Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 3

Lecturer: Professor Henning Omre Contact person during exam: Professor Bo Lindqvist (97589418/735 93531)

Exam in TMA4295 STATISTICAL INFERENCE

Monday 10.December 2012 Time: 09.00 - 13:00

Support:

Tabeller og formler i Statistikk, Tapir Matematisk formelsamling, K.Rottmann NTNU Calculator (HP30S eller Citizen SR-270X) Personal, hand written, yellow peep sheet - A5-format

Sensur: Wednesday 10. January 2013

Problem 1

Use $X \to f(x|\sigma^2) = \text{Norm}(0, \sigma^2)$, which entails that X has a Normal probability density function (pdf) with given parameter $\mu = 0$ and unknown parameter σ^2 . Consider a random sample: $\mathbf{X} : X_1, X_2, \ldots, X_n$ iid Norm $(0, \sigma^2)$.

a) Develop an expression for the maximum likelihood estimator (MLE) for σ^2 - denote the estimator $\hat{\sigma^2}$.

Demonstrate that the estimator $\hat{\sigma^2}$ is Gamma distributed, and develop expressions for the distribution parameters - see Tabeller og Formler i Statistikk.

Use the result above to find expressions for $E(\widehat{\sigma^2})$ and $Var(\widehat{\sigma^2})$.

- b) Use the Cramer-Rao Inequality to justify that $\widehat{\sigma^2}$ is a uniform minimum variance unbiased estimator (UMVUE) for σ^2 .
- c) Use a Bayesian framework with likelihood $[X|\sigma^2] \rightarrow f(x|\sigma^2) = \text{Norm}(0,\sigma^2)$ and prior pdf $\sigma^2 \rightarrow \pi(\sigma^2) = \text{InvGam}(\alpha,\beta)$, which entails that the prior pdf is Inverse-Gamma with given distribution parameters α and β see Tabeller og Formler i Statistikk.

Develop an expression for the posterior pdf $[\sigma^2 | \mathbf{X} = \mathbf{x}] \rightarrow \pi(\sigma^2 | \mathbf{x}).$

The Normal-/Inverse-Gamma-distributions belong to a special class of distributions with certain Bayesian characteristics - what do we call this class and which characteristics does it have ?

d) Use a squared error loss function, $L(\sigma^2, \tilde{\sigma^2})$, for estimator $\tilde{\sigma^2}$ with respect to σ^2 . Specify the Bayesian estimator for σ^2 which minimizes the associated risk function - denote the estimator $\tilde{\sigma_B^2}$.

Develop an expression for $E(\widetilde{\sigma_B^2})$. Is the estimator $\widetilde{\sigma_B^2}$ an unbiased estimator for σ^2 ? Justify the answer.

What is required from an estimator for it to be a consistent estimator for σ^2 ? Does the estimator $\widetilde{\sigma_B^2}$ satisfy these requirements? Justify the answer.

e) Let the parameter values in the prior pdf $\pi(\sigma^2)$ be $\alpha = 4$ and $\beta = \frac{1}{6}$, and let the number of observations be n = 20.

The two estimators will then be:

$$\widehat{\sigma^2} = \frac{1}{20} \Sigma_i X_i^2$$
$$\widetilde{\sigma_B^2} = \frac{1}{26} \Sigma_i X_i^2 + \frac{6}{13}$$

Compare the two estimators by using a mean square error (MSE) criterion. Interpret and discuss the results.

Problem 2

Use the pdf:

$$X \to f(x|\beta) = \begin{cases} \frac{1}{\beta^2} x \exp\{-\frac{x}{\beta}\} & x \ge 0\\ 0 & \text{else} \end{cases}$$

with unknown distribution parameter $\beta > 0$. Note that $E(X) = 2\beta$ and that $Var(X) = 2\beta^2$. Consider a random sample: $\mathbf{X} : X_1, X_2, \dots, X_n$ iid $f(x|\beta)$, with n = 25 and observations with $\Sigma_i x_i = 15.0$ and $\Sigma_i x_i^2 = 27.0$.

a) Use the Factorization theorem to identify one sufficient statistic for β based on the sample.

Develop an expression for the maximum likelihood estimator (MLE) for $\sigma^2 = \text{Var}(X) = 2\beta^2$ - denote this estimator $\hat{\sigma^2}$.

Compute the value of the estimate for σ^2 based on the observations.

b) Develope an expression for an approximate $(1 - \alpha)$ -confidence interval for σ^2 by using the asymptotic distribution of $\hat{\sigma^2}$.

Compute the value of the interval borders based on the observations, and $\alpha = 0.05$.

c) Consider now the unknown distribution parameter β . The following hypothesis is forwarded:

$$H_0: \beta = \beta_0$$
 versus $H_1: \beta \neq \beta_0$

Use a level α score test to determine a rejection interval for the hypothesis H_0 .

Perform the test based on the observations when $\beta_0 = \frac{1}{5}$ and $\alpha = 0.05$. Shall the hypothesis H_0 be rejected ?