NTNU - Trondheim Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4295 Statistical Inference

Academic contact during examination: Vaclav Slimacek
Phone: 94296313

Examination date: Tuesday, December 2, 2014
Examination time (from-to): 09:00-13:00
Permitted examination support material: C:
Tabeller og Formler i Statistikk, Tapir
NTNU certified calculator
Personal, hand written, yellow peep sheet - A5-format

Other information:

Copies of some important results from the course book are provided as attachment

Language: English
Number of pages: 3
Number pages enclosed: 4

Problem 1 The dice
It is suspected that the dice used in a casino are manipulated, so the chances of getting " 1 " and " 6 " are changed, while the other outcomes are not affected.

Let p_{i} be the probability of achieving i "eyes" with a dice from the casino. The following model will be studied:

$$
p_{1}=\frac{1}{6}-\theta, p_{2}=p_{3}=p_{4}=p_{5}=\frac{1}{6}, p_{6}=\frac{1}{6}+\theta
$$

where θ is an unknown parameter with $|\theta|<1 / 6$.
One such dice is thrown n times, where X_{i} of these throws end with i "eyes" $(i=1,2, \ldots, 6)$.
a) What assumptions must be made to ensure that the observed vector $\boldsymbol{X}=$ $\left(X_{1}, X_{2}, \ldots, X_{6}\right)$ is multinomially distributed? Assume in the following that these assumptions hold.
Note that results from the course book that assume independent and identically distributed observations also apply to multinomial trials like the ones considered in this problem.
Show that the joint probability mass function ($p m f$) for \boldsymbol{X} can be written as an exponential family on the following form:

$$
f(\boldsymbol{x} \mid \theta)=h(\boldsymbol{x}) \exp \left\{x_{1} \ln \left(\frac{1}{6}-\theta\right)+x_{6} \ln \left(\frac{1}{6}+\theta\right)\right\} \quad \text { for } \boldsymbol{x} \in \boldsymbol{A} .
$$

Specify the function $h(\boldsymbol{x})$ and the set \boldsymbol{A} of possible values of \boldsymbol{X}.
Explain why the two-dimensional statistic $T(\boldsymbol{X})=\left(X_{1}, X_{6}\right)$ is sufficient for θ.
b) Show that $T(\boldsymbol{X})$ is minimal sufficient.
c) Show that the maximum likelihood estimator $(M L E)$ for θ is given by

$$
\hat{\theta}=\frac{1}{6} \cdot \frac{x_{6}-x_{1}}{x_{6}+x_{1}} \quad \text { if } x_{6}+x_{1}>0
$$

and that $\hat{\theta}$ is undetermined if $x_{6}+x_{1}=0$.
d) In order to prove that the dice is manipulated, one wants to test

$$
H_{0}: \theta=0 \text { vs. } H_{1}: \theta \neq 0 .
$$

Find an expression for the likelihood ratio $\lambda(\boldsymbol{x})$ for this situation.
What is the conclusion of the likelihood ratio test (LRT) if $n=100$ and the observed vector is

$$
(10,14,17,21,16,22) ?
$$

You shall here use the asymptotic distribution of the likelihood ratio. Use significance level $\alpha=0.05$.
e) Show that Cramér-Rao's lower bound of the variance of unbiased estimators of θ is

$$
\frac{1-36 \theta^{2}}{12 n}
$$

Use this to write down the asymptotic distribution of the maximum likelihood estimator $\hat{\theta}$.

Find an approximate 95% confidence interval for θ, and compute the interval when the observations are as in the previous subpoint.
Also explain briefly, without doing all the calculations, how to derive an approximate 95% confidence set for θ by inverting a likelihood ratio test.
f) Show that the estimator

$$
\tilde{\theta}=\frac{X_{6}-X_{1}}{2 n}
$$

is unbiased for θ, and find an expression for its variance.
Why cannot this estimator be improved by using Rao-Blackwell's theorem?
g) The estimator $\tilde{\theta}$ from the previous subpoint is unbiased, and is also a function of the sufficient statistic $T(\boldsymbol{X})$. A natural question is then whether it is a UMVU estimator.
Can you use Cramér-Rao's lower bound from subpoint e) to determine this? Give reasons for your answer.
If the answer is no, it is natural to check whether Theorem 7.3.23 of the attachment can be used to determine whether $\tilde{\theta}$ is UMVU. (This theorem is essentially what has in the lectures been called Lehmann-Scheffé's theorem).
Show that $T(\boldsymbol{X})$ is not complete, by using the definition of completeness.
Can you conclude anything from Theorem 7.3.23?

