 1/n)n = e−1, so that θ∗ → θ̂ as n→∞.

e) Since nX̄ = ∑
Xi is Poisson distributed with parameter nλ, it has mgf given by M(t) =

EentX̄ = enλ(et−1). So Eθ̂ = Ee−X̄ = M(−1/n) = e−λn(1−e−1/n), and Eθ̂2 = Ee−2X̄ =
M(−2/n) = e−λn(1−e−2/n), giving Var θ̂ = Eθ̂2 − (Eθ̂)2 = e−λn(1−e−2/n) − e−2λn(1−e−1/n).
We already know that Eθ∗ = e−λ, and Eθ∗2 = E(1 − 1/n)2nX̄ = Ee2nX̄ ln(1−1/n) =
M(2 ln(1− 1/n)) = enλ((1−1/n)2−1) = e−λ(2−1/n), so that Var θ∗ = Eθ∗2 − (Eθ∗)2 =
e−2λ(eλ/n − 1). For n = 20 and λ = 1, Var θ̂ = 0.006926 and Var θ∗ = 0.006939.
Since θ∗ is the unbiased estimator having lowest variance, and Var θ̂ < Var θ∗, θ̂ is not
unbiased.

Problem 2

a) The cdf of 2θX2
1 is given by P (2θX2

1 ≤ y) = P
(
X1 ≤

√
y/(2θ)

)
, so the pdf of 2θX2

1 is
given by

d

dy
P (2θX2

1 ≤ y) = d

dy
P
(
X1 ≤

√
y

2θ

)
= f

(√
y

2θ

)
d

dy

√
y

2θ = 2θ
√
y

2θe
−y/2 1

2√y
1√
2θ

= 1
2e
−y/2

for y > 0, the pdf of the chi-squared distribution with 2 degrees of freedom.

b) Since each 2θX2
i has the chi-squared distribution with 2 degrees of freedom and the

Xi and hence the 2θX2
i are independent, 2θ∑X2

i has the chi-squared distribution with
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2n degrees of freedom. Then 1 − α = P
(
χ2

2n,1−α/2 ≤ 2θ∑X2
i ≤ χ2

2n,α/2

)
. Solving the

inequalities with respect to θ yields

P

(
χ2

2n,1−α/2

2∑X2
i

≤ θ ≤
χ2

2n,α/2

2∑X2
i

)
= 1− α.

c) θ0 not lying in the above confidence interval is indicative of H1. Thus, rejecting H0 when
θ0
∑
X2
i <

1
2χ

2
2n,1−α/2 = 37.11 or θ0

∑
X2
i >

1
2χ

2
2n,α/2 = 64.78 has probability α if H0 is

true, and is a size α test.

d) Each 2θX2
i has expected value 2 and standard deviation 2. By the central limit theorem,√

n(2θ∑X2
i /n− 2)/2 =

√
n(θ∑X2

i /n− 1)→ N(0, 1) in distribution. So rejecting when√
n(θ0

∑
X2
i /n − 1) < −zα/2 or

√
n(θ0

∑
X2
i /n − 1) > zα/2, that is, when θ0

∑
X2
i <

n− zα/2
√
n = 36.14 or θ0

∑
X2
i > n+ zα/2

√
n = 63.86, is an approximate size α test.

e) The likelihood function is given by L(θ) = 2nθn(∏xi)e−θ∑x2
i , lnL(θ) = n ln 2 +n ln θ+

ln∏xi − θ
∑
x2
i , ∂ lnL(θ)/∂θ = n/θ − ∑x2

i , so the likelihood is maximal at n/∑x2
i .

Let λ = L(θ0)/L(n/∑X2
i ) be the LRT. Then −2 lnλ = lnL(θ0) − lnL(n/∑X2

i ) =
−2(n ln θ0− θ0

∑
X2
i −n ln(n/∑X2

i ) +n) = 2n(lnn− ln(θ0
∑
X2
i )− 1) + 2θ0

∑
X2
i → χ2

1
in distribution if H0 is true. To get an approximate size α test, H0 should be rejected
if −2 lnλ > χ2

1,α, that is, if θ0
∑
X2
i − n ln(θ0

∑
X2
i ) > 1

2χ
2
1,α − n(lnn − 1). With the

given numbers, this becomes θ0
∑
X2
i − 50 ln(θ0

∑
X2
i ) > −143.7. The function given by

g(t) = t − 50 ln t is decreasing for 0 < t < 50 and increasing for t > 50, and the points
where g(t) = −143.7 is given by the problem. We can conclude that H0 is rejected if
θ0
∑
X2
i < 37.39 or θ0

∑
X2
i > 65.17