Problem 2 Time to failure

A machine is started at the beginning of day number 1 and is observed until it fails for the first time. Let $Y=y$ mean that this happens on day number y, ($y=1,2, \ldots$).
a) Write down conditions under which Y is geometrically distributed with parameter $p, 0<p<1$, i.e., Y has pmf

$$
f(y)=(1-p)^{y-1} p \quad \text { for } y=1,2, \ldots
$$

In the following it is assumed that these conditions are met.
Show that the moment generating function ($m g f$) for Y is given by

$$
M_{Y}(t)=\frac{p e^{t}}{1-(1-p) e^{t}} \quad \text { for } t<-\ln (1-p) .
$$

Show how this can be used to show that the time to failure, Y, has expected value $\mu=1 / p$ (days).

In order to register the failure time more accurately one divides the day into n parts (for integers $n>1$), so that the time Y_{n} to failure now is measured with unit $1 / n$ days (e.g., hours if $n=24$).

It is natural to assume that Y_{n} is geometrically distributed with parameter $p_{n}=$ p / n, while the time to failure, measured by the unit days, is

$$
X_{n}=\frac{1}{n} Y_{n}
$$

b) Show that X_{n} converges in distribution to a random variable X, i.e., $X_{n} \xrightarrow{d}$ X. Which known distribution does X have? What is $E(X)$? (Hint: Calculate the mgf of X_{n} and find the limit as $n \rightarrow \infty$).
TMA 4295 Statistical Inference
Theorem 5.5.15 (Stronger form of the Central Limit Theorem) Let X_{1}, X_{2}, \ldots be a sequence of iid random variables with $\mathrm{E} X_{i}=\mu$ and $0<\operatorname{Var} X_{i}=$ Then, for any $x,-\infty<x<\infty$, $\lim _{n \rightarrow \infty} G_{n}(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\nu^{2} / 2} d y ;$
that is, $\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma$ has a limiting standard normal distribution.
Theorem 5.5.17 (Slutsky's Theorem) If $X_{n} \rightarrow X$ in distribution and $Y_{n} \rightarrow a$, a constant, in probability, then
b. $X_{n}+Y_{n} \rightarrow X+a$ in distribution.
Theorem 5.5.24 (Delta Method) Let Y_{n} be a sequence of random variables that
satisfies $\sqrt{n}\left(Y_{n}-\theta\right) \rightarrow \mathrm{n}\left(0, \sigma^{2}\right)$ in distribution. For a given function g and a specific value of θ, suppose that $g^{\prime}(\theta)$ exists and is not 0 . Then (5.5.10) $\quad \sqrt{n}\left[g\left(Y_{n}\right)-g(\theta)\right] \rightarrow \mathrm{n}\left(0, \sigma^{2}\left[g^{\prime}(\theta)\right]^{2}\right)$ in distribution. Definition 6.2.1 A statistic $T(\mathbf{X})$ is a sufficient statistic for θ if the conditional
distribution of the sample \mathbf{X} given the value of $T(\mathbf{X})$ does not depend on θ. Theorem 6.2.2 If $p(\mathbf{x} \mid \theta)$ is the joint pdf or pmf of \mathbf{X} and $q(t \mid \theta)$ is the pdf or pmf Theorem $T(\mathbf{X})$, then $T(\mathbf{X})$ is a sufficient statistic for θ if, for every \mathbf{x} in the sample space,
the ratio $p(\mathbf{x} \mid \theta) / q(T(\mathbf{x}) \mid \theta)$ is constant as a function of θ.
Theorem 6.2.6 (Factorization Theorem) Let $f(\mathbf{x} \mid \theta)$ denote the joint pdf or pmf of a sample \mathbf{X}. A statistic $T(\mathbf{X})$ is a sufficient statistic for θ if and only if there
exist functions $g(t \mid \theta)$ and $h(\mathbf{x})$ such that, for all sample points \mathbf{x} and all parameter points θ,

$$
(6.2 .3) \quad f(\mathbf{x} \mid \theta)=g(T(\mathbf{x}) \mid \theta) h(\mathbf{x})
$$

Theorem 6.2.10 Let X_{1}, \ldots, X_{n} be iid observations from a pdf or pmf $f(x \mid \boldsymbol{\theta})$ that
belongs to an exponential family given by $f(x \mid \boldsymbol{\theta})=h(x) c(\boldsymbol{\theta}) \exp \left(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x)\right)$,
$T(\mathbf{X})=\left(\sum_{j=1}^{n} t_{1}\left(X_{j}\right), \ldots, \sum_{j=1}^{n} t_{k}\left(\boldsymbol{X}_{j}\right)\right)$
is a sufficient statistic for $\boldsymbol{\theta}$.
Definition 6.2.11 A sufficient statistic $T(\mathbf{X})$ is called a minimal sufficient statistic
if, for any other sufficient statistic $T^{\prime}(\mathbf{X}), T(\mathbf{x})$ is a function of $T^{\prime}(\mathbf{x})$.

Theorem 6.2.13 Let $f(\mathbf{x} \mid \theta)$ be the pmf or pdf of a sample \mathbf{X}. Suppose there exists a Thection $T(\mathbf{x})$ such that, for every two sample points \mathbf{x} and \mathbf{y}, the ratio $f(\mathbf{x} \mid \theta) / f(\mathbf{y} \mid \theta)$
funconstant as a function of θ if and only if $T(\mathbf{x})=T(\mathbf{y})$. Then $T(\mathbf{X})$ is a minimal
is conser

Definition 6.2.21 Let $f(t \mid \theta)$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$. The femily of probability ditstribitions in called complete if $\mathrm{E}_{\theta} g(T)=0$ for all θ implies
$P_{\theta}(g(T)=0)=1$ for all θ. Equivalently, $T(\mathbf{X})$ is called a complete statistic.

Theorem 6.2.28 If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistic.

Definition 7.2.4 For each sample point \mathbf{x}, let $\hat{\theta}(\mathbf{x})$ be a parameter value at which $L(\theta \mid \mathbf{x})$ attains its maximum as a function of θ, with \mathbf{x} held fixed. A maximum likelihood
estimator (MLE) of the parameter θ based on a sample \mathbf{X} is $\hat{\theta}(\mathbf{X})$. Theorem 7.2.10 (Invariance property of MLEs) If $\hat{\theta}$ is the $M L E$ of θ, then
for any function $\tau(\theta)$, the $M L E$ of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Definition 7.3.7 An estimator W^{*} is a best unbiased estimator of $\tau(\theta)$ if it satisfies $\mathrm{E}_{\theta} W^{*}=\tau(\theta)$ for all θ and, for any other estimator W with $\mathrm{E}_{\theta} W=\tau(\theta)$, we have
$\operatorname{Var}_{\theta} W^{*} \leq \operatorname{Var}_{\theta} W$ for all $\theta . W^{*}$ is also called a uniform minimum variance unbiased Theorem 739 (Cramér Ro Inequlity) Let $X \quad X$ be a sample with pdf $f(\mathbf{x} \mid \theta)$, and let $W(\mathbf{X})=W\left(X_{1}, \ldots, X_{n}\right)$ be any estimator satisfying $\frac{d}{d \theta} \mathrm{E}_{\theta} W(\mathbf{X})=\int_{X} \frac{\partial}{\partial \theta}[W(\mathbf{x}) f(\mathbf{x} \mid \theta)] d \mathbf{x}$

$$
\operatorname{Var}_{\theta} W(\mathbf{X})<\infty .
$$

and
(7.3.4)

Then
(7.3.5)

$\operatorname{Var}_{\theta}(W(\mathbf{X})) \geq \frac{\left(\frac{d}{d \theta} \mathrm{E}_{\theta} W(\mathbf{X})\right)^{2}}{\mathrm{E}_{\theta}\left(\left(\frac{\theta}{\partial \theta} \log f(\mathbf{X} \mid \theta)\right)^{2}\right)}$.

Corollary 7.3.15 (Attainment) Let $X_{1, \ldots}, X_{n}$ be iid $f(x \mid \theta)$, where $f(x \mid \theta)$ satisfies the conditions of the Cramer-Rao Theorem. Let $L(\theta \mid \mathbf{x})=\prod_{i=1}^{i=1} f\left(x_{i} \mid \theta\right)$ denote the likelihood function. If $W(\mathbf{X})=W\left(X_{1}, \ldots, X_{n}\right)$ is any unbiased estimator of $\tau(\theta)$,
then $W(\mathbf{X})$ attains the Cramer-Rao Lower Bound if and only if (7.3.12) $\quad a(\theta)[W(\mathbf{x})-\tau(\theta)]=\frac{\partial}{\partial \theta} \log L(\theta \mid \mathbf{x})$
for some function $a(\theta)$.

Theorem $\mathbf{7 . 3 . 1 7}$ (Rao-Blackwell) Let W be any unbiased estimator of $\tau(\theta)$, and
let T be a sufficient statistic for θ. Define $\phi(T)=\mathrm{E}(W \mid T)$. Then $\mathrm{E}_{\theta} \phi(T)=\tau(\theta)$ and let T be a sufficient statistic for θ. Define $\phi(T)=\mathrm{E}(W \mid T)$. Then $\mathrm{E}_{\theta} \phi(T)=\tau(\theta)$ and
$\operatorname{Var}_{\theta} \phi(T) \leq \operatorname{Var}_{\theta} W$ for all θ; that is, $\phi(T)$ is a uniformly better unbiased estimator of $\tau(\theta)$.

Theorem 7.3.23 Let T be a complete sufficient statistic for a parameter θ, and let $\phi(T)$ be any estimator based only on T. Then $\phi(T)$ is the unique best unbiased
estimator of its expected value.

Definition 8.2.1 The likelihood ratio test statistic for testing $H_{0}: \theta \in \Theta_{0}$ versus $H_{1}: \theta \in \Theta_{0}^{\mathrm{c}}$ is $\lambda(\mathbf{x})=\frac{\sup _{\Theta_{0}} L(\theta \mid \mathbf{x})}{\sup L(\theta \mid \mathbf{x})}$.

A likelihood ratio test (LRT) is any test that has a rejection region of the form $\{\mathbf{x}: \lambda(\mathbf{x})$
$\leq c\}$, where c is any number satisfying $0 \leq c \leq 1$.
Theorem 8.2.4 If $T(\mathbf{X})$ is a sufficient statistic for θ and $\lambda^{*}(t)$ and $\lambda(\mathbf{x})$ are the LRT statistics based on T and \mathbf{X}, respectively, then $\lambda^{*}(T(\mathbf{x}))=\lambda(\mathbf{x})$ for every \mathbf{x} in

Definition 8.3.1 The power function of a hypothesis test with rejection region R
is the function of θ defined by $\beta(\theta)=P_{\theta}(\mathbf{X} \in R)$.
Definition 8.3.5 For $0 \leq \alpha \leq 1$, a test with power function $\beta(\theta)$ is a size α test
Definition 8.3.6 For $0 \leq \alpha \leq 1$, a test with power function $\beta(\theta)$ is a level α test
Definition 8.3.9 A test with power function $\beta(\theta)$ is unbiased if $\beta\left(\theta^{\prime}\right) \geq \beta\left(\theta^{\prime \prime}\right)$ for every $\theta^{\prime} \in \Theta_{0}^{c}$ and $\theta^{\prime \prime} \in \Theta_{0}$.

Definition 8.3.11 Let \mathcal{C} be a class of tests for testing $H_{0}: \theta \in \Theta_{0}$ versus $H_{1}: \theta \in$ Θ_{0}^{c}. A test in class \mathcal{C}, with power function $\beta(\theta)$, is a uniformly most powerful (UMP)
class \mathcal{C} test if $\beta(\theta) \geq \beta^{\prime}(\theta)$ for every $\theta \in \Theta_{0}^{c}$ and every $\beta^{\prime}(\theta)$ that is a power function of a test in class C.

Definition 8.3.16 A family of pdfs or pmfs $\{g(t \mid \theta): \theta \in \Theta\}$ for a univariate random
variable T with real-valued parameter θ has a monotone likelihood ratio (MLR) if, for every $\theta_{2}>\theta_{1}, g\left(t \mid \theta_{2}\right) / g\left(t \mid \theta_{1}\right)$ is a monotone (nonincreasing or nondecreasing)
function of t on $\left\{t: g\left(t \mid \theta_{1}\right)>0\right.$ or $\left.g\left(t \mid \theta_{2}\right)>0\right\}$. Note that $c / 0$ is defined as ∞ if $0<c$.

Theorem 8.3.17 (Karlin-Rubin) Consider testing $H_{0}: \theta \leq \theta_{0}$ versus H_{1} :
$\theta>\theta_{0}$. Suppose that T is a sufficient statistic for θ and the family of pdfs or pmfs $\theta>\theta_{0}$. Suppose that T is a sufficient statistic for θ and the family of pdfs or pmfs
$\{g(t \mid \theta): \theta \in \Theta\}$ of T has an MLR. Then for any t_{0}, the test that rejects H_{0} if and only if $T>t_{0}$ is a UMP level α test, where $\alpha=P_{\theta_{0}}\left(T>t_{0}\right)$.

Definition 8.3.26 A p-value $p(\mathbf{X})$ is a test statistic satisfying $0 \leq p(\mathbf{x}) \leq 1$ for every sample point \mathbf{x}. Small values of $p(\mathbf{X})$ give evidence that H_{1} is true. A p-value is valid if, for every $\theta \in \Theta_{0}$ and every $0 \leq \alpha \leq 1$,
(8.3.8)
$P_{\theta}(p(\mathbf{X}) \leq \alpha) \leq \alpha$,

Theorem 8.3.27 Let $W(\mathbf{X})$ be a test statistic such that large values of W give evidence that H_{1} is true. For each sample point \mathbf{x}, define (8.3.9) $\quad p(\mathbf{x})=\sup _{\theta \in \Theta_{0}} P_{\theta}(W(\mathbf{X}) \geq W(\mathbf{x}))$.

$$
\text { Then, } p(\mathbf{X}) \text { is a valid p-value. }
$$

Definition 9.1.1 An interval estimate of a real-valued parameter θ is any pair of functions, $L\left(x_{1}, \ldots, x_{n}\right)$ and $U\left(x_{1}, \ldots, x_{n}\right)$, of a sample that satisfy $L(\mathbf{x}) \leq U(\mathbf{x})$ for
all $\mathbf{x} \in \mathcal{X}$. If $\mathbf{X}=\mathbf{x}$ is observed, the inference $L(\mathbf{x}) \leq \theta \leq U(\mathbf{x})$ is made. The random all $\mathbf{x} \in \mathcal{X}$. If $\mathbf{X}=\mathbf{x}$ is observed, the inference $L(\mathbf{x}) \leq \theta \leq U(\mathbf{x})$ is made. The random
interval $[L(\mathbf{X}), U(\mathbf{X})]$ is called an interval estimator.

Definition 9.1.4 For an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of a parameter θ, the coverage probability of $[L(\mathbf{X}), U(\mathbf{X})]$ is the probability that the random interval
$[L(\mathbf{X}), U(\mathbf{X})]$ covers the true parameter, θ. In symbols, it is denoted by either $P_{\theta}(\theta \in$ $[L(\mathbf{X}), U(\mathbf{X})])$ or $P(\theta \in[L(\mathbf{X}), U(\mathbf{X})] \mid \theta)$.

Definition 9.1.5 For an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of a parameter θ, the confidence coefficient of $[L(\mathbf{X}), U(\mathbf{X})]$ is the infimum of the coverage probabilities,
$\inf _{\theta} P_{\theta}(\theta \in[L(\mathbf{X}), U(\mathbf{X})])$.

Theorem 9.2.2 For each $\theta_{0} \in \Theta$, let $A\left(\theta_{0}\right)$ be the acceptance region of a level α
test of $H_{0}: \theta=\theta_{0}$. For each $\mathbf{x} \in \mathcal{X}$, define a set $C(\mathbf{x})$, in the parameter space by (9.2.1)

Then the random set $C(\mathbf{X})$ is a $1-\alpha$ confidence set. Conversely, let $C(\mathbf{X})$ be a $1-\alpha$
confidence set. For any $\theta_{0} \in \Theta$, define

$$
A\left(\theta_{0}\right)=\left\{\mathbf{x}: \theta_{0} \in C(\mathbf{x})\right\}
$$

Then $A\left(\theta_{0}\right)$ is the acceptance region of a level α test of $H_{0}: \theta=\theta_{0}$.
Definition 9.2.6 A random variable $Q(\mathbf{X}, \theta)=Q\left(X_{1}, \ldots, X_{n}, \theta\right)$ is a pivotal quantity (or pivot) if the distribution of $Q(\mathbf{X}, \theta)$ is independent of all parameters. That is,
if $\mathbf{X} \sim F(\mathbf{x} \mid \theta)$, then $Q(\mathbf{X}, \theta)$ has the same distribution for all values of θ. Theorem 9.3.2 Let $f(x)$ be a unimodal pdf. If the interval $[a, b]$ satisfies i. $\int_{a}^{b} f(x) d x=1-\alpha$,
ii. $f(a)=f(b)>0$, and
then $[a, b]$ is the shortest among all intervals that satisfy (i).

Corollary 9.3.10 If the posterior density $\pi(\theta \mid \mathbf{x})$ is unimodal, then for a given value
of α, the shortest credible interval for θ is given by of α, the shortest credible interval for θ is given by
$\{\theta: \pi(\theta \mid \mathbf{x}) \geq k\}$ where $\int_{\{\theta: \pi(\theta \mid \mathbf{x}) \geq k\}} \pi(\theta \mid \mathbf{x}) d \theta=1-\alpha$.
Definition 10.1.1 A sequence of estimators $W_{n}=W_{n}\left(X_{1}, \ldots, X_{n}\right)$ is a consistent
sequence of estimators of the parameter θ if, for every $\epsilon>0$ and every $\theta \in \Theta$, (10.1.1) $\quad \lim _{n \rightarrow \infty} P_{\theta}\left(\left|W_{n}-\theta\right|<\epsilon\right)=1$.

Theorem 10.1.3 If W_{n} is a sequence of estimators of a parameter θ satisfying
i. $\lim _{n \rightarrow \infty} \operatorname{Var}_{\theta} W_{n}=0$,
for every $\theta \in \Theta$, then W_{n} is a consistent sequence of estimators of θ.
Theorem 10.1.6 (Consistency of MLEs) Let X_{1}, X_{2}, \ldots, be iid $f(x \mid \theta)$, and let $L(\theta \mid \mathbf{x})=\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)$ be the likelihood function. Let θ denote the MLE of θ. Let $\tau(\theta)$ be a continuous function of θ. Under the regularity conditions in
on $f(x \mid \theta)$ and, hence, $L(\theta \mid \mathbf{x})$, for every $\epsilon>0$ and every $\theta \in \Theta$,

That is, $\tau(\hat{\theta})$ is a consistent estimator of $\tau(\theta)$.
 $\left\{k_{n}\right\}$ is a sequence of constants, then τ^{2} is called the limiting variance or limit of the

Definition 10.1.9 For an estimator T_{n}, suppose that $k_{n}\left(T_{n}-\tau(\theta)\right) \rightarrow \mathrm{n}\left(0, \sigma^{2}\right)$ in distribution. The parameter σ^{2} is called the asymptotic variance or variance of the
limit distribution of T_{n}.

Definition 10.1.11 A sequence of estimators W_{n} is asymptotically efficient for a
parameter $\tau(\theta)$ if $\left.\sqrt{n} \mid W_{\mathrm{n}}-\tau(\theta)\right] \rightarrow \mathrm{n}[0, v(\theta)]$ in distribution and parameter $\tau(\theta)$ if $\sqrt{n}\left[W_{n}-\tau(\theta)\right] \rightarrow \mathrm{n}[0, v(\theta)]$ in distribution and $v(\theta)=\frac{\left[\tau^{\prime}(\theta)\right]^{2}}{\mathrm{E}_{\theta}\left(\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right)^{2}\right)} ;$
that is, the asymptotic variance of W_{n} achieves the Cramér-Rao Lower Bound.
Theorem 10.1.12 (Asymptotic efficiency of MLEs) Let X_{1}, X_{2}, \ldots, be iid
$f(x \mid \theta)$, let $\hat{\theta}$ denote the MLE of θ, and let $\tau(\theta)$ be a continuous function of θ. Under
the regularity conditions in Miscellanea 10.6.2 on $f(x \mid \theta)$ and, hence, $L(\theta \mid \mathbf{x})$,
$\sqrt{n}[\tau(\hat{\theta})-\tau(\theta)] \rightarrow \mathrm{n}[0, v(\theta)]$,
where $v(\theta)$ is the Cramér-Rao Lower Bound. That is, $\tau(\hat{\theta})$ is a consistent and asymp-
totically efficient estimator of $\tau(\theta)$.
Definition 10.1.16 If two estimators W_{n} and V_{n} satisfy
in distribution, the asymptotic relative efficiency (ARE) of V_{n} with respect to W_{n} is $\operatorname{ARE}\left(V_{n}, W_{n}\right)=\frac{\sigma_{W}^{2}}{\sigma_{V}^{2}}$.
 ing $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta \neq \theta_{0}$, suppose X_{1}, \ldots, X_{n} are iid $f(x \mid \theta), \hat{\theta}$ is the $M L E$
 H_{0}, as $n \rightarrow \infty$,

$$
-2 \log \lambda(\mathbf{X}) \rightarrow \chi_{1}^{2} \text { in distribution, }
$$

 Under the regularity conditions in Miscellanea 10.6.2, if $\theta \in \Theta_{0}$, then the distribution

 specified by $\theta \in \Theta$.

